Academic literature on the topic 'Mitogen-Activated Protein Kinase 3'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mitogen-Activated Protein Kinase 3.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mitogen-Activated Protein Kinase 3"

1

Bassi, Rekha, Joseph R. Burgoyne, Gian F. DeNicola, Olena Rudyk, Vittorio DeSantis, Rebecca L. Charles, Philip Eaton, and Michael S. Marber. "Redox-dependent dimerization of p38α mitogen-activated protein kinase with mitogen-activated protein kinase kinase 3." Journal of Biological Chemistry 292, no. 39 (July 24, 2017): 16161–73. http://dx.doi.org/10.1074/jbc.m117.785410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

CHAN-HUI, Po-Ying, and Robert WEAVER. "Human mitogen-activated protein kinase kinase kinase mediates the stress-induced activation of mitogen-activated protein kinase cascades." Biochemical Journal 336, no. 3 (December 15, 1998): 599–609. http://dx.doi.org/10.1042/bj3360599.

Full text
Abstract:
The mitogen-activated protein kinase (MAPK) cascades represent one of the important signalling mechanisms in response to environmental stimuli. We report the identification of a human MAPK kinase kinase, MAPKKK4, via sequence similarity with other MAPKKKs. When truncated MAPKKK4 (ΔMAPKKK4) was overexpressed in HEK293 cells, it was constitutively active and induced the activation of endogenous p38α, c-Jun N-terminal kinase (JNK)1/2 and extracellular signal-regulated kinase (ERK)2 in vivo. Kinase-inactive ΔMAPKKK4 partly inhibited the activation of p38α, JNK1/2 and ERK2 induced by stress, tumour necrosis factor α or epidermal growth factor, suggesting that MAPKKK4 might be physiologically involved in all three MAPK cascades. Co-expressed MAP kinase kinase (MKK)-1, MKK-4, MKK-3 and MKK-6 were activated in vivo by ΔMAPKKK4. All of the above MKKs purified from Escherichia coli were phosphorylated and activated by ΔMAPKKK4 immunoprecipitates in vitro. When expressed by lower plasmid doses, ΔMAPKKK4 preferentially activated MKK-3 and p38α in vivo. Overexpression of ΔMAPKKK4 did not activate the NF-κB pathway. Immunoprecipitation of endogenous MAPKKK4 by specific antibodies showed that MAPKKK4 was activated after the treatment of K562 cells with various stress conditions. As a broadly distributed kinase, MAPKKK4 might serve as a stress responder. MAPKKK4 is 91% identical with the recently described murine MEKK-4β and might be its human homologue. It is also identical with the recently cloned human MAP three kinase 1 except for the lack of an internal sequence homologous to the murine MEKK-4α isoform. Differences in the reported functional activities of the three kinases are discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Lim, Nicholas R., Colleen J. Thomas, Lokugan S. Silva, Yvonne Y. Yeap, Suwan Yap, James R. Bell, Lea M. D. Delbridge, et al. "Cardioprotective 3′,4′-dihydroxyflavonol attenuation of JNK and p38MAPK signalling involves CaMKII inhibition." Biochemical Journal 456, no. 2 (November 8, 2013): 149–61. http://dx.doi.org/10.1042/bj20121538.

Full text
Abstract:
3′,4′-Dihydroxyflavonol, a cardioprotective compound that prevents cardiac injury and cell death, targets Ca2+/camodulin-dependent protein kinase II to inhibit the activation of the stress-activated protein kinases, c-Jun N-terminal kinase and p38 mitogen-activated protein kinase.
APA, Harvard, Vancouver, ISO, and other styles
4

Ngo, H. T. T., L. V. Pham, J. W. Kim, Y. S. Lim, and S. B. Hwang. "Modulation of Mitogen-Activated Protein Kinase-Activated Protein Kinase 3 by Hepatitis C Virus Core Protein." Journal of Virology 87, no. 10 (March 13, 2013): 5718–31. http://dx.doi.org/10.1128/jvi.03353-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moens, Ugo, and Sergiy Kostenko. "Structure and function of MK5/PRAK: the loner among the mitogen-activated protein kinase-activated protein kinases." Biological Chemistry 394, no. 9 (September 1, 2013): 1115–32. http://dx.doi.org/10.1515/hsz-2013-0149.

