Academic literature on the topic 'Mitogen-Activated Protein Kinase 3'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mitogen-Activated Protein Kinase 3.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mitogen-Activated Protein Kinase 3"
Bassi, Rekha, Joseph R. Burgoyne, Gian F. DeNicola, Olena Rudyk, Vittorio DeSantis, Rebecca L. Charles, Philip Eaton, and Michael S. Marber. "Redox-dependent dimerization of p38α mitogen-activated protein kinase with mitogen-activated protein kinase kinase 3." Journal of Biological Chemistry 292, no. 39 (July 24, 2017): 16161–73. http://dx.doi.org/10.1074/jbc.m117.785410.
Full textCHAN-HUI, Po-Ying, and Robert WEAVER. "Human mitogen-activated protein kinase kinase kinase mediates the stress-induced activation of mitogen-activated protein kinase cascades." Biochemical Journal 336, no. 3 (December 15, 1998): 599–609. http://dx.doi.org/10.1042/bj3360599.
Full textLim, Nicholas R., Colleen J. Thomas, Lokugan S. Silva, Yvonne Y. Yeap, Suwan Yap, James R. Bell, Lea M. D. Delbridge, et al. "Cardioprotective 3′,4′-dihydroxyflavonol attenuation of JNK and p38MAPK signalling involves CaMKII inhibition." Biochemical Journal 456, no. 2 (November 8, 2013): 149–61. http://dx.doi.org/10.1042/bj20121538.
Full textNgo, H. T. T., L. V. Pham, J. W. Kim, Y. S. Lim, and S. B. Hwang. "Modulation of Mitogen-Activated Protein Kinase-Activated Protein Kinase 3 by Hepatitis C Virus Core Protein." Journal of Virology 87, no. 10 (March 13, 2013): 5718–31. http://dx.doi.org/10.1128/jvi.03353-12.
Full textMoens, Ugo, and Sergiy Kostenko. "Structure and function of MK5/PRAK: the loner among the mitogen-activated protein kinase-activated protein kinases." Biological Chemistry 394, no. 9 (September 1, 2013): 1115–32. http://dx.doi.org/10.1515/hsz-2013-0149.
Full textBarr, Alastair J., Robin Marjoram, Jing Xu, and Ralph Snyderman. "Phospholipase C-β2 interacts with mitogen-activated protein kinase kinase 3." Biochemical and Biophysical Research Communications 293, no. 1 (April 2002): 647–52. http://dx.doi.org/10.1016/s0006-291x(02)00259-0.
Full textNakamura, Shingo, Mohammad Pourkheirandish, Hiromi Morishige, Yuta Kubo, Masako Nakamura, Kazuya Ichimura, Shigemi Seo, et al. "Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley." Current Biology 26, no. 6 (March 2016): 775–81. http://dx.doi.org/10.1016/j.cub.2016.01.024.
Full textStokoe, D., B. Caudwell, P. T. W. Cohen, and P. Cohen. "The substrate specificity and structure of mitogen-activated protein (MAP) kinase-activated protein kinase-2." Biochemical Journal 296, no. 3 (December 15, 1993): 843–49. http://dx.doi.org/10.1042/bj2960843.
Full textWang, Y., J. Pouysségur, and M. J. Dunn. "Endothelin stimulates mitogen-activated protein kinase activity in mesangial cells through ETA." Journal of the American Society of Nephrology 5, no. 4 (October 1994): 1074–80. http://dx.doi.org/10.1681/asn.v541074.
Full textEhlting, Christian, Natalia Ronkina, Oliver Böhmer, Ute Albrecht, Konrad A. Bode, Karl S. Lang, Alexey Kotlyarov, et al. "Distinct Functions of the Mitogen-activated Protein Kinase-activated Protein (MAPKAP) Kinases MK2 and MK3." Journal of Biological Chemistry 286, no. 27 (May 17, 2011): 24113–24. http://dx.doi.org/10.1074/jbc.m111.235275.
Full textDissertations / Theses on the topic "Mitogen-Activated Protein Kinase 3"
Rojnuckarin, Ponlapat. "Mitogen-activated protein kinase pathways in megakaryocyte development /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/9200.
Full textIng, Y. Lynn. "MLK-3, identification and characterization of a protein kinase involved in mitogen-activated protein kinase signal transduction pathways." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0020/NQ45812.pdf.
Full textBotton, Stéphane de. "Etapes terminales de la mégacaryopoïèse : mécanismes régulateurs de la formation des proplaquettes." Lille 2, 2006. http://www.theses.fr/2006LIL2S053.
