Academic literature on the topic 'Mitofusins'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mitofusins.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mitofusins"

1

Cohen, Mickael M., and David Tareste. "Recent insights into the structure and function of Mitofusins in mitochondrial fusion." F1000Research 7 (December 28, 2018): 1983. http://dx.doi.org/10.12688/f1000research.16629.1.

Full text
Abstract:
Mitochondria undergo frequent fusion and fission events to adapt their morphology to cellular needs. Homotypic docking and fusion of outer mitochondrial membranes are controlled by Mitofusins, a set of large membrane-anchored GTPase proteins belonging to the dynamin superfamily. Mitofusins include, in addition to their GTPase and transmembrane domains, two heptad repeat domains, HR1 and HR2. All four regions are crucial for Mitofusin function, but their precise contribution to mitochondrial docking and fusion events has remained elusive until very recently. In this commentary, we first give an
APA, Harvard, Vancouver, ISO, and other styles
2

Wolf, Christina, Víctor López del Amo, Sabine Arndt, et al. "Redox Modifications of Proteins of the Mitochondrial Fusion and Fission Machinery." Cells 9, no. 4 (2020): 815. http://dx.doi.org/10.3390/cells9040815.

Full text
Abstract:
Mitochondrial fusion and fission tailors the mitochondrial shape to changes in cellular homeostasis. Players of this process are the mitofusins, which regulate fusion of the outer mitochondrial membrane, and the fission protein DRP1. Upon specific stimuli, DRP1 translocates to the mitochondria, where it interacts with its receptors FIS1, MFF, and MID49/51. Another fission factor of clinical relevance is GDAP1. Here, we identify and discuss cysteine residues of these proteins that are conserved in phylogenetically distant organisms and which represent potential sites of posttranslational redox
APA, Harvard, Vancouver, ISO, and other styles
3

Anton, Vincent, and Mafalda Escobar-Henriques. "Stressresistenz durch Adaption der mitochondrialen Form." BIOspektrum 30, no. 4 (2024): 418–21. http://dx.doi.org/10.1007/s12268-024-2242-6.

Full text
Abstract:
AbstractMitochondria are dynamic cellular compartments that can remodel their own shape and activity. They sense and convert cellular signals into informative triggers, allowing the cell to adapt to its ever-changing needs. We discovered that under stress this adaptation is performed by the E4 enzyme Ufd2/UBE4B, which tags mitochondrial fusion factors called mitofusins, thus signalling their degradation. Our findings highlight therapeutic intervention cues for mitofusin-associated diseases.
APA, Harvard, Vancouver, ISO, and other styles
4

LeBrasseur, Nicole. "Pro-diversity mitofusins." Journal of Cell Biology 176, no. 4 (2007): 373a. http://dx.doi.org/10.1083/jcb.1764iti3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schiavon, Cara R., Rachel E. Turn, Laura E. Newman, and Richard A. Kahn. "ELMOD2 regulates mitochondrial fusion in a mitofusin-dependent manner, downstream of ARL2." Molecular Biology of the Cell 30, no. 10 (2019): 1198–213. http://dx.doi.org/10.1091/mbc.e18-12-0804.

Full text
Abstract:
Mitochondria are essential and dynamic organelles undergoing constant fission and fusion. The primary players in mitochondrial morphology (MFN1/2, OPA1, DRP1) have been identified, but their mechanism(s) of regulation are still being elucidated. ARL2 is a regulatory GTPase that has previously been shown to play a role in the regulation of mitochondrial morphology. Here we demonstrate that ELMOD2, an ARL2 GTPase-activating protein (GAP), is necessary for ARL2 to promote mitochondrial elongation. We show that loss of ELMOD2 causes mitochondrial fragmentation and a lower rate of mitochondrial fus
APA, Harvard, Vancouver, ISO, and other styles
6

Koch, Linda. "Mitofusins and energy balance." Nature Reviews Endocrinology 9, no. 12 (2013): 691. http://dx.doi.org/10.1038/nrendo.2013.202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Escobar-Henriques, Mafalda. "Mitofusins: ubiquitylation promotes fusion." Cell Research 24, no. 4 (2014): 387–88. http://dx.doi.org/10.1038/cr.2014.23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Miao, Junru, Wei Chen, Pengxiang Wang, et al. "MFN1 and MFN2 Are Dispensable for Sperm Development and Functions in Mice." International Journal of Molecular Sciences 22, no. 24 (2021): 13507. http://dx.doi.org/10.3390/ijms222413507.

