Academic literature on the topic 'Mitochondrial biogenesis and quality control'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mitochondrial biogenesis and quality control.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Mitochondrial biogenesis and quality control"

1

Jong, Liesbeth de. "Regulated assembly of the respiratory chain in Saccharomyces cerevisiae involvement of the mitochondrial NAD-linked isocitrate dehydrogenase, (AAA-)metallo-proteases and prohibitin in synthesis, quality control, turnover and stability /." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2003. http://dare.uva.nl/document/87355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Leung, Eileen. "Quality control in the biogenesis of the signal recognition particle." Thesis, University of Newcastle upon Tyne, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.506530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ostojic, Jelena. "Control of the biogenesis of the OXPHOS complexes and their interactions in Saccharomyces cerevisiae." Thesis, Evry-Val d'Essonne, 2013. http://www.theses.fr/2013EVRY0013/document.

Full text
Abstract:
Le complexe III de la chaine respiratoire mitochondriale (OXPHOS III) chez S. cerevisiae est assemblé à partir de dix sous-unités structurales codées par le génome soit nucléaire, soit mitochondrial et fait intervenir une douzaine de protéines extrinsèques au complexe. Nous avons étudié l’une d’entre elle, Bcs1, une ATPase oligomérique conservée de la famille des protéines AAA (ATPases Associated with diverse cellular Activities), qui contrôle la dernière étape de l’assemblage du complexe III. Chez l’Homme, des mutations dans l’orthologue de BCS1, BCS1L, sont associées à différentes maladies. Nous avons montré que des mutations dans les résidus conservés du domaine AAA de Bcs1 peuvent être compensées par des mutations dans les sous-unités de l’ATP synthase mitochondriale (OXPHOS V). Ces mutations compensatrices diminuent toutes l’activité d’hydrolyse de l’ATP de l’enzyme et nous avons proposé que la biogenèse du complexe III puisse être modulée selon l’état énergétique mitochondrial par Bcs1 via sa dépendance à l’ATP. Nous avons aussi identifié des mutations compensatrices dans d’autres gènes et le cas particulier de la délétion du RRF1, facteur général du recyclage des ribosomes mitochondriaux, a été étudié. Nous avons montré que l’absence de Rrf1 a un effet différent sur la stabilité et la traduction des divers ARNm mitochondriaux. Nos résultats suggèrent une coopération entre les facteurs généraux et les facteurs spécifiques de la traduction mitochondriale dans le contrôle de l’expression des sous-unités des complexes OXPHOS traduites dans la mitochondrie<br>OXPHOS complexes are multi-subunit complexes embedded in the inner mitochondrial membrane. We have studied the assembly factor Bcs1 that is a membrane-bound AAA-ATPase, required for the assembly of complex III. Mutations in the human gene BCS1L are responsible for various mild to lethal pathologies. Extragenic compensatory mutations able to restore the assembly of complex III in yeast bcs1 mutants were found in different genes not directly connected to the complex, revealing new networks of protein interactions. Mutations in catalytic subunits of ATP synthase were identified and thoroughly characterized. This work has allowed us to propose a novel regulatory loop via the ATP-dependent activity of Bcs1 protein, connecting the production of mitochondrial complex III and the activity of the ATP synthase. Moreover, these results hold promise for the development of therapies, targeting the mitochondrial adenine nucleotide pool, in treatment of BCS1-based disorders. We also show that the absence of RRF1, a mitochondrial ribosome recycling factor, is able to compensate defects of bcs1 mutants. Deletion of RRF1 has a differential impact on the stability and translation of mitochondrial mRNAs. Our results suggest cooperation between general and specific translation factors in controlling the expression of mtDNA-encoded subunits of the OXPHOS complexes
APA, Harvard, Vancouver, ISO, and other styles
4

MacVicar, Thomas D. B. "Autophagy and mitochondrial quality control in homeostasis and disease." Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627943.