Full textPlatelets are formed from mature megakaryocytes (MKs) and arise from the development of long and thin cytoplasmic extension called proplatelets. After platelet release, the senescent MKs (nucleus surrounded by some cytoplasm) undergo cell death by apoptosis. To explore the precise role of apoptosis in proplatelet formation, we grew human MKs from CD34+ cells and assessed the possible role of caspases. Proteolytic maturation of procaspase-3 and procaspase-9 was detected by immunoblots in maturing MKs as well as in proplatelet bearing megakaryocytes and senescent MKs. Cleavage of caspase substrates such as gelsolin or PARP was also detected. Interestingly, activated forms of caspase-3 were detected in maturing megakaryocytes, before proplatelet formation, with a punctuate cytoplasmic distribution, whereas a diffuse staining pattern was seen in senescent and apoptotic MKs. This localized activation of caspase-3 was associated with a mitochondrial membrane permeabilization as assessed by the release of cytochrome c, suggesting an activation of the intrinsic pathway. Moreover, these MKs with localized activated caspase-3 had no detectable DNA fragmentation. In contrast, when apoptosis was induced by staurosporine, diffuse caspase activation was seen, these MKs had signs of DNA fragmentation and no proplatelet formation occurred. The pan-caspase inhibitor z-VAD. Fmk as well as more specific inhibitors of caspase-3 and 9 blocked proplatelet formation whereas an inhibitor of calpeptin had no effect. Overexpression of Bcl-2 also inhibited proplatelet formation in maturing megakaryocytes. Thus, localized caspase activation is causal to proplatelet formation. We conclude that proplatelet formation is regulated by a caspase activation limited only to some cellular compartments
Chen, Xi. "The role of PI3K and ERK/MAPK signal transduction cascades in long-term memory formation /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/6248.
Full textThérier, Julien. "Régulation de la voie des Mitogen-Activated Protein Kinase ERK1/2 par la phospholipase C gamma dans le signal du Macrophage-Colony Stimulating Factor." Lyon 1, 2005. http://www.theses.fr/2005LYO10121.
Full textPoser, Steven Walter. "Coincident signaling of cAMP with phosphatidylinositol 3' kinase and mitogen activated protein kinase signal transduction cascades : a role in regulating gene exression during development and synaptic plasticity /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/10633.
Full textDikic, Inga. "Signal Transduction by Proline-Rich Tyrosine Kinase Pyk2." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2002. http://publications.uu.se/theses/91-554-5316-3/.
Full textZer, Cindy. "The genomic targets of p38 mitogen activated protein kinase mediating tumor necrosis factor alpha signaling in fribroblast-like synoviocytes." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1692114531&sid=3&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textChiri, Sandrine. "Rôles de MAP kinase et de PI 3-kinase dans le contrôle des premières divisions de l'œuf d'oursin." Paris 6, 2002. http://www.theses.fr/2002PA066077.
Full textEriksson, Therese. "Organelle movement in melanophores: Effects of Panax ginseng, ginsenosides and quercetin." Licentiate thesis, Linköpings universitet, Farmakologi, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19973.
Full textPanax ginseng är ett av de vanligaste naturläkemedlen i världen och används traditionellt för att öka kroppens uthållighet, motståndskraft och styrka. Ginseng är ett komplext ämne bestående av ett antal olika substanser, inklusive ginsenosider, flavonoider, vitaminer och enzymer, av vilka de steroidlika ginsenosiderna anses vara de mest aktiva beståndsdelarna. Flavonoider (som finns i till exempel frukt och grönsaker) och ginseng har genom forskning visat sig motverka bland annat hjärt-och kärlsjukdomar, diabetes, cancer och demens. Trots den omfattande användningen är dock mekanismen för hur ginseng verkar fortfarande oklar. I den här studien har vi använt pigmentinnehållande celler, melanoforer, från afrikansk klogroda för att undersöka effekterna av Panax ginseng på pigment-transport och dess maskineri. Melanoforer har förmågan att snabbt ändra färg genom samordnad förflyttning av pigmentkorn fram och tillbaka i cellen, och utgör en utmärkt modell för studier av intracellulär transport. Förflyttningen regleras av förändringar i halten av cykliskt adenosin-monofosfat (cAMP) i cellen, där en hög eller låg koncentration medför spridning av pigment över hela cellen (dispergering) eller en ansamling i mitten (aggregering), vilket resulterar i mörka respektive ljusa celler. Här visar vi att Panax ginseng, ginsenosiderna Rc och Rd samt flavonoiden quercetin stimulerar en dispergering av pigmentkornen. När melanoforerna inkuberades med en kombination av ginsenosid Rc eller Rd och quercetin, kunde en synergistisk ökning av dispergeringen ses, vilket tyder på en samverkan mellan ginsenosid- och flavonoid-delarna av ginseng. Ett protein som tidigare visats vara viktigt för pigmenttransporten är mitogen-aktiverat protein kinas (MAPK), och här visar vi att också melanoforer stimulerade med ginseng, men dock inte med ginsenosider eller quercetin, innehåller aktiverat MAPK. Genom att blockera enzymet protein kinas C (PKC) (känd aktivator av dispergering), minskade den ginseng- och ginsenosid-inducerade dispergeringen, medan aktiveringen av MAPK inte påverkades alls. Detta pekar på en roll för PKC i pigment-transporten men inte som en aktivator av MAPK.
