Academic literature on the topic 'Mitigation Policies'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mitigation Policies.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mitigation Policies"
Okhremchuk, І. "Modelling of climate change mitigation policies on national scale." Bìoresursi ì prirodokoristuvannâ 9, no. 3-4 (September 28, 2017): 34–39. http://dx.doi.org/10.31548/bio2017.03.005.
Full textGOUGH, IAN. "Carbon Mitigation Policies, Distributional Dilemmas and Social Policies." Journal of Social Policy 42, no. 2 (January 28, 2013): 191–213. http://dx.doi.org/10.1017/s0047279412001018.
Full textFraser, James C., Matrin W. Doyle, and Hannah Young. "Creating effective flood mitigation policies." Eos, Transactions American Geophysical Union 87, no. 27 (2006): 265. http://dx.doi.org/10.1029/2006eo270002.
Full textCreutzig, Felix. "The Mitigation Trinity: Coordinating Policies to Escalate Climate Mitigation." One Earth 1, no. 1 (September 2019): 76–85. http://dx.doi.org/10.1016/j.oneear.2019.08.007.
Full textBarbier, Edward B. "Climate change mitigation policies and poverty." Wiley Interdisciplinary Reviews: Climate Change 5, no. 4 (March 19, 2014): 483–91. http://dx.doi.org/10.1002/wcc.281.
Full textKonstantinaviciute, Inga. "Climate Change Mitigation Policies in Lithuania." Energy & Environment 14, no. 5 (September 2003): 725–36. http://dx.doi.org/10.1260/095830503322663429.
Full textHarvey, H. Thomas, and Michael N. Josselyn. "Wetlands restoration and mitigation policies: Comment." Environmental Management 10, no. 5 (September 1986): 567–69. http://dx.doi.org/10.1007/bf01866758.
Full textRace, Margaret Seluk. "Wetlands restoration and mitigation policies: Reply." Environmental Management 10, no. 5 (September 1986): 571–72. http://dx.doi.org/10.1007/bf01866759.
Full textMehling, Michael A., Gilbert E. Metcalf, and Robert N. Stavins. "Linking climate policies to advance global mitigation." Science 359, no. 6379 (March 1, 2018): 997–98. http://dx.doi.org/10.1126/science.aar5988.
Full textWang, Xiaodong. "GHG Mitigation Policies and Land Use Interactions." Leadership and Management in Engineering 8, no. 3 (July 2008): 148–52. http://dx.doi.org/10.1061/(asce)1532-6748(2008)8:3(148).
Full textDissertations / Theses on the topic "Mitigation Policies"
Tilley, Luke Alan. "Dynamic Energy Models and Carbon Mitigation Policies." Diss., Temple University Libraries, 2012. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/201311.
Full textPh.D.
In this dissertation I examine a specific class of energy models and their implications for carbon mitigation policies. The class of models includes a production function capable of reproducing the empirically observed phenomenon of short run rigidity of energy use in response to energy price changes and long run flexibility of energy use in response to energy price changes. I use a theoretical model, parameterized using empirical data, to simulate economic performance under several tax regimes where taxes are levied on capital income, investment, and energy. I also investigate transitions from one tax regime to another. I find that energy taxes intended to reduce energy use can successfully achieve those goals with minimal or even positive impacts on macroeconomic performance. But the transition paths to new steady states are lengthy, making political commitment to such policies very challenging.
Temple University--Theses
Wang, Xiaodong Ph D. Massachusetts Institute of Technology. "Impacts of greenhouse gas mitigation policies on agricultural land." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/42412.
Full textIncludes bibliographical references (p. 155-162).