Full text
Abstract:
MFN1 (Mitofusin 1) and MFN2 (Mitofusin 2) are GTPases essential for mitochondrial fusion. Published studies revealed crucial roles of both Mitofusins during embryonic development. Despite the unique mitochondrial organization in sperm flagella, the biological requirement in sperm development and functions remain undefined. Here, using sperm-specific Cre drivers, we show that either Mfn1 or Mfn2 knockout in haploid germ cells does not affect male fertility. The Mfn1 and Mfn2 double knockout mice were further analyzed. We found no differences in testis morphology and weight between Mfn-deficient
APA, Harvard, Vancouver, ISO, and other styles
9

Sloat, S. R., B. N. Whitley, E. A. Engelhart, and S. Hoppins. "Identification of a mitofusin specificity region that confers unique activities to Mfn1 and Mfn2." Molecular Biology of the Cell 30, no. 17 (2019): 2309–19. http://dx.doi.org/10.1091/mbc.e19-05-0291.

Full text
Abstract:
Mitochondrial structure can be maintained at steady state or modified in response to changes in cellular physiology. This is achieved by the coordinated regulation of dynamic properties including mitochondrial fusion, division, and transport. Disease states, including neurodegeneration, are associated with defects in these processes. In vertebrates, two mitofusin paralogues, Mfn1 and Mfn2, are required for efficient mitochondrial fusion. The mitofusins share a high degree of homology and have very similar domain architecture, including an amino terminal GTPase domain and two extended helical b
APA, Harvard, Vancouver, ISO, and other styles
10

Alsayyah, Cynthia, Manish K. Singh, Maria Angeles Morcillo-Parra, et al. "Mitofusin-mediated contacts between mitochondria and peroxisomes regulate mitochondrial fusion." PLOS Biology 22, no. 4 (2024): e3002602. http://dx.doi.org/10.1371/journal.pbio.3002602.

Full text
Abstract:
Mitofusins are large GTPases that trigger fusion of mitochondrial outer membranes. Similarly to the human mitofusin Mfn2, which also tethers mitochondria to the endoplasmic reticulum (ER), the yeast mitofusin Fzo1 stimulates contacts between Peroxisomes and Mitochondria when overexpressed. Yet, the physiological significance and function of these “PerMit” contacts remain unknown. Here, we demonstrate that Fzo1 naturally localizes to peroxisomes and promotes PerMit contacts in physiological conditions. These contacts are regulated through co-modulation of Fzo1 levels by the ubiquitin–proteasome
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Mitofusins"

1

Versini, Raphaëlle. "Structural basis of outer-mitochondrial membrane mitofusin-guided fusion." Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS653.pdf.

Full text
Abstract:
Le projet de doctorat porte sur l'étude structurale des mitofusines (Mfn1/2 chez l'homme et Fzo1 chez la levure) en utilisant principalement des méthodes basées sur la modélisation telles que la dynamique moléculaire ou les méthodes de prédiction de structure basées sur l'intelligence artificielle (principalement AlphaFold). Les mitochondries forment un réseau complexe à l'intérieur des cellules, subissant des événements continus de fusion et de fission. Ces processus façonnent la dynamique mitochondriale et sont essentiels pour l'entretien, la fonction, la distribution et l'héritage des mitoc
APA, Harvard, Vancouver, ISO, and other styles
2

Sauvanet, Cécile. "Caractérisation des acteurs et des mécanismes de la fusion mitochondriale." Thesis, Bordeaux 2, 2011. http://www.theses.fr/2011BOR21883/document.

