To see the other types of publications on this topic, follow the link: Mithramycine.

Journal articles on the topic 'Mithramycine'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Mithramycine.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hémon, Y., C. Martin, J. P. Auffray, J. J. Bonneru, C. Brunet, and J. Farisse. "Insuffisance hépato-rénale aiguë mortelle au cours d'un traitement par la mithramycine." Annales Françaises d'Anesthésie et de Réanimation 4, no. 3 (1985): 301–3. http://dx.doi.org/10.1016/s0750-7658(85)80143-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fernández, Ernestina, Ulrike Weißbach, César Sánchez Reillo, et al. "Identification of Two Genes from Streptomyces argillaceus Encoding Glycosyltransferases Involved in Transfer of a Disaccharide during Biosynthesis of the Antitumor Drug Mithramycin." Journal of Bacteriology 180, no. 18 (1998): 4929–37. http://dx.doi.org/10.1128/jb.180.18.4929-4937.1998.

Full text
Abstract:
ABSTRACT Mithramycin is an antitumor polyketide drug produced byStreptomyces argillaceus that contains two deoxysugar chains, a disaccharide consisting of two d-olivoses and a trisaccharide consisting of a d-olivose, ad-oliose, and a d-mycarose. From a cosmid clone (cosAR3) which confers resistance to mithramycin in streptomycetes, a 3-kb PstI-XhoI fragment was sequenced, and two divergent genes (mtmGI andmtmGII) were identified. Comparison of the deduced products of both genes with proteins in databases showed similarities with glycosyltransferases and glucuronosyltransferases from different
APA, Harvard, Vancouver, ISO, and other styles
3

Schweer, David, J. Robert McCorkle, Jurgen Rohr, Oleg V. Tsodikov, Frederick Ueland, and Jill Kolesar. "Mithramycin and Analogs for Overcoming Cisplatin Resistance in Ovarian Cancer." Biomedicines 9, no. 1 (2021): 70. http://dx.doi.org/10.3390/biomedicines9010070.

Full text
Abstract:
Ovarian cancer is a highly deadly malignancy in which recurrence is considered incurable. Resistance to platinum-based chemotherapy bodes a particularly abysmal prognosis, underscoring the need for novel therapeutic agents and strategies. The use of mithramycin, an antineoplastic antibiotic, has been previously limited by its narrow therapeutic window. Recent advances in semisynthetic methods have led to mithramycin analogs with improved pharmacological profiles. Mithramycin inhibits the activity of the transcription factor Sp1, which is closely linked with ovarian tumorigenesis and platinum-r
APA, Harvard, Vancouver, ISO, and other styles
4

Hou, Caixia, Jürgen Rohr, Sean Parkin, and Oleg V. Tsodikov. "How mithramycin stereochemistry dictates its structure and DNA binding function." MedChemComm 10, no. 5 (2019): 735–41. http://dx.doi.org/10.1039/c9md00100j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lombó, Felipe, Alfredo F. Braña, Carmen Méndez, and José A. Salas. "The Mithramycin Gene Cluster of Streptomyces argillaceus Contains a Positive Regulatory Gene and Two Repeated DNA Sequences That Are Located at Both Ends of the Cluster." Journal of Bacteriology 181, no. 2 (1999): 642–47. http://dx.doi.org/10.1128/jb.181.2.642-647.1999.

Full text
Abstract:
ABSTRACT Sequencing of a 4.3-kb DNA region from the chromosome ofStreptomyces argillaceus, a mithramycin producer, revealed the presence of two open reading frames (ORFs). The first one (orfA) codes for a protein that resembles several transport proteins. The second one (mtmR) codes for a protein similar to positive regulators involved in antibiotic biosynthesis (DnrI, SnoA, ActII-orf4, CcaR, and RedD) belonging to the Streptomycesantibiotic regulatory protein (SARP) family. Both ORFs are separated by a 1.9-kb, apparently noncoding region. Replacement of themtmR region by an antibiotic resista
APA, Harvard, Vancouver, ISO, and other styles
6

Fibach, Eitan, Nicoletta Bianchi, Monica Borgatti, Eugenia Prus, and Roberto Gambari. "Mithramycin induces fetal hemoglobin production in normal and thalassemic human erythroid precursor cells." Blood 102, no. 4 (2003): 1276–81. http://dx.doi.org/10.1182/blood-2002-10-3096.