Greenhouse gas (GHG) emissions are widely acknowledged to be responsible for much of the global warming in the past century. A number of approaches have been proposed to mitigate GHG emissions. Since the burning of fossil-based fuels is an important source of GHGs, the policies on GHG-mitigation encourage the replacement of fossil-based energy with biomass energy. However, a large-scale development of biomass energy may lead to changes in agricultural land use, which are important sources of GHG emissions, and therefore undermine the effectiveness of GHG-mitigation policies. In this research, I analyze the impacts of GHG-mitigation policies on five types of agricultural land (cropland, managed forestry land, pasture land, un-managed forestry land, and un-managed grassland) as well as carbon stored in such land during the 21st century. The scholars in the MIT Joint Program of Science and Policy on Global Change use the Integrated Global Systems Model (IGSM) to simulate changes in climate in response to GHG-mitigation policies, while the researchers at the U. S. Marine Biological Laboratory (MBL) apply the Terrestrial Ecosystem Model (TEM) to simulate land productivities. Based on the predictions of land characteristics affecting land-use decisions, I develop an econometric model to predict the land use affected by climate, GHGs, and tropospheric ozone at the grid-cell scale of 0.5 * 0.5 longitude by latitude. I use the Emissions Prediction and Policy Analysis (EPPA) model to capture the regional land use driven by economic forces. Then, I develop the downscaling methods to link these two land-use effects. I conduct this research in two scenarios: in the baseline, I assume that there are no policies to mitigate GHG emissions during the 21st century; in the policy scenario, I assume that there are specific policies to limit GHG emissions during the 21st century.
(cont.) I confirm the hypothesis that biomass-energy production would lead to the conversion of the five types of agricultural land, and the carbon stored in such land would decrease; the GHG-mitigation policies, leading to more production of biomass energy and conversion of agricultural land, would cause an even more severe loss of the carbon stored in agricultural land. Although the GHG-mitigation policies would generally reduce the atmospheric GHG emissions by using more energy from biomass, such endeavors would be partly counteracted by the land-use conversion as a result of large-scale production of biomass energy.
by Xiaodong Wang.
Ph.D.
Qu, Jingwen. "Timing effects of carbon mitigation and solar radiation management policies." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43720.
Full textMoore, Jared. "Cost Effectiveness of CO2 Mitigation Technologies and Policies in the Electricity Sector." Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/484.
Full textSeaton, Andrew Tyler. "Gray Skies Over Santiage: An Analysis of Air Pollution Mitigation Policies in Santiago, Chile." Thesis, The University of Arizona, 2011. http://hdl.handle.net/10150/144942.
Full textDorsey, Lauren. "Adapting to the Changing Tide: An Evaluation of California’s Drought Policies and Future Mitigation Strategies." Scholarship @ Claremont, 2018. http://scholarship.claremont.edu/cmc_theses/1898.
Full textOsouf, Nicolas. "The potential for a nuclear renaissance : the development of nuclear power under climate change mitigation policies." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40298.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 113-115).
Anthropogenic emissions of greenhouse gases are very likely to have already changed the Earth's climate, and will continue to change it for centuries if no action is taken. Nuclear power, a nearly carbon-free source of electricity, could contribute significantly to climate change mitigation by replacing conventional fossil-fueled electricity generation technologies. To examine the potential role of nuclear power, an advanced nuclear technology representing Generation III reactors is introduced into the Emissions Predictions and Policy Analysis economic model, which projects greenhouse gas and other air pollutant emissions as well as climate policy costs. The model is then used to study how the cost and availability of nuclear power affect the economy and the environment at the global scale. A literature review shows that estimates of nuclear power costs vary widely, because of differences in both calculation methods and cost parameters. Based on a sensitivity analysis, the most important parameters are the discount rate, the overnight cost, the capacity factor and the economic lifetime. The methodological differences affect not only the absolute power costs, but also the relative costs among electricity generation technologies.