Full text
Abstract:
Abstract Mitogen-activated protein kinase (MAPK) pathways are important signal transduction pathways that control pivotal cellular processes including proliferation, differentiation, survival, apoptosis, gene regulation, and motility. MAPK pathways consist of a relay of consecutive phosphorylation events exerted by MAPK kinase kinases, MAPK kinases, and MAPKs. Conventional MAPKs are characterized by a conserved Thr-X-Tyr motif in the activation loop of the kinase domain, while atypical MAPKs lack this motif and do not seem to be organized into the classical three-tiered kinase cascade. One functional group of conventional and atypical MAPK substrates consists of protein kinases known as MAPK-activated protein kinases. Eleven mammalian MAPK-activated protein kinases have been identified, and they are divided into five subgroups: the ribosomal-S6-kinases RSK1-4, the MAPK-interacting kinases MNK1 and 2, the mitogen- and stress-activated kinases MSK1 and 2, the MAPK-activated protein kinases MK2 and 3, and the MAPK-activated protein kinase MK5 (also referred to as PRAK). MK5/PRAK is the only MAPK-activated protein kinase that is a substrate for both conventional and atypical MAPK, while all other MAPKAPKs are exclusively phosphorylated by conventional MAPKs. This review focuses on the structure, activation, substrates, functions, and possible implications of MK5/PRAK in malignant and nonmalignant diseases.
APA, Harvard, Vancouver, ISO, and other styles
6

Barr, Alastair J., Robin Marjoram, Jing Xu, and Ralph Snyderman. "Phospholipase C-β2 interacts with mitogen-activated protein kinase kinase 3." Biochemical and Biophysical Research Communications 293, no. 1 (April 2002): 647–52. http://dx.doi.org/10.1016/s0006-291x(02)00259-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nakamura, Shingo, Mohammad Pourkheirandish, Hiromi Morishige, Yuta Kubo, Masako Nakamura, Kazuya Ichimura, Shigemi Seo, et al. "Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley." Current Biology 26, no. 6 (March 2016): 775–81. http://dx.doi.org/10.1016/j.cub.2016.01.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stokoe, D., B. Caudwell, P. T. W. Cohen, and P. Cohen. "The substrate specificity and structure of mitogen-activated protein (MAP) kinase-activated protein kinase-2." Biochemical Journal 296, no. 3 (December 15, 1993): 843–49. http://dx.doi.org/10.1042/bj2960843.

Full text
Abstract:
The substrate specificity of mitogen-activated protein (MAP) kinase-activated protein kinase-2 (MAPKAP kinase-2) was investigated by using synthetic peptides related to the N-terminus of glycogen synthase. The minimum sequence required for efficient phosphorylation was found to be Xaa-Xaa-Hyd-Xaa-Arg-Xaa-Xaa-Ser-Xaa-Xaa, where Hyd is a bulky hydrophobic residue (Phe > Leu > Val >> Ala), and the peptide Lys-Lys-Phe-Asn-Arg-Thr-Leu-Ser-Val-Ala was phosphorylated with a Km of 9.3 microM and Vmax. of 10 mumol/min per mg. MAPKAP kinase-1 (a homologue of ribosomal protein S6 kinase) also requires an arginine three residues N-terminal to the serine (position n-3), but not a hydrophobic residue at position n-5. Neither MAPKAP kinase-1 nor MAPKAP kinase-2 could tolerate a proline residue at position n + 1, indicating that their specificities do not overlap with that of MAP kinase. The specificity of calmodulin-dependent protein kinase-II resembled that of MAPKAP kinase-2, except that it could tolerate replacement of the arginine by a lysine and the phosphorylation-site serine by a threonine residue. Partial cDNAs encoding MAPKAP kinase-2 were isolated from rabbit and human skeletal muscle and human teratocarcinoma libraries, and Northern-blotting experiments revealed a single 3.3 kb mRNA transcript present at similar levels in six human tissues examined. The catalytic domain was most similar (35-40% identity) to calmodulin-dependent protein kinases II and IV, phosphorylase kinase, putative serine kinase H1 and the C-terminal domain of MAPKAP kinase-1, which form one branch of the protein kinase phylogenetic tree. The sequence N-terminal to the catalytic domain is proline-rich and contains two putative SH3-binding sites. The threonine residue phosphorylated by MAP kinase lies immediately C-terminal to the catalytic domain and is followed by a nuclear localization signal, Lys-Lys-(Xaa)10-Lys-Arg-Arg-Lys-Lys, near the C-terminus.
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Y., J. Pouysségur, and M. J. Dunn. "Endothelin stimulates mitogen-activated protein kinase activity in mesangial cells through ETA." Journal of the American Society of Nephrology 5, no. 4 (October 1994): 1074–80. http://dx.doi.org/10.1681/asn.v541074.