Full text
Abstract:
Les mitochondries sont des organites dynamiques qui fusionnent et se divisent continuellement. Cette dynamique est requise pour la biogenèse mitochondriale, la fonction et la dégradation. Les relations entre les OXPHOS, la dynamique et les mécanismes assurant la modulation de la dynamique restent largement inconnus. Nous avons étudié grâce à un essai de fusion in vivo, les relations entre la fusion et les OxPhos dans des cellules de levure portant des mutations ponctuelles dans le gène mitochondrial ATP6 qui sont associés à des maladies chez l’homme. Nous montrons que les défauts des OxPhos pr
APA, Harvard, Vancouver, ISO, and other styles
3

Alsayyah, Cynthia. "Régulation de la fusion mitochondriale par le Système Ubiquitine Protéasome et les contacts physiques mitochondrie - peroxysomes chez la levure Saccharomyces cerevisiae." Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. https://theses.hal.science/tel-03810525.

Full text
Abstract:
Les mitochondries sont des organelles très dynamiques qui subissent des phénomènes de fission et de fusion constants de leurs membranes extérieures et intérieures. Ces processus sont essentiels pour le maintien des fonctions mitochondriales essentielles telles que la phosphorylation oxydative ou la signalisation du calcium. D’un point de vue moléculaire, la fusion et la fission mitochondriale dépendent tous les deux des grandes GTPases de la famille des protéines de type dynamine. Les dynamines qui favorisent l’attachement et la fusion des membranes mitochondriales extérieures sont appelés les
APA, Harvard, Vancouver, ISO, and other styles
4

Hamze, Carmen. "Mitofusin 1 and Mitofusin 2 Function in the Context of Brain Development." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20347.

Full text
Abstract:
Mitofusin 1 and 2 are outer-mitochondrial membrane proteins that have been shown to be involved in fusion. Mitofusin 2 has also been associated with apoptosis and development. When Mfn1 and Mfn2 were each conditionally knocked out from the cerebellum, Purkinje cells in Mfn2 deficient cerebellum during development had undergone neurodegeneration. Mutations in Mfn2 have also been associated with the Charcot Marie Tooth Type 2A (CMT2A). We want to asses the effect Mfn2 and Mfn1 might have on the development of other regions of the brain such as the telencephalon. We generated Mfn1 and Mfn2 condit
APA, Harvard, Vancouver, ISO, and other styles
5

Daste, Frédéric. "Function and regulation of coiled‐coil domains in intracellular membrane fusion." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015PA05T001.

Full text
Abstract:
Les mécanismes moléculaires impliqués dans la fusion membranaire ont été amplement étudiés au cours des trente dernières années. Notre compréhension actuelle de ce phénomène est principalement basée sur des résultats obtenus par (1) le développement de modèles physiques décrivant la fusion des membranes biologiques, (2) l’étude mécanistique et structurale des protéines de fusion membranaire des virus à enveloppe et (3) l’étude des évènements de fusion intracellulaire médiés par les protéines SNARES dans les cellules eucaryotes. La découverte du complexe SNARE fut l’aboutissement de travaux int
APA, Harvard, Vancouver, ISO, and other styles
6

Cerqueira, Fernanda Menezes. "Efeitos da restrição calórica nas vias de sinalização por insulina e óxido nítrico: implicações para biogênese, morfologia e função mitocondriais." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-24022013-151501/.

Full text
Abstract:
A restrição calórica (RC) estende a expectativa de vida de muitos organismos por mecanismos ainda em estudo. Entre os vários efeitos fisiológicos da RC encontra-se o aumento na biogênese mitocondrial, dependente de óxido nítrico (NO•), sintetizado pela enzima óxido nítrico sintase endotelial (eNOS). Um dos indutores fisiológicos mais potentes da eNOS é a insulina, cujos níveis plasmáticos são consideravelmente reduzidos nos organismos em RC. O objetivo deste trabalho foi investigar os mecanismos associados ao aumento da sinalização por NO• durante a RC in vivo e in vitro, e as cons
APA, Harvard, Vancouver, ISO, and other styles
7

Guillery, Olwenn. "Dynamique mitochondriale : caractérisation moléculaire et fonctionnelle de ses acteurs, de ses besoins énergétiques et de son évolution au cours de la mitose." Paris 6, 2008. http://www.theses.fr/2008PA066313.