(cont.) Acknowledging this uncertainty, a levelized cost model leads to bus-bar cost scenarios ranging from $35/MWh to $60/MWh. Cap-and-trade climate policies strengthen the development of nuclear power in the high nuclear cost scenarios. In low-cost cases, nuclear power grows significantly even without climate policies, which have little further influence on the market share of nuclear power. Lower costs of nuclear power decrease the costs of climate policies: the consumption NPV loss due to a 550ppm climate policy is reduced by 36% if nuclear costs are reduced from the highest to the lowest scenario. Nuclear power development at the largest scale projected would involve the depletion of currently known conventional and phosphate uranium deposits. Environmental benefits of the development of competitive nuclear power include a reduction in greenhouse gas emissions, even if no climate policy is implemented. For example, CO2 emissions decrease by 32% in 2050 in the lowest nuclear cost scenario. Conventional pollutant emissions are also reduced: NOx and SO2 emissions decrease by 14% and 24% in 2050.
(cont.) The economic value of the political decision to keep the nuclear option open is evaluated to range between $1,300 billion and $17,600 billion, in terms of consumption NPV loss, depending on the climate policy regime. These benefits should eventually be weighed against the proliferation, waste and safety issues associated with further development of nuclear power.
by Nicolas Osouf.
S.M.
Olesniewicz, Timothy J. "Unanticipated Consequences of Regional Greenhouse Gas Policies: Criteria Emissions and the Regional Greenhouse Gas Initiave." Fogler Library, University of Maine, 2008. http://www.library.umaine.edu/theses/pdf/OlesniewiczTJ2008.pdf.
Full textDifs, Kristina. "District Heating and CHP : Local Possibilities for Global Climate Change Mitigation." Doctoral thesis, Linköpings universitet, Energisystem, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-58716.
Full textDen globala uppvärmningen i kombination med ett ökat energibehov och stigande energipriser gör det nödvändigt att förändra energianvändningen. Energieffektiva system är samtidigt en förutsättning för att kunna säkra energitillförseln och utveckla hållbara samhällen. Fjärrvärme har en viktig roll att fylla i den här omställningen. I fjärrvärmesystemen kan värmeresurser som annars kan vara svåra att nyttiggöras, som till exempel spillvärme och förbränning av avfall tas tillvara. Fjärrvärme kan även bidra till elproduktion i kraftvärmeverk där totalverkningsgraden är högre än vid separat el- respektive värmeproduktion. En omställning av energisystemet till en ökad användning av fjärrvärme och minskad användning av el genom effektiviseringar och konverteringar från olja och el till fjärrvärme kan bidra till att skapa energieffektiva system. Syftet med den här avhandlingen är att identifiera hur ett lokalt energibolag som producerar fjärrvärme, fjärrkyla och el i kraftvärmeverk kan bidra till att skapa energieffektiva system och kostnadseffektiva globala koldioxidreduktioner tillsammans med sina kunder. Det energibolag som framförallt har studerats i den här avhandlingen är Tekniska Verken i Linköping AB. För att optimera energibolagets fjärrvärme- och fjärrkylaproduktion har energisystemanalyser genomförts, där både åtgärder på tillförsel- och användarsidan har studerats. Genom att se energiförsörjningen ur ett systemperspektiv kan man undvika att ekonomiska och miljömässiga vinster vid en anläggning ersätts av förluster någon annanstans. Optimeringsmodeller, som MODEST och reMIND, har använts för energisystemanalyserna där även scenarier och känslighetsanalyser har inkluderats. För alla energisystemanalyser har ett europeiskt energisystemperspektiv använts där en totalt avreglerad europeisk elmarknad utan flaskhalsar eller andra systemfel antagits. Slutsatser från analyserna är att det lokala energibolaget kan bidra till kostnadseffektiva globala koldioxidreduktioner genom ett effektivt nyttjande av bränslen i kraftvärmeanläggningar och i bioraffinaderier. Speciellt kraftvärmeanläggningar med hög elverkningsgrad, som t.ex. biomasseförgasning- och naturgaskombianläggningar, har en betydande global