Full text
Abstract:
Accumulating evidence suggests that endothelin (ET) contributes to the pathophysiology of such disorders as acute renal failure, cyclosporine-mediated renal and vascular toxicity, and perhaps even glomerular inflammation. The postreceptor signaling pathways that mediate the actions of ET in these pathophysiologic conditions may include activation of kinase cascades. Thus, the effects of ET isopeptides on p42 and p44 mitogen-activated protein (MAP) kinase activity in rat glomerular mesangial cells were examined. ET-1 activated both p42 and p44 MAP kinases with similar dose responses and different kinetics. The threshold for kinase activation was 10(-9) M ET-1. ET-1 stimulated p42 and p44 MAP kinases with similar rapid (5 min) but different sustained activation of p42 (3 to 6 h) and p44 (1 to 2 h). Endothelin-3 (ET-3) also activated both isoforms of MAP kinase but with a threshold at 10(-7) M. Compared with ET-1, ET-3 stimulated only a rapid increase of p42 MAP kinase activity. We further investigated which ET receptors are coupled to MAP kinase activation. BQ-123, an ETA blocker, completely blocked the responsiveness of the MAP kinase to either ET-1 or ET-3. In Chinese hamster lung fibroblasts transfected with ETA or ETB cDNA, both receptors showed a rapid stimulation of MAP kinase in response to ET-1. These results suggest that ET can activate MAP kinases through both ET receptors but act exclusively through ETA in glomerular mesangial cells.
APA, Harvard, Vancouver, ISO, and other styles
10

Ehlting, Christian, Natalia Ronkina, Oliver Böhmer, Ute Albrecht, Konrad A. Bode, Karl S. Lang, Alexey Kotlyarov, et al. "Distinct Functions of the Mitogen-activated Protein Kinase-activated Protein (MAPKAP) Kinases MK2 and MK3." Journal of Biological Chemistry 286, no. 27 (May 17, 2011): 24113–24. http://dx.doi.org/10.1074/jbc.m111.235275.

Full text
Abstract:
In LPS-treated macrophages, activation of STAT3 is considered to be crucial for terminating the production of inflammatory cytokines. By analyzing the role of MAPK-activated protein kinase (MK) 2 and MK3 for LPS-induced STAT3 activation in macrophages, the present study provides evidence that MK2 is crucial for STAT3 activation in response to LPS because it prevents MK3 from impeding IFNβ gene expression. Accordingly, LPS-induced IFNβ gene expression is down-regulated in MK2-deficient macrophages and can be reconstituted by additional ablation of the MK3 gene in MK2/3−/− macrophages. This is in contrast to LPS-induced IL-10 expression, which essentially requires the presence of MK2. Further analysis of downstream signaling events involved in the transcriptional regulation of IFNβ gene expression suggests that, in the absence of MK2, MK3 impairs interferon regulatory factor 3 protein expression and activation and inhibits nuclear translocation of p65. This inhibition of p65 nuclear translocation coincides with enhanced expression and delayed degradation of IκBβ, whereas expression of IκBα mRNA and protein is impaired in the absence of MK2. The observation that siRNA directed against IκBβ is able to reconstitute IκBα expression in MK2−/− macrophages suggests that enhanced expression and delayed degradation of IκBβ and impaired NFκB-dependent IκBα expression are functionally linked. In summary, evidence is provided that MK2 regulates LPS-induced IFNβ expression and downstream STAT3 activation as it restrains MK3 from mediating negative regulatory effects on NFκB- and interferon regulatory factor 3-dependent LPS signaling.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Mitogen-Activated Protein Kinase 3"

1

Rojnuckarin, Ponlapat. "Mitogen-activated protein kinase pathways in megakaryocyte development /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/9200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ing, Y. Lynn. "MLK-3, identification and characterization of a protein kinase involved in mitogen-activated protein kinase signal transduction pathways." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0020/NQ45812.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Botton, Stéphane de. "Etapes terminales de la mégacaryopoïèse : mécanismes régulateurs de la formation des proplaquettes." Lille 2, 2006. http://www.theses.fr/2006LIL2S053.