Full text
Abstract:
Mitochondria are the powerhouses of eukaryotic cells and they must remain healthy in order to generate sufficient ATP for cellular function. Dysfunctional mitochondria pose a grave threat to high-energy demanding tissues and are associated with an array of human diseases. Mitochondria exist in a dynamic organelle network that is essential for their intracellular distribution and quality control. A damaged mitochondrion must first be exiled from the network by mitochondrial fission and next be neutralized by a process termed mitophagy. A number of mitophagy pathways exist to specifically target damaged or redundant mitochondria for engulfment by double-membrane autophagosomes in order to deliver them to the acidic lysosome for degradation. This dissertation explores the regulation and molecular mechanisms of the PINK1/Parkin mitophagy pathway. Mutated in several forms of Parkinson's disease, the PINK1 kinase and Parkin E3-ubiquitin ligase govern the selective degradation of dysfunctional mitochondria and they have been demonstrated to play key neuroprotective roles in vitro and in vivo. Here, the role of mitochondrial bioenergetics in regulating mitophagy is investigated. By employing a range of biochemical and imaging techniques in a cell-based model of Parkin-mediated mitophagy, the following data demonstrate how cells dependent on mitochondrial respiration can avoid mitophagy via intricate control of mitochondrial dynamics. In order to maintain the energy supply, respiring cells can resist mitophagy by preserving an interconnected mitochondrial network via inhibition of Drp1 and impaired OMA1-dependent OPA1 cleavage. This dissertation also questions the importance of close contact between the mitochondria and endoplasmic reticulum (ER) for the progression of Parkin-mediated mitophagy. A focused siRNA screen of ER-mitochondrial communication factors highlights a novel role for ER-mitochondrial Ca2+ signa ling during Parkin-mediated mitophagy. Together, the data presented in this dissertation place mitochondrial bioenergetic demand and Ca2+ flux as key players in the regulation of mitophagy. Further research will be required to identify whether these two regulatory arms are linked and will strengthen the therapeutic potential for positively modulating mitochondrial homeostasis in order to promote cell protection.
APA, Harvard, Vancouver, ISO, and other styles
5

Ling, Jiqiang. "Role of phenylalanyl-tRNA synthetase in translation quality control." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1212111223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vigié, Pierre. "Mitochondrial quality control : roles of autophagy, mitophagy and the proteasome." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0202/document.