koldioxidreduktionspotential. Även biomasseförgasningsanläggningar som är integrerade med produktion av förnybara drivmedel för transportsektorn har visat sig kostnadseffektiva med stor potential att reducera de globala koldioxidutsläppen. Styrmedel har dock en stor påverkan på det ekonomiska utfallet för förgasningsanläggningarna. Dessutom har studierna visat att energibesparingar kan åstadkommas genom att konvertera el och fossilbränsledrivna industriella processer till fjärrvärme och fjärrkyla. Eftersom fjärrvärme framförallt används för lokaluppvärmning är värmelasten i fjärrvärmesystem säsongsbetonad. Genom att konvertera industriella processer som inte är utetemperaturberoende till fjärrvärme kan fjärrvärmelasten bli mindre säsongsbetonad och mer jämt fördelad över året. En jämt fördelad värmelast är fördelaktig för driften av fjärrvärmeanläggningar och kan bidra till mer elproduktion i kraftvärmeanläggningar. Den extra elproduktionen, tillsammans med den el som blivit tillgänglig efter konvertering av eldrivna processer till fjärrvärme, kan ersätta europeisk marginalelsproduktion vilket kan reducera de globala koldioxidutsläppen. Det som har framkommit av dessa studier är att det lokala energibolaget, tillsammans med sina kunder, kan bidra till att uppfylla de mål den Europeiska Unionen har angående reduktionen av energianvändningen och koldioxidutsläppen. Dessutom kan detta ske på ett kostnadseffektivt sätt för både energibolaget och dess kunder.
Sonmez, Saner Tugce. "Seismic Vulnerabilities And Risks For Urban Mitigation Planning In Turkey." Phd thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615641/index.pdf.
Full textBooks on the topic "Mitigation Policies"
1938-, Jhaveri Arun G., ed. Carbon reduction: Policies, strategies, and technologies. Lilburn, Ga: Fairmont Press, 2009.
Find full textFoundation-India, Heinrich Böll. Compendium of state policies from the perspective of climate change mitigation. New Delhi: Vasudha Foundation, 2013.
Find full textLapka, Miloslav, and Eva Cudlínová. Towards an environmental society?: Concepts, policies, outcomes. Prague: Charles University in Prague, 2012.
Find full textJ, Duffy Robert, ed. Integrating climate, energy, and air pollution policies. Cambridge, Mass: MIT Press, 2012.
Find full textCohen, Mark A., Don Fullerton, and Robert H. Topel. Distributional aspects of energy and climate policies. Cheltenham: Edward Elgar, 2013.
Find full textThomas, Parker. Countries and climate: Policies and paths to change. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full textCombellick, R. A. Geologic-hazards mitigation in Alaska: A review of federal, state, and local policies. Fairbanks, Alaska (794 University Ave., Fairbanks 99709): State of Alaska, Dept. of Natural Resources, Division of Geological and Geophysical Surveys, 1985.
Find full textJohnson-Gaither, Cassandra. Black Belt landowners respond to state-sponsored wildland fire mitigation policies and programs. Asheville, NC: U.S. Dept. of Agriculture, Forest Service, Southern Research Station, 2011.
Find full textLima, Mairon G. Bastos. An institutional analysis of biofuel policies and their social implications: Lessons from Brazil, India and Indonesia. Geneva, Switzerland: United Nations Research Institute for Social Development, 2012.
Find full textBook chapters on the topic "Mitigation Policies"
Liang, Qiaomei, Jie Guo, and Yiming Wei. "Simulations of CO2 Mitigation Policies." In Energy Economics: CO2 Emissions in China, 197–229. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-13847-8_8.
Full textKainuma, Mikiko, Yuzuru Matsuoka, Tsuneyuki Morita, Toshihiko Masui, and Kiyoshi Takahashi. "Cost Analysis of Mitigation Policies." In Climate Policy Assessment, 55–72. Tokyo: Springer Japan, 2003. http://dx.doi.org/10.1007/978-4-431-53985-8_4.
Full textWeiss, Barbara, and Michiyo Obi. "Climate Change Mitigation and Clean Energy Technology Policies." In Environmental Risk Mitigation, 75–106. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33957-3_5.
Full textKumar, Pankaj, Amit Singh, and Aritro Sengupta. "Industrial IoT: Challenges and Mitigation Policies." In Computer Networks, Big Data and IoT, 143–59. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0965-7_13.