Full text
Abstract:
Les plaquettes naissent par fragmentation d'une cellule géante, le mégacaryocyte, par un processus dynamique très particulier appelé formation de proplaquettes. À la fin de la différenciation, le mégacaryocyte forme des allongements cytoplasmiques par déroulement des membranes de démarcation sous l'action du cytosquelette (microtubules et actine). Ces allongements cytoplasmiques contenant toutes les organelles, y compris les granules α et les mitochondries, se font habituellement à travers la barrière endothéliale \; plus rarement, le mégacaryocyte en entier migre à travers la barrière endothéliale. Les plaquettes sont formées soit à l'extrémité distale des proplaquettes, soit par rupture des proplaquettes au niveau de constrictions. Les mécanismes qui régulent ce phénomène sont mal connus mais ne semblent pas sous la dépendance du principal facteur de croissance de la lignée mégacaryocyto‐plaquettaire, la thrombopoïétine. Il existe certaines similitudes morphologiques entre formation des plaquettes et apoptose, ce d'autant que le corps résiduel du mégacaryocyte (noyau entouré d'une collerette cytoplasmique), appelé mégacaryocyte sénescent, meurt par apoptose. Le lien entre machinerie de l'apoptose et formation des plaquettes a été renforcé par le phénotype des souris transgéniques pour Bcl‐2 et Bcl‐xL (deux gènes anti‐apoptotiques) et des souris invalidées pour Bim (gène pro‐apoptotique), qui présentent toutes une thrombopénie modérée associée à un nombre de mégacaryocytes normal ou augmenté. In vitro chez l'homme, la surexpression de Bcl‐2 ou l'addition d'inhibiteurs des caspases, en particulier de la caspase 3 et de la caspase 9, inhibent la formation des plaquettes. Dans les mégacaryocytes matures, on retrouve une activation de la caspase 3 ainsi que le clivage de certains de ses substrats. Cette activation de la caspase 3 est très particulière car elle est compartimentalisée dans le cytoplasme du mégacaryocyte \; en revanche, quand le mégacaryocyte est apoptotique, cette activation est diffuse dans le cytosol. Ces résultats indiquent que le clivage de certains substrats des caspases est absolument nécessaire à la formation des plaquettes
Platelets are formed from mature megakaryocytes (MKs) and arise from the development of long and thin cytoplasmic extension called proplatelets. After platelet release, the senescent MKs (nucleus surrounded by some cytoplasm) undergo cell death by apoptosis. To explore the precise role of apoptosis in proplatelet formation, we grew human MKs from CD34+ cells and assessed the possible role of caspases. Proteolytic maturation of procaspase-3 and procaspase-9 was detected by immunoblots in maturing MKs as well as in proplatelet bearing megakaryocytes and senescent MKs. Cleavage of caspase substrates such as gelsolin or PARP was also detected. Interestingly, activated forms of caspase-3 were detected in maturing megakaryocytes, before proplatelet formation, with a punctuate cytoplasmic distribution, whereas a diffuse staining pattern was seen in senescent and apoptotic MKs. This localized activation of caspase-3 was associated with a mitochondrial membrane permeabilization as assessed by the release of cytochrome c, suggesting an activation of the intrinsic pathway. Moreover, these MKs with localized activated caspase-3 had no detectable DNA fragmentation. In contrast, when apoptosis was induced by staurosporine, diffuse caspase activation was seen, these MKs had signs of DNA fragmentation and no proplatelet formation occurred. The pan-caspase inhibitor z-VAD. Fmk as well as more specific inhibitors of caspase-3 and 9 blocked proplatelet formation whereas an inhibitor of calpeptin had no effect. Overexpression of Bcl-2 also inhibited proplatelet formation in maturing megakaryocytes. Thus, localized caspase activation is causal to proplatelet formation. We conclude that proplatelet formation is regulated by a caspase activation limited only to some cellular compartments
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Xi. "The role of PI3K and ERK/MAPK signal transduction cascades in long-term memory formation /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/6248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Thérier, Julien. "Régulation de la voie des Mitogen-Activated Protein Kinase ERK1/2 par la phospholipase C gamma dans le signal du Macrophage-Colony Stimulating Factor." Lyon 1, 2005. http://www.theses.fr/2005LYO10121.