Full text
Abstract:
La mitophagie, la dégradation sélective des mitochondries par autophagie, est impliquée dans l’élimination des mitochondries endommagées ou superflues et requiert des régulateurs et protéines spécifiques. Chez la levure, Atg32, localisée dans la membrane externe mitochondriale, interagit avec Atg8, et permet le recrutement des mitochondries et leur séquestration à l’intérieur des autophagosomes. Atg8 est conjuguée à de la phosphatidyléthanolamine et est ainsi ancrée aux membranes du phagophore et des autophagosomes. Chez la levure, plusieurs voies de synthèse de PE existent mais leur contribution dans l’autophagie et la mitophagie est inconnue. Dans le premier chapitre, nous avons étudié la contribution des différentes enzymes de synthèse de PE, dans l’induction de l’autophagie et la mitophagie et nous avons démontré que Psd1, la phosphatidylsérine décarboxylase mitochondriale, est impliquée dans la mitophagie seulement en condition de carence azotée alors que Psd2, localisée dans les membranes vacuolaires, endosomales et de l’appareil de Golgi, est nécessaire en phase stationnaire de croissance. Dans le second chapitre, la relation entre Atg32, la mitophagie et le protéasome a été étudiée. Nous avons démontré que l’activité du promoteur d’ATG32 et la quantité de protéine Atg32 exprimée sont inversement régulées. En phase stationnaire de croissance, l’inhibition du protéasome empêche la diminution de l’expression d’Atg32 et la mitophagie est stimulée. Nos données montrent ainsi que la quantité d’Atg32 est reliée à l’activité du protéasome et que cette protéine pourrait être ubiquitinylée. Dans le troisième chapitre, nous nous sommes intéressés au rôle potentiel de Dep1, un composant du complexe nucléaire Rpd3 d’histones déacétylases, dans la mitophagie. Dans nos conditions, Dep1 semble être mitochondriale et elle est impliquée dans la régulation de la mitophagie. BRMS1L (Breast Cancer Metastasis suppressor 1-like) est l’homologue de Dep1 chez les mammifères. Cette protéine possède un rôle anti-métastatique dans des lignées de cancer du sein. Nous avons trouvé que l’expression de BRMS1L augmente en présence de stimuli pro-mitophagie<br>Mitophagy, the selective degradation of mitochondria by autophagy, is implicated in the clearance of superfluous or damaged mitochondria and requires specific proteins and regulators. In yeast, Atg32, an outer mitochondrial membrane protein, interacts with Atg8, promoting mitochondria recruitment to the phagophore and their sequestration within autophagosomes. Atg8 is anchored to the phagophore and autophagosome membranes thanks to phosphatidylethanolamine (PE). In yeast, several PE synthesis pathways have been characterized, but their contribution to autophagy and mitophagy is unknown. In the first chapter, we investigated the contribution of the different enzymes responsible for PE synthesis in autophagy and mitophagy and we demonstrated that Psd1, the mitochondrial phosphatidylserine decarboxylase, is involved in mitophagy induction only in nitrogen starvation, whereas Psd2, located in vacuole/Golgi apparatus/endosome membranes, is required preferentially for mitophagy induction in stationary phase of growth. In the second chapter, we were interested in the relationship between Atg32, mitophagy and the proteasome. We demonstrated that ATG32 promoter activity and protein expression are inversely regulated. During stationary phase of growth, proteasome inhibition abolishes the decrease in Atg32 expression and mitophagy is enhanced. Our data indicate that Atg32 protein is regulated by the proteasome activity and could be ubiquitinated. In the third chapter, we investigated the involvement of Dep1, a member of the nuclear Rpd3L histone deacetylase complex, in mitophagy. In our conditions, Dep1 seems to be located in mitochondria and is a novel effector of mitophagy both in nitrogen starvation and stationary phase of growth. BRMS1L (Breast Cancer Metastasis suppressor 1-like) is the mammalian homolog of Dep1 and has been described in breast cancer metastasis suppression. We found that BRMS1L protein expression increases upon pro-mitophagy stimuli
APA, Harvard, Vancouver, ISO, and other styles
7

Lingiah, Krishna Anand. "The role of DJ-1 in enhancing mitochondrial quality control." Thesis, Boston University, 2013. https://hdl.handle.net/2144/12148.

Full text
Abstract:
Thesis (M.A.)--Boston University<br>DJ-1 is a cytosolic sensor for oxidative damage which acts on the Mitochondria. It works to curb the negative effects of high membrane potential in mitochondria, but the mechanism of action is still uncertain. This study measured DJ-1’s potential in enchancing mitochondrial quality control in the context of pancreatic B-cells treated with a palmitate and glucose media to promote glucolipotoxicity (GLT). DJ-1 was proven capable of reversing GLT induced changed in mitochondrial morphology in the arenas of Feret’s diameter, aspect ratio, and form factor. We also showed that the mitochondrial membrane potential did not vary with the presence or absence of DJ-1. In addition, DJ-1 was shown capable of limiting the upward boundary of GLT induced increase in mitochondrial membrane potential. Furthermore, an experiment using INS1 cells with GFP-LC3 showed that DJ-1 can decrease the average number of autophagosomes in the cell.
APA, Harvard, Vancouver, ISO, and other styles
8

Ng, Cheuk-Him (Andy). "Genome-Wide Screen Identifies Novel Genes Involved in Mitochondrial Quality Control." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/33204.