Full textDutta, Pratik. "Role of Carbon Capture and Storage in Meeting the Climate Mitigation Target." In Sustainable Energy Technology and Policies, 87–103. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8393-8_3.
Full textAall, Carlo, C. Michael Hall, and Kyrre Groven. "Tourism: Applying Rebound Theories and Mechanisms to Climate Change Mitigation and Adaptation." In Rethinking Climate and Energy Policies, 209–25. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-38807-6_12.
Full textHasan, M. A., R. Chapman, and D. J. Frame. "Understanding Road Transport Emissions Reduction Policies Using Multi-criteria Analysis." In Handbook of Climate Change Mitigation and Adaptation, 1–21. New York, NY: Springer New York, 2021. http://dx.doi.org/10.1007/978-1-4614-6431-0_151-1.
Full textPrabhakar, S. V. R. K., Misa Aoki, and Reina Mashimo. "How Adaptive Policies Are in Japan and Can Adaptive Policies Mean Effective Policies? Some Implications for Governing Climate Change Adaptation." In Governance Approaches to Mitigation of and Adaptation to Climate Change in Asia, 103–18. London: Palgrave Macmillan UK, 2013. http://dx.doi.org/10.1057/9781137325211_7.
Full textGiulivo, Italo, Fiorella Galluccio, Fabio Matano, Lucia Monti, and Carlo Terranova. "Landslide Risk and Mitigation Policies in Campania Region (Italy)." In Landslide Science and Practice, 209–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31313-4_27.
Full textChan, Emily Ying Yang. "Climate change mitigation, policies, research gaps, and next steps." In Climate Change and Urban Health, 220–54. Abingdon, Oxon ; New York, NY : Routledge, 2019. | Series: Routledge studies in environment and health: Routledge, 2019. http://dx.doi.org/10.4324/9780429427312-13.
Full textConference papers on the topic "Mitigation Policies"
Sarlo, Antonella, Adolfo Santini, and Nicola Moraci. "Urban Policies and Earthquake Risk Mitigation." In 2008 SEISMIC ENGINEERING CONFERENCE: Commemorating the 1908 Messina and Reggio Calabria Earthquake. AIP, 2008. http://dx.doi.org/10.1063/1.2963832.
Full textMaizi, Nadia, and Edi Assoumou. "Electricity Generation and Renewables under Carbon Mitigation Policies." In 2008 IEEE Energy 2030 Conference. IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4780989.
Full textNerio, Deborah M., and Christohper E. Hoskins. "Space safety policies for debris characterization, control, and mitigation." In Optical Engineering and Photonics in Aerospace Sensing, edited by Firooz A. Allahdadi. SPIE, 1993. http://dx.doi.org/10.1117/12.156545.
Full textEmdee, Jeffery. "EELV Progress in Compliance with U.S. Space Debris Mitigation Policies." In AIAA SPACE 2012 Conference & Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-5333.
Full textDray, Lynnette, Antony Evans, Tom Reynolds, and Andreas Schäfer. "A Comparison of Aviation Greenhouse Gas Emission Mitigation Policies for Europe." In 9th AIAA Aviation Technology, Integration, and Operations Conference (ATIO). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-7112.
Full textWahaballa, Amr M., Aboelkasim Diab, Muhammad Gaber, and Ayman M. Othman. "Sensitivity of traffic accidents mitigation policies based on fuzzy modeling: A case study." In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2017. http://dx.doi.org/10.1109/itsc.2017.8317589.
Full textHernandez Serrano, Pedro V., Lina Altenburg, and Parveen Kumar. "An exploratory analysis on Agritech policies, innovations and funding for climate change mitigation." In 2020 IEEE International Conference on Big Data (Big Data). IEEE, 2020. http://dx.doi.org/10.1109/bigdata50022.2020.9378314.