Full text
Abstract:
Le M-CSF régule l'établissement du lignage monocytaire/macrophagique en assurant la survie, la prolifération mais aussi la différenciation des progéniteurs myéloïdes en cellules très spécialisées : les macrophages. Ce contrôle nécessite la transduction d'un signal intracellulaire impliquant de nombreuses molécules. Parmi celles-ci, les MAPK ERK1/2 présentent une cinétique d'activation caractéristique : une première vague de phosphorylation rapide et transitoire puis une seconde vague tardive et soutenue essentielle à la différenciation macrophagique. J'ai montré au cours de cette étude que la phospholipase C régule spécifiquement cette seconde vague d'activation des kinases ERK1/2 par l'intermédiaire de Ras. Ce processus, indépendant du diacylglycérol, fait intervenir de façon prépondérante l'augmentation du taux de calcium intracellulaire. Ces résultats constituent un mécanisme d'activation original faisant potentiellement intervenir les kinases Src ou les complexes Gab2/SHP2
APA, Harvard, Vancouver, ISO, and other styles
6

Poser, Steven Walter. "Coincident signaling of cAMP with phosphatidylinositol 3' kinase and mitogen activated protein kinase signal transduction cascades : a role in regulating gene exression during development and synaptic plasticity /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/10633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dikic, Inga. "Signal Transduction by Proline-Rich Tyrosine Kinase Pyk2." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2002. http://publications.uu.se/theses/91-554-5316-3/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zer, Cindy. "The genomic targets of p38 mitogen activated protein kinase mediating tumor necrosis factor alpha signaling in fribroblast-like synoviocytes." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1692114531&sid=3&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chiri, Sandrine. "Rôles de MAP kinase et de PI 3-kinase dans le contrôle des premières divisions de l'œuf d'oursin." Paris 6, 2002. http://www.theses.fr/2002PA066077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Eriksson, Therese. "Organelle movement in melanophores: Effects of Panax ginseng, ginsenosides and quercetin." Licentiate thesis, Linköpings universitet, Farmakologi, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19973.