Full text
Abstract:
In addition to ATP generation, mitochondria are essential in various cellular processes ranging from biosynthetic pathways, apoptosis, cell cycle progression, and calcium buffering. Studies in living cells have now firmly established that mitochondria exist as a dynamic network sculpted by fission and fusion reactions, rather than separated, individual organelles. Not surprisingly, mutations in genes involved in mitochondrial dynamics and quality control lead to human diseases such as Charcot-Marie-Tooth disease type 2A, Optic atrophy, and autosomal recessive Parkinson disease. I have designed a high-throughput protocol to permit genome-wide screening for novel genes that are required for normal mitochondrial morphology. I have executed a genome-wide RNA interference screen and identified several novel genes required for mitochondrial dynamics in addition to known regulators of mitochondrial dynamics. A detailed high-throughput genome-wide screening protocol is presented. I have shown that TID1, a gene identified from the screen, has a dual-role in maintaining the integrity of mitochondrial DNA and preventing the aggregation of complex I subunits. My analysis of the mitochondrial role of TID1 supports the existence of a TID1- mediated stress response to ATP synthase inhibition. The genome screen also identified the novel gene ROMO1 as essential for normal mitochondrial morphology. I have shown that ROMO1 may have an additional role in maintaining mitochondrial spare respiratory capacity, possibly by affecting cellular substrate availability. Finally, in a collaborative effort, we have shown that homozygous mutations in the mitochondrial fusion gene MFN2 lead to multiple symmetric lipomatosis (MSL) associated with neuropathy. Mechanistically, this mutation reduces MFN2 homocomplex formation. Taken together, these results show the utility of genome-wide screening in identifying genes involved in mitochondrial quality control.
APA, Harvard, Vancouver, ISO, and other styles
9

Rüb, Cornelia [Verfasser]. "The Parkinson’s disease-related kinase Pink1 mediates mitochondrial quality control / Cornelia Rüb." Bonn : Universitäts- und Landesbibliothek Bonn, 2016. http://d-nb.info/1119888662/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Eira, da Costa Ana Carina. "Analysis of mitochondrial quality control using a Drosophila model of Parkinson's disease." Thesis, University of Leicester, 2013. http://hdl.handle.net/2381/28019.

Full text
Abstract:
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder. Despite recent advances, the cause for most PD cases remains unclear. The discovery of mutations in PINK1 (PTEN-induced putative kinase 1) reinforced the importance of mitochondrial impairment in PD. Mitochondria are essential organelles for energy generation in eukaryotic cells, whose compromise can eventually cause cell death. Multicellular organisms have evolved quality control mechanisms to ensure the viability of mitochondria and ultimately the cell. Molecular quality control through the mitochondrial chaperones and proteases acts to promote the proper folding of polypeptides and the degradation of misfolded or damaged proteins. When molecular quality control is overwhelmed, organellar quality control ensures mitochondrial recycling through a selective form of autophagy called mitophagy. PINK1 has been proposed to act in both molecular and organellar quality control, by modulating the activity of chaperones, namely HtrA2 and TRAP1, and acting on mitophagy through Parkin recruitment to damaged mitochondria. The work in this thesis provides evidence of a genetic interaction between Trap1, Pink1 and parkin in Drosophila melanogaster. Trap1 is essential to maintain mitochondrial and dopaminergic neuronal functions and is associated with resistance to stress. Importantly, neuronal expression of Trap1 is sufficient to rescue the Pink1 mutants. Moreover, the expression of Trap1 ameliorates parkin-mutant phenotypes and parkin expression suppresses Trap1-mutant phenotypes, suggesting that molecular and organellar quality control pathways act in parallel downstream from Pink1. p62 is an autophagy adaptor that acts in the PINK1/Parkin pathway, facilitating the aggregation and elimination of depolarised mitochondria through mitophagy. In this work it is shown that loss-of-function mutations in the Drosophila orthologue of p62, ref(2)P, result in a reduction in lifespan and age-dependent neurodegeneration. ref(2)P expression rescues the Pink1-mutant phenotypes and its presence is essential for the parkin-mediated rescue of Pink1 mutant flies.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!