Full textAhmadzadeh Mashinchi, Sina. "AN ECONOMIC AND ENVIRONMENTAL ASSESSMENT OF NEW ZEALAND'S GHG MITIGATION POLICIES: MODELLING WITH E3ME." In 23rd International Academic Conference, Venice. International Institute of Social and Economic Sciences, 2016. http://dx.doi.org/10.20472/iac.2016.023.003.
Full textBartel, Robyn, and Wendy Beck. "A comparison of offsets policies and mitigation banking approaches in natural and cultural heritage management." In 5th European Congress of Conservation Biology. Jyväskylä: Jyvaskyla University Open Science Centre, 2018. http://dx.doi.org/10.17011/conference/eccb2018/107628.
Full textRakhmindyarto, Rakhmindyarto. "Climate Policies in Indonesia’s Development Agenda: Why a Carbon Tax is Marginalised." In LPPM UPN "VETERAN" Yogyakarta International Conference Series 2020. RSF Press & RESEARCH SYNERGY FOUNDATION, 2020. http://dx.doi.org/10.31098/pss.v1i1.83.
Full textReports on the topic "Mitigation Policies"
Torney, Diarmuid, and Moustapha Kamal Gueye. Climate Change Mitigation Policies in Selected OECD Countries. Geneva, Switzerland: International Centre for Trade and Sustainable Development, 2009. http://dx.doi.org/10.7215/co_ip_20091210.
Full textAldy, Joseph, and William Pizer. The Competitiveness Impacts of Climate Change Mitigation Policies. Cambridge, MA: National Bureau of Economic Research, December 2011. http://dx.doi.org/10.3386/w17705.
Full textJones, Callum, Thomas Philippon, and Venky Venkateswaran. Optimal Mitigation Policies in a Pandemic: Social Distancing and Working from Home. Cambridge, MA: National Bureau of Economic Research, April 2020. http://dx.doi.org/10.3386/w26984.
Full textCombellick, R. A. Geologic-hazards mitigation in Alaska: a review of federal, state, and local policies. Alaska Division of Geological & Geophysical Surveys, 1985. http://dx.doi.org/10.14509/2634.
Full textE., Pramova, Di Gregorio M., and Locatelli B. Integrating adaptation and mitigation in climate change and land-use policies in Peru. Center for International Forestry Research (CIFOR), 2015. http://dx.doi.org/10.17528/cifor/005624.
Full textJohnson, Cassandra, Jianbang Gan, Adam Jarrett, Miriam S. Wyman, Sparkle Malone, Keenan J. Adams, J. M. Bowker, and Taylor V. Stein. Black Belt landowners respond to State-sponsored wildland fire mitigation policies and programs. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station, 2011. http://dx.doi.org/10.2737/srs-gtr-139.
Full textJohnson, Cassandra, Jianbang Gan, Adam Jarrett, Miriam S. Wyman, Sparkle Malone, Keenan J. Adams, J. M. Bowker, and Taylor V. Stein. Black Belt landowners respond to State-sponsored wildland fire mitigation policies and programs. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station, 2011. http://dx.doi.org/10.2737/srs-gtr-139.
Full textB., Locatelli, Evans V., Wardell A., Andrade A., and Vignola R. Forests and climate change in Latin America: linking adaptation and mitigation in projects and policies. Center for International Forestry Research (CIFOR), 2010. http://dx.doi.org/10.17528/cifor/003273.
Full textP., Ongugo, Langat D., Oeba V., Kimondo J.M., Owuor B., Njuguna J., Okwaro G., and Russell A. A review of Kenya's national policies relevant to climate change adaptation and mitigation: Insights from Mount Elgon. Center for International Forestry Research (CIFOR), 2014. http://dx.doi.org/10.17528/cifor/005332.
Full textA.Y., Banana, Byakagaba P., Russell A., Waiswa D., and Bomuhangi A. A review of Uganda's national policies relevant to climate change adaptation and mitigation: Insights from Mount Elgon. Center for International Forestry Research (CIFOR), 2014. http://dx.doi.org/10.17528/cifor/005333.
Full text