Full text
Abstract:
Panax ginseng is a traditional herb that has been used for over 2000 years to promote health and longevity. Active components of ginseng include ginsenosides, polysaccharides, flavonoids, polyacetylenes, peptides, vitamins, phenols and enzymes, of which the ginsenosides are considered to be the major bioactive constituents. Although widely used, the exact mechanisms of ginseng and its compounds remain unclear. In this thesis we use melanophores from Xenopus laevis to investigate the effects of Panax ginseng extract G115 and its constituents on organelle transport and signalling. Due to coordinated bidirectional movement of their pigmented granules (melanosomes), in response to defined chemical signals, melanophores are capable of fast colour changes and provide a great model for the study of intracellular transport. The movement is regulated by alterations in cyclic adenosine 3’:5’-monophosphate (cAMP) concentration, where a high or low level induce anterograde (dispersion) or retrograde (aggregation) transport respectively, resulting in a dark or light cell. Here we demonstrate that Panax ginseng and its constituents ginsenoside Rc and Rd and flavonoid quercetin induce a concentration-dependent anterograde transport of melanosomes. The effect of ginseng is shown to be independent of cAMP changes and protein kinase A activation. Upon incubation of melanophores with a combination of Rc or Rd and quercetin, a synergistic increase in anterograde movement was seen, indicating cooperation between the ginsenoside and flavonoid parts of ginseng. Protein kinase C (PKC) inhibitor Myristoylated EGF-R Fragment 651-658 decreased the anterograde movement stimulated by ginseng and ginsenoside Rc and Rd. Moreover, ginseng, but not ginsenosides or quercetin, stimulated an activation of 44/42-mitogen activated protein kinase (MAPK), previously shown to be involved in both aggregation and dispersion of melanosomes. PKC-inhibition did not affect the MAPK-activation, suggesting a role for PKC in the ginseng- and ginsenoside-induced dispersion but not as an upstream activator of MAPK.
Panax ginseng är ett av de vanligaste naturläkemedlen i världen och används traditionellt för att öka kroppens uthållighet, motståndskraft och styrka. Ginseng är ett komplext ämne bestående av ett antal olika substanser, inklusive ginsenosider, flavonoider, vitaminer och enzymer, av vilka de steroidlika ginsenosiderna anses vara de mest aktiva beståndsdelarna. Flavonoider (som finns i till exempel frukt och grönsaker) och ginseng har genom forskning visat sig motverka bland annat hjärt-och kärlsjukdomar, diabetes, cancer och demens. Trots den omfattande användningen är dock mekanismen för hur ginseng verkar fortfarande oklar. I den här studien har vi använt pigmentinnehållande celler, melanoforer, från afrikansk klogroda för att undersöka effekterna av Panax ginseng på pigment-transport och dess maskineri. Melanoforer har förmågan att snabbt ändra färg genom samordnad förflyttning av pigmentkorn fram och tillbaka i cellen, och utgör en utmärkt modell för studier av intracellulär transport. Förflyttningen regleras av förändringar i halten av cykliskt adenosin-monofosfat (cAMP) i cellen, där en hög eller låg koncentration medför spridning av pigment över hela cellen (dispergering) eller en ansamling i mitten (aggregering), vilket resulterar i mörka respektive ljusa celler. Här visar vi att Panax ginseng, ginsenosiderna Rc och Rd samt flavonoiden quercetin stimulerar en dispergering av pigmentkornen. När melanoforerna inkuberades med en kombination av ginsenosid Rc eller Rd och quercetin, kunde en synergistisk ökning av dispergeringen ses, vilket tyder på en samverkan mellan ginsenosid- och flavonoid-delarna av ginseng. Ett protein som tidigare visats vara viktigt för pigmenttransporten är mitogen-aktiverat protein kinas (MAPK), och här visar vi att också melanoforer stimulerade med ginseng, men dock inte med ginsenosider eller quercetin, innehåller aktiverat MAPK. Genom att blockera enzymet protein kinas C (PKC) (känd aktivator av dispergering), minskade den ginseng- och ginsenosid-inducerade dispergeringen, medan aktiveringen av MAPK inte påverkades alls. Detta pekar på en roll för PKC i pigment-transporten men inte som en aktivator av MAPK.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Mitogen-Activated Protein Kinase 3"

1

Cordero, Mario D., and Benoit Viollet, eds. AMP-activated Protein Kinase. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43589-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Randall, Susan. Interactions among the mitogen-activated protein kinase cascades and the identification of a novel cdc2-related protein kinase. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ho, Jenny Mei-Yen. The activation of mitogen-activated protein kinase pathways by the TEL-JAK2 oncoprotein. Ottawa: National Library of Canada, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Posas, Francesc, and Angel R. Nebreda, eds. Stress-Activated Protein Kinases. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75569-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Glogowski, Emily Anne Cherry. Effect of high glucose on endothelin-1 and platelet-derived growth factor stimulation of mesangial cell protein kinase C and mitogen-activated protein kinase. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

MAP kinase signaling protocols. 2nd ed. New York, N.Y: Humana Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mitogen Activated Protein Kinases. MDPI, 2020. http://dx.doi.org/10.3390/books978-3-03928-071-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ing, Y. Lynn. MLK-3: Identification and characterization of a protein kinase involved in mitogen-activated protein kinase signal transduction pathways. 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

AMP-Activated Protein Kinase Signalling. MDPI, 2019. http://dx.doi.org/10.3390/books978-3-03897-663-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

MAP Kinase Signaling Protocols. Humana Press, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Mitogen-Activated Protein Kinase 3"