Books on the topic "Mitogen-Activated Protein Kinase 3"
Cordero, Mario D., and Benoit Viollet, eds. AMP-activated Protein Kinase. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43589-3.
Full textRandall, Susan. Interactions among the mitogen-activated protein kinase cascades and the identification of a novel cdc2-related protein kinase. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.
Find full textHo, Jenny Mei-Yen. The activation of mitogen-activated protein kinase pathways by the TEL-JAK2 oncoprotein. Ottawa: National Library of Canada, 2000.
Find full textPosas, Francesc, and Angel R. Nebreda, eds. Stress-Activated Protein Kinases. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75569-2.
Full textGlogowski, Emily Anne Cherry. Effect of high glucose on endothelin-1 and platelet-derived growth factor stimulation of mesangial cell protein kinase C and mitogen-activated protein kinase. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.
Find full textMitogen Activated Protein Kinases. MDPI, 2020. http://dx.doi.org/10.3390/books978-3-03928-071-1.
Full textIng, Y. Lynn. MLK-3: Identification and characterization of a protein kinase involved in mitogen-activated protein kinase signal transduction pathways. 1998.
Find full textAMP-Activated Protein Kinase Signalling. MDPI, 2019. http://dx.doi.org/10.3390/books978-3-03897-663-9.
Full textBook chapters on the topic "Mitogen-Activated Protein Kinase 3"
Cuevas, Bruce D. "Mitogen-Activated Protein Kinase Kinase Kinases." In Encyclopedia of Cancer, 2872–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-46875-3_7192.
Full textCuevas, Bruce D. "Mitogen-Activated Protein Kinase Kinase Kinases." In Encyclopedia of Cancer, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27841-9_7192-1.
Full textGewies, Andreas, Jürgen Ruland, Alexey Kotlyarov, Matthias Gaestel, Shiri Procaccia, Rony Seger, Shin Yasuda, et al. "Mitogen-Activated Protein Kinase Kinase 3." In Encyclopedia of Signaling Molecules, 1081. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100812.
Full textDonato, Dominique M., Steven K. Hanks, Kenneth A. Jacobson, M. P. Suresh Jayasekara, Zhan-Guo Gao, Francesca Deflorian, John Papaconstantinou, et al. "Protein Kinase, Mitogen-Activated Kinase 3." In Encyclopedia of Signaling Molecules, 1482. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_101101.
Full textZlobin, Andrei, Jeffrey C. Bloodworth, and Clodia Osipo. "Mitogen-Activated Protein Kinase (MAPK) Signaling." In Predictive Biomarkers in Oncology, 213–21. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95228-4_16.
Full textMeloche, Sylvain. "Mitogen-Activated Protein Kinases." In Encyclopedia of Signaling Molecules, 3138–41. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_193.
Full textSeimetz, Michael. "Mitogen-Activated Protein Kinases." In Encyclopedia of Exercise Medicine in Health and Disease, 590–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_137.
Full textLoeffler, Ivonne, and Gunter Wolf. "MORG1 (Mitogen-Activated Protein Kinase Organizer 1)." In Encyclopedia of Signaling Molecules, 3201–8. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_101683.
Full textBharti, Jyotsna, Sahil, Sahil Mehta, Shaban Ahmad, Baljinder Singh, Asish K. Padhy, Neha Srivastava, and Vimal Pandey. "Mitogen-Activated Protein Kinase, Plants, and Heat Stress." In Harsh Environment and Plant Resilience, 323–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65912-7_13.
Full textThomas, George. "Molecular and Biochemical Characterization of the Mitogen-Activated S6 Kinase." In Cellular Regulation by Protein Phosphorylation, 375–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75142-4_47.
Full textConference papers on the topic "Mitogen-Activated Protein Kinase 3"
Tubita, A., S. Gagliardi, I. Tusa, S. Pandolfi, J. Wang, X. Deng, N. Gray, B. Stecca, and E. Rovida. "PO-099 Targeting the mitogen activated protein kinase ERK5 in human melanoma." In Abstracts of the 25th Biennial Congress of the European Association for Cancer Research, Amsterdam, The Netherlands, 30 June – 3 July 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/esmoopen-2018-eacr25.140.