Full text
Abstract:
Abstract We report in this paper that the DNA-binding drug mithramycin is a potent inducer of γ-globin mRNA accumulation and fetal hemoglobin (HbF) production in erythroid cells from healthy human subjects and β-thalassemia patients. Erythroid precursors derived from peripheral blood were grown in 2-phase liquid culture. In this procedure, early erythroid progenitors proliferate and differentiate during phase 1 (in the absence of erythropoietin) into late progenitors. In phase 2, in the presence of erythropoietin, the latter cells continue their proliferation and mature into Hb-containing orth
APA, Harvard, Vancouver, ISO, and other styles
7

Remsing, Lily L., Ana M. González, Mohammad Nur-e-Alam, et al. "Mithramycin SK, A Novel Antitumor Drug with Improved Therapeutic Index, Mithramycin SA, and Demycarosyl-mithramycin SK: Three New Products Generated in the Mithramycin ProducerStreptomycesargillaceusthrough Combinatorial Biosynthesis." Journal of the American Chemical Society 125, no. 19 (2003): 5745–53. http://dx.doi.org/10.1021/ja034162h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gober, Redding, Ryan Wheeler, and Jürgen Rohr. "Post-PKS enzyme complexes." MedChemComm 10, no. 11 (2019): 1855–66. http://dx.doi.org/10.1039/c9md00066f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wohlert, S. E., E. Künzel, R. Machinek, C. Méndez, J. A. Salas, and J. Rohr. "The Structure of Mithramycin Reinvestigated." Journal of Natural Products 62, no. 1 (1999): 119–21. http://dx.doi.org/10.1021/np980355k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Aich, Palok, and Dipak Dasgupta. "Role of Magnesium Ion in Mithramycin-DNA Interaction: Binding of Mithramycin-Mg2+ Complexes with DNA." Biochemistry 34, no. 4 (1995): 1376–85. http://dx.doi.org/10.1021/bi00004a032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Aich, Palok, and Dipak Dasgupta. "Role of Mg++ in the mithramycin-DNA interaction: Evidence for two types of mithramycin-Mg++ complex." Biochemical and Biophysical Research Communications 173, no. 2 (1990): 689–96. http://dx.doi.org/10.1016/s0006-291x(05)80090-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Anderson, J. B., D. M. Petsche, and A. L. Franklin. "Nuclear DNA content of benomyl-induced segregants of diploid strains of the phytopathogenic fungus Armillaria mellea." Canadian Journal of Genetics and Cytology 27, no. 1 (1985): 47–50. http://dx.doi.org/10.1139/g85-009.

Full text
Abstract:
The relative nuclear DNA contents of haploid, diploid, and benomyl-induced segregants of diploid strains of the phytopathogenic fungus Armillaria mellea were measured by mithramycin staining and fluorescence photometry. The diploid strains, originally recovered from sexually compatible matings of haploid strains, were heterozygous at mating-type and auxotrophic marker loci. The somatic segregants examined here were derived by treatment of the diploid strains with the fungicide benomyl in previous studies. As expected, the diploid strains had approximately twice as much nuclear DNA as the haplo
APA, Harvard, Vancouver, ISO, and other styles
13

Rosol, T. J., D. J. Chew, C. G. Couto, R. D. Ayl, L. A. Nagode, and C. C. Capen. "Effects of Mithramycin on Calcium Metabolism and Bone in Dogs." Veterinary Pathology 29, no. 3 (1992): 223–29. http://dx.doi.org/10.1177/030098589202900306.