Full text
Abstract:
Les mitochondries sont des organites intracellulaires délimités par deux membranes. Remarquablement dynamiques, elles fusionnent et fissionnent en permanence. Au cours de ma thèse je me suis intéressée aux mécanismes de cette dynamique et à sa pertinence physiologique. De nouveaux tests de fusion nous ont permis de montrer que la fusion des membranes mitochondriales interne et externe est effectuée par deux machineries aux besoins énergétiques différents. Nous avons également montré que la protéolyse d’OPA1, facteur de la fusion de la membrane interne, est régulée par le potentiel de membrane
APA, Harvard, Vancouver, ISO, and other styles
8

Trevisan, Tatiana. "Ruolo della morfologia e della funzionalità mitocondriale sulla distribuzione intracellulare dei mitocondri in neuroni di Drosophila." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424418.

Full text
Abstract:
ABSTRACT Mitochondria are the energy producing organelles in eukaryotic cells providing ATP through oxidative phosphorylation (OXPHOS). Mitochondria are highly dynamic and undergo fission, fusion and move into the cell along the microtubules to generate the mitochondrial network. Mitochondrial dynamics play a critical role in the control of organelle shape, size, number, function and quality control of mitochondria. It is regulated by several GTPases that play an important role in fusion and fission processes. In mammals, mitochondrial fusion is controlled by Mitofusin 1 (Mfn1), Mitofusin 2 (
APA, Harvard, Vancouver, ISO, and other styles
9

Sexton, Jaime. "Genetic Analysis of Miro and Mitofusin Protein Interactions." Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/321953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gangaraju, Sandhya. "Role of mitofusin2 in the regulation of mitochondrial dynamics." Thesis, University of Ottawa (Canada), 2003. http://hdl.handle.net/10393/26483.

Full text
Abstract:
Mitochondria in all cell types undergo frequent fission and fusion events, and these dynamics determine the overall morphology of the organelle in cells. Two important GTPases have been recently identified that regulate mitochondrial membrane activity, a dynamin related protein (DRP1) required for fission, and the novel fusion GTPase, Mitofusin2. Mitofusin2 is an outer mitochondrial membrane protein and, like other GTPases involved in membrane fusion events, the N-terminal GTPase domain is exposed to the cytosol, such that it could interact with and recruit potential cytosolic proteins. The wo
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Mitofusins"

1

Role of Mitofusin 2 in the biology of hematopoietic stem cells. [publisher not identified], 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Mitofusins"

1

Muñoz, Juan Pablo, and Antonio Zorzano. "Analysis of Mitochondrial Morphology and Function Under Conditions of Mitofusin 2 Deficiency." In Methods in Molecular Biology. Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2288-8_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gegg, Matthew E. "Ubiquitination of Mitofusins in PINK1/Parkin-Mediated Mitophagy." In Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-405528-5.00012-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Allegra, Alessandro, Vanessa Innao, Andrea Gaetano Allegra, and Caterina Musolino. "Relationship between mitofusin 2 and cancer." In Advances in Protein Chemistry and Structural Biology. Elsevier, 2019. http://dx.doi.org/10.1016/bs.apcsb.2018.11.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Mitofusins"

1

Bhatia, D., E. Kallinos, M. Plataki, A. M. Choi, and M. E. Choi. "Myeloid and Type II Alveolar Cell-specific Mitofusins Regulate Kidney Fibrosis-associated Lung Injury." In American Thoracic Society 2023 International Conference, May 19-24, 2023 - Washington, DC. American Thoracic Society, 2023. http://dx.doi.org/10.1164/ajrccm-conference.2023.207.1_meetingabstracts.a1078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Guda, Maheedhara Reddy, Swapna Asuthkar, Collin M. Labak, Chase P. Smith, Andrew J. Tsung, and Kiran Velpula. "Abstract 5494: Targeting deregulated expression and function of Mitofusin 1 in glioblastoma." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-5494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Meng-Ju, Mi Ran Kim, Silpa Gampala, et al. "Abstract 798: Epithelial-mesenchymal transition directs stem cell polarity via regulation of mitofusin." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Meng-Ju, Mi Ran Kim, Silpa Gampala, et al. "Abstract 798: Epithelial-mesenchymal transition directs stem cell polarity via regulation of mitofusin." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!