Full textRoss, Brian D., Hao Hong, Hanxiao Wang, Charles A, Nino, and Marcian E. Van Dort. "Abstract LB-A20: Novel Dual Oncogenic Target Inhibitor against Allosteric Mitogen-Activated Protein Kinase (MEK1) and Phosphatidylinositol 3-Kinase (PI3K)." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; November 5-9, 2015; Boston, MA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1535-7163.targ-15-lb-a20.
Full textSos, Martin L., Stefanie Fischer, Roland Ulrich, Martin Peifer, and Roman K. Thomas. "Abstract A32: Combined inhibition of phosphoinositide‐3‐kinase and mitogen‐activated protein kinase pathways prevents activation of feedback loops in cancer." In Abstracts: First AACR International Conference on Frontiers in Basic Cancer Research--Oct 8–11, 2009; Boston MA. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/0008-5472.fbcr09-a32.
Full textKim, Ki Mo, No Soo Kim, Jinhee Kim, Jong-Shik Park, Jin Mu Yi, Jun Lee, and Ok-Sun Bang. "Abstract 3906: Magnolol suppresses vascular endothelial growth factor-induced angiogenesis by inhibiting Ras-dependent mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-3906.
Full textByrnes, Kimberly A., Pornima Phatak, Daniel Mansour, Jaladanki N. Rao, Douglas Turner, Jian-Ying Wang, and James M. Donahue. "Abstract 4366: MicroRNA (miR) 199a-5p regulates mitogen-activated protein kinase 3-11 (MAP3K11) expression in esophageal cancer cells by modulating mRNA stability." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-4366.
Full textLin, CC, and MK Chen. "PO-147 Pinostilbene hydrate suppresses human oral cancer cell metastasis via downregulation matrix metalloproteinase-2 through the mitogen-activated protein kinase signalling pathway." In Abstracts of the 25th Biennial Congress of the European Association for Cancer Research, Amsterdam, The Netherlands, 30 June – 3 July 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/esmoopen-2018-eacr25.188.
Full textBahr, Julian C., Robert Robey, Arup Chakraborty, Victoria Luchenko, and Susan E. Bates. "Abstract 4708: Short-term romidepsin treatment combined with mitogen-activated protein kinase and phosphatidylinositol 3-kinase inhibition causes increased Bim expression and cell death in KRAS mutant cell lines." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-4708.
Full textAung, Kyaw L., Trevor J. Pugh, Tracy Stockley, Lisa Wang, Greg Korpanty, Stefano Serra, Patricia Shaw, et al. "Abstract 02: Pan-cancer analysis of hotspot mutations in genes encoding the members of mitogen activated protein kinase (MAPK) and phosphoinosidtide-3 kinase (PI3K) pathways among smokers and non-smokers." In Abstracts: AACR Precision Medicine Series: Integrating Clinical Genomics and Cancer Therapy; June 13-16, 2015; Salt Lake City, UT. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1557-3265.pmsclingen15-02.
Full textKashyap, Meghana, Kristen T. Carter, Brent C. Sauer, and Christopher T. Chen. "NF-κB Mediates Cartilage Degradation Induced by Trauma Injury and Interleukin-1." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14513.
Full textWong, Leo LY, Ian Lam, Tracy Y. N. Wong, Benny WL Lai, Yuan Zhou, Red Hung, and Wilson YP Ching. "Abstract 4429: An investigation on p21-activated protein kinase 1 inhibitor, IPA-3, in hepatocellular carcinoma." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-4429.
Full textReports on the topic "Mitogen-Activated Protein Kinase 3"
Bakin, Andrei V. P38 Mitogen-Activated Protein Kinase in Metastasis Associated With Transforming Growth Factor Beta. Fort Belvoir, VA: Defense Technical Information Center, June 2005. http://dx.doi.org/10.21236/ada443019.
Full textBakin, Andrei V. P38 Mitogen-Activated Protein Kinase in Metastasis Associated With Transforming Growth Factor Beta. Fort Belvoir, VA: Defense Technical Information Center, June 2003. http://dx.doi.org/10.21236/ada417915.
Full textBakin, Andrei. p38 Mitogen-Activated Protein Kinase in Metastasis Associated with Transforming Growth Factor Beta. Fort Belvoir, VA: Defense Technical Information Center, June 2006. http://dx.doi.org/10.21236/ada456265.
Full textBakin, Andrei V. P38 Mitogen-Activated Protein Kinase in Metastasis Associated with Transforming Growth Factor Beta. Fort Belvoir, VA: Defense Technical Information Center, June 2004. http://dx.doi.org/10.21236/ada427109.
Full textCoyner, Jennifer L. Differential Expression of Phosphorylated Mitogen-Activated Protein Kinase (pMAPK) in the Lateral Amygdala of Mice Selectively Bred for High and Low Fear. Fort Belvoir, VA: Defense Technical Information Center, June 2013. http://dx.doi.org/10.21236/ad1012913.
Full text