Full text
Abstract:
Mithramycin (0.1 mg/kg) was administered intravenously to eight Beagle dogs on days 0 and 7 to determine its effects on calcium and phosphorus metabolism, serum parathyroid hormone concentration, osteoclastic bone resorption, and serum biochemical and hematologic parameters. Ionized calcium concentration was paradoxically increased on day 1 and decreased on day 8 in association with an increased serum parathyroid hormone concentration. Serum phosphorus concentration was decreased on days 1 and 2. Osteoclastic bone resorption in iliac cancellous bone was significantly decreased on day 8. There
APA, Harvard, Vancouver, ISO, and other styles
14

Artoni, Roberto Ferreira, Wagner Franco Molina, Luis Antonio Carlos Bertollo, and Pedro Manoel Galetti Junior. "Heterochromatin analysis in the fish species Liposarcus anisitsi (siluriformes) and Leporinus elongatus (characiformes)." Genetics and Molecular Biology 22, no. 1 (1999): 39–44. http://dx.doi.org/10.1590/s1415-47571999000100009.

Full text
Abstract:
The chromosomes of two neotropical freshwater fish species, namely Liposarcus anisitsi (Siluriformes, Loricariidae) and Leporinus elongatus (Characiformes, Anostomidae), were investigated by means of C-banding, Ag-NORs, fluorochrome staining and banding by hot saline solution (HSS) treatment, to reveal patterns of heterochromatin differentiation. The karyotype of L. anisitsi is described for the first time. Staining with the GC-specific fluorescent antibiotic mithramycin (MM) revealed bright signals in some C-banded blocks in both species, suggesting that these MM+ heterochromatin contains GC-
APA, Harvard, Vancouver, ISO, and other styles
15

Figg, W., T. M. Sissung, C. J. Peer, and D. Schrump. "21 Pharmacogenomics of mithramycin in thoracic malignancies." European Journal of Cancer 50 (November 2014): 13. http://dx.doi.org/10.1016/s0959-8049(14)70147-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Binkley, Roger W. "Aglycon-Disaccharide Coupling in Mithramycin Analog Synthesis." Journal of Carbohydrate Chemistry 9, no. 4 (1990): 507–11. http://dx.doi.org/10.1080/07328309008543850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mir, Mohd Ayoub, and Dipak Dasgupta. "Interaction of Antitumor Drug, Mithramycin, with Chromatin." Biochemical and Biophysical Research Communications 280, no. 1 (2001): 68–74. http://dx.doi.org/10.1006/bbrc.2000.4075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Demicheli, Cynthia, and Arlette Garnier-Suillerot. "Mithramycin: a very strong metal chelating agent." Biochimica et Biophysica Acta (BBA) - General Subjects 1158, no. 1 (1993): 59–64. http://dx.doi.org/10.1016/0304-4165(93)90097-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Dutta, Shreyasi, Shibojyoti Lahiri, Amrita Banerjee, Shriya Saha, and Dipak Dasgupta. "Association of antitumor antibiotic Mithramycin with Mn2+and the potential cellular targets of Mithramycin after association with Mn2+." Journal of Biomolecular Structure and Dynamics 33, no. 2 (2014): 434–46. http://dx.doi.org/10.1080/07391102.2014.887031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Morelli, S., MR Vicari, and LAC Bertollo. "Evolutionary cytogenetics of the Hoplias lacerdae, Miranda Ribeiro, 1908 group: a particular pathway concerning the other Erythrinidae fish." Brazilian Journal of Biology 67, no. 4 suppl (2007): 897–903. http://dx.doi.org/10.1590/s1519-69842007000500013.

Full text
Abstract:
The taxonomy/systematics of the Erythrinidae fish is still imprecise, with several doubts on their relationships. Karyotypes and chromosomal characteristics of some species of the Hoplias lacerdae group (Erythrinidae), from different Brazilian hydrographic basins and pisciculture stations, were analyzed in the present study, using conventional Giemsa staining, C-banding, silver staining, Mithramycin and Distamycin/DAPI fluorochromes, and fluorescent in situ hybridization (FISH). A diploid chromosome number of 2n = 50 and karyotypes composed of meta- and submetacentric chromosomes without sex-r
APA, Harvard, Vancouver, ISO, and other styles
21

Sastry, Mallika, and Dinshaw J. Patel. "Solution structure of the mithramycin dimer-DNA complex." Biochemistry 32, no. 26 (1993): 6588–604. http://dx.doi.org/10.1021/bi00077a012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Cons, Benjamin M. G., and Keith R. Fox. "Interaction of mithramycin with metal ions and DNA." Biochemical and Biophysical Research Communications 160, no. 2 (1989): 517–24. http://dx.doi.org/10.1016/0006-291x(89)92463-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ashby, Mark A., and John Lazarchick. "Case Report: Acquired Dysfibrinogenemia Secondary to Mithramycin Toxicity." American Journal of the Medical Sciences 292, no. 1 (1986): 53–55. http://dx.doi.org/10.1097/00000441-198607000-00011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Jacobsen, P. B., T. Stokke, O. Solesvik, and H. B. Steen. "Temperature-induced chromatin changes in ethanol-fixed cells." Journal of Histochemistry & Cytochemistry 36, no. 12 (1988): 1495–501. http://dx.doi.org/10.1177/36.12.2461412.

Full text
Abstract:
We studied the chromatin structure of rat thymocytes fixed in 70% ethanol at 0-44 degrees C by flow cytometry and gel electrophoresis. The fluorescence of the DNA-specific dye mithramycin increased by 93% when thymocytes were exposed at 44 degrees C in the fixative compared to cells kept at 0 degrees C. Antibody labeling (X-ANA) of the core histones was 65% lower for the 44 degrees C-treated cells compared to the control cells (0 degree C). The emission anisotropies of the DNA-specific dye Hoechst 33258 bound to chromatin were 0.341 and 0.318 for thymocytes fixed at 0 degree C and 44 degrees C
APA, Harvard, Vancouver, ISO, and other styles
25

Remsing, Lily L., Hamid R. Bahadori, Giuseppina M. Carbone, Eileen M. McGuffie, Carlo V. Catapano, and Jürgen Rohr. "Inhibition of c-srcTranscription by Mithramycin: Structure−Activity Relationships of Biosynthetically Produced Mithramycin Analogues Using the c-srcPromoter as Target†." Biochemistry 42, no. 27 (2003): 8313–24. http://dx.doi.org/10.1021/bi034091z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

DEMICHELI, Cynthia, Jean-Paul ALBERTINI, and Arlette GARNIER-SUILLEROT. "Interaction of mithramycin with DNA. Evidence that mithramycin binds to DNA as a dimer in a right-handed screw conformation." European Journal of Biochemistry 198, no. 2 (1991): 333–38. http://dx.doi.org/10.1111/j.1432-1033.1991.tb16020.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ralston, StuartH, StephenJ Gallacher, FrancesJ Dryburgh, RobertA Cowan, and IainT Boyle. "TREATMENT OF SEVERE HYPERCALCAEMIA WITH MITHRAMYCIN AND AMINOHYDROXYPROPYLIDENE BISPHOSPHONATE." Lancet 332, no. 8605 (1988): 277. http://dx.doi.org/10.1016/s0140-6736(88)92563-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Baig, Irfan, María Perez, Alfredo F. Braña, et al. "Mithramycin Analogues Generated by Combinatorial Biosynthesis Show Improved Bioactivity." Journal of Natural Products 71, no. 2 (2008): 199–207. http://dx.doi.org/10.1021/np0705763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Scott, Daniel, Jhong-Min Chen, Younsoo Bae, and Jürgen Rohr. "Semi-Synthetic Mithramycin SA Derivatives with Improved AntiCancer Activity." Chemical Biology & Drug Design 81, no. 5 (2013): 615–24. http://dx.doi.org/10.1111/cbdd.12107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Thiem, Joachim, Günther Schneider, and Volker Sinnwell. "Synthesen von Olivosyl-Oliosiden und spektroskopische Strukturbestimmung von Mithramycin." Liebigs Annalen der Chemie 1986, no. 5 (1986): 814–24. http://dx.doi.org/10.1002/jlac.198619860503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Carpenter, Mark L., Sarah A. Cassidy, and Keith R. Fox. "Interaction of mithramycin with isolated GC and CG sites." Journal of Molecular Recognition 7, no. 3 (1994): 189–97. http://dx.doi.org/10.1002/jmr.300070306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Koutsodontis, George, and Dimitris Kardassis. "Inhibition of p53-mediated transcriptional responses by mithramycin A." Oncogene 23, no. 57 (2004): 9190–200. http://dx.doi.org/10.1038/sj.onc.1208141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Hardenbol, Paul, and Michael W. Van Dyke. "In vitro inhibition of c-myc transcription by mithramycin." Biochemical and Biophysical Research Communications 185, no. 2 (1992): 553–58. http://dx.doi.org/10.1016/0006-291x(92)91660-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Anthony, E. T., S. Kantaria, G. C. Moir, and S. Chopra. "The penetrative abilities of liposomal mithramycin in explanted keloids." Clinical and Experimental Dermatology 34, no. 3 (2009): 408–9. http://dx.doi.org/10.1111/j.1365-2230.2008.02901.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

KRISHNA, N. RAMA, DONALD M. MILLER, and TED T. SAKAI. "NMR and fluorometric characterization of mithramycin in aqueous solution." Journal of Antibiotics 43, no. 12 (1990): 1543–52. http://dx.doi.org/10.7164/antibiotics.43.1543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Liu, Shujun, Jiuxia Pang, Jianhua Yu, et al. "Bortezomib-Induced Down-Regulation of KIT Is Mediated by Inhibition of Sp1 and NF-kB in AML1/ETO-Positive Cells." Blood 108, no. 11 (2006): 4211. http://dx.doi.org/10.1182/blood.v108.11.4211.4211.

Full text
Abstract:
Abstract Activating mutations of KIT, encoding a type III receptor tyrosine kinase, are frequently detected in core binding factor AML (i.e., AML1/ETO and CBFB/MYH11 AML), promote cell survival and proliferation of leukemic cells and predict poor outcome. Kinase inhibitors (e.g., imatinib or PKC-412) have been shown to block constitutively activated KIT. However, novel therapeutic approaches that target mutated KIT are necessary, since resistance to these agents can be predicted in a substantial proportion of patients in these subgroups of AML. We observed that expression levels of KIT in AML1
APA, Harvard, Vancouver, ISO, and other styles
37

Collin, R., H. Griffiths, S. V. Polacarz, A. C. K. Lawrence, and A. Watmore. "Mithramycin therapy for resistant hypercalcaemia in transformed chronic granulocytic leukaemia." Clinical & Laboratory Haematology 11, no. 2 (1989): 156–59. http://dx.doi.org/10.1111/j.1365-2257.1989.tb00200.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

TAGASHIRA, Motoyuki, Takanori KITAGAWA, Seiji ISONISHI, Aikou OKAMOTO, Kazunori OCHIAI, and Yasuyuki OHTAKE. "Mithramycin Represses MDR1 Gene Expression in Vitro, Modulating Multidrug Resistance." Biological & Pharmaceutical Bulletin 23, no. 8 (2000): 926–29. http://dx.doi.org/10.1248/bpb.23.926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hayden, Reiya, Abhishek Mandal, Yang Liu, et al. "Mithramycin analogues with unique mechanism of action in Ewing sarcoma." FASEB Journal 34, S1 (2020): 1. http://dx.doi.org/10.1096/fasebj.2020.34.s1.04062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Bashir, Y., and C. R. Tomson. "Cardiac arrest associated with hypokalaemia in a patient receiving mithramycin." Postgraduate Medical Journal 64, no. 749 (1988): 228–29. http://dx.doi.org/10.1136/pgmj.64.749.228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Weidenbach, Stevi, Caixia Hou, Jhong-Min Chen, Oleg V. Tsodikov, and Jürgen Rohr. "Dimerization and DNA recognition rules of mithramycin and its analogues." Journal of Inorganic Biochemistry 156 (March 2016): 40–47. http://dx.doi.org/10.1016/j.jinorgbio.2015.12.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Devi, Pukhrambam Grihanjali, Sudipta Pal, Raja Banerjee, and Dipak Dasgupta. "Association of antitumor antibiotics, mithramycin and chromomycin, with Zn(II)." Journal of Inorganic Biochemistry 101, no. 1 (2007): 127–37. http://dx.doi.org/10.1016/j.jinorgbio.2006.08.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Seznec, Janina, Björn Silkenstedt, and Ulrike Naumann. "Therapeutic effects of the Sp1 inhibitor mithramycin A in glioblastoma." Journal of Neuro-Oncology 101, no. 3 (2010): 365–77. http://dx.doi.org/10.1007/s11060-010-0266-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Leroy, I., G. Laurent, and A. Quillet-Mary. "Mithramycin A activates Fas death pathway in leukemic cell lines." Apoptosis 11, no. 1 (2006): 113–19. http://dx.doi.org/10.1007/s10495-005-3089-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Penque, Brent A., April M. Hoggatt, B. Paul Herring, and Jeffrey S. Elmendorf. "Hexosamine Biosynthesis Impairs Insulin Action via a Cholesterolgenic Response." Molecular Endocrinology 27, no. 3 (2013): 536–47. http://dx.doi.org/10.1210/me.2012-1213.

Full text
Abstract:
Abstract Plasma membrane cholesterol accumulation has been implicated in cellular insulin resistance. Given the role of the hexosamine biosynthesis pathway (HBP) as a sensor of nutrient excess, coupled to its involvement in the development of insulin resistance, we delineated whether excess glucose flux through this pathway provokes a cholesterolgenic response induced by hyperinsulinemia. Exposing 3T3-L1 adipocytes to physiologically relevant doses of hyperinsulinemia (250pM–5000pM) induced a dose-dependent gain in the mRNA/protein levels of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HM
APA, Harvard, Vancouver, ISO, and other styles
46

Choi, Moon-Chang, та Woo Choi. "Mithramycin A Alleviates Osteoarthritic Cartilage Destruction by Inhibiting HIF-2α Expression". International Journal of Molecular Sciences 19, № 5 (2018): 1411. http://dx.doi.org/10.3390/ijms19051411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Østenstad, Bjørn, and Ole Kristian Andersen. "Disodium Pamidronate Versus Mithramycin in the Management of Tumour-Associated Hypercalcemia." Acta Oncologica 31, no. 8 (1992): 861–64. http://dx.doi.org/10.3109/02841869209089719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Mir, Mohd Ayoub, Sangita Majee, Suman Das, and Dipak Dasgupta. "Association of chromatin with anticancer antibiotics, mithramycin and chromomycin A 3." Bioorganic & Medicinal Chemistry 11, no. 13 (2003): 2791–801. http://dx.doi.org/10.1016/s0968-0896(03)00211-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Majee, Sangita, and Abhijit Chakrabarti. "Membrane interaction of an antitumor antibiotic, mithramycin, with anionic phospholipid vesicles." Biochemical Pharmacology 57, no. 9 (1999): 981–87. http://dx.doi.org/10.1016/s0006-2952(98)00374-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Sarker, Matilal, and Fu Ming Chen. "Binding of mithramycin to DNA in the presence of second drugs." Biochemistry 28, no. 16 (1989): 6651–57. http://dx.doi.org/10.1021/bi00442a018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!