1

Cuevas, Bruce D. "Mitogen-Activated Protein Kinase Kinase Kinases." In Encyclopedia of Cancer, 2872–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-46875-3_7192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cuevas, Bruce D. "Mitogen-Activated Protein Kinase Kinase Kinases." In Encyclopedia of Cancer, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27841-9_7192-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gewies, Andreas, Jürgen Ruland, Alexey Kotlyarov, Matthias Gaestel, Shiri Procaccia, Rony Seger, Shin Yasuda, et al. "Mitogen-Activated Protein Kinase Kinase 3." In Encyclopedia of Signaling Molecules, 1081. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Donato, Dominique M., Steven K. Hanks, Kenneth A. Jacobson, M. P. Suresh Jayasekara, Zhan-Guo Gao, Francesca Deflorian, John Papaconstantinou, et al. "Protein Kinase, Mitogen-Activated Kinase 3." In Encyclopedia of Signaling Molecules, 1482. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_101101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zlobin, Andrei, Jeffrey C. Bloodworth, and Clodia Osipo. "Mitogen-Activated Protein Kinase (MAPK) Signaling." In Predictive Biomarkers in Oncology, 213–21. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95228-4_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Meloche, Sylvain. "Mitogen-Activated Protein Kinases." In Encyclopedia of Signaling Molecules, 3138–41. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Seimetz, Michael. "Mitogen-Activated Protein Kinases." In Encyclopedia of Exercise Medicine in Health and Disease, 590–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Loeffler, Ivonne, and Gunter Wolf. "MORG1 (Mitogen-Activated Protein Kinase Organizer 1)." In Encyclopedia of Signaling Molecules, 3201–8. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_101683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bharti, Jyotsna, Sahil, Sahil Mehta, Shaban Ahmad, Baljinder Singh, Asish K. Padhy, Neha Srivastava, and Vimal Pandey. "Mitogen-Activated Protein Kinase, Plants, and Heat Stress." In Harsh Environment and Plant Resilience, 323–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65912-7_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Thomas, George. "Molecular and Biochemical Characterization of the Mitogen-Activated S6 Kinase." In Cellular Regulation by Protein Phosphorylation, 375–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75142-4_47.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Mitogen-Activated Protein Kinase 3"

1

Tubita, A., S. Gagliardi, I. Tusa, S. Pandolfi, J. Wang, X. Deng, N. Gray, B. Stecca, and E. Rovida. "PO-099 Targeting the mitogen activated protein kinase ERK5 in human melanoma." In Abstracts of the 25th Biennial Congress of the European Association for Cancer Research, Amsterdam, The Netherlands, 30 June – 3 July 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/esmoopen-2018-eacr25.140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ross, Brian D., Hao Hong, Hanxiao Wang, Charles A, Nino, and Marcian E. Van Dort. "Abstract LB-A20: Novel Dual Oncogenic Target Inhibitor against Allosteric Mitogen-Activated Protein Kinase (MEK1) and Phosphatidylinositol 3-Kinase (PI3K)." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; November 5-9, 2015; Boston, MA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1535-7163.targ-15-lb-a20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sos, Martin L., Stefanie Fischer, Roland Ulrich, Martin Peifer, and Roman K. Thomas. "Abstract A32: Combined inhibition of phosphoinositide‐3‐kinase and mitogen‐activated protein kinase pathways prevents activation of feedback loops in cancer." In Abstracts: First AACR International Conference on Frontiers in Basic Cancer Research--Oct 8–11, 2009; Boston MA. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/0008-5472.fbcr09-a32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Ki Mo, No Soo Kim, Jinhee Kim, Jong-Shik Park, Jin Mu Yi, Jun Lee, and Ok-Sun Bang. "Abstract 3906: Magnolol suppresses vascular endothelial growth factor-induced angiogenesis by inhibiting Ras-dependent mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-3906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Byrnes, Kimberly A., Pornima Phatak, Daniel Mansour, Jaladanki N. Rao, Douglas Turner, Jian-Ying Wang, and James M. Donahue. "Abstract 4366: MicroRNA (miR) 199a-5p regulates mitogen-activated protein kinase 3-11 (MAP3K11) expression in esophageal cancer cells by modulating mRNA stability." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-4366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lin, CC, and MK Chen. "PO-147 Pinostilbene hydrate suppresses human oral cancer cell metastasis via downregulation matrix metalloproteinase-2 through the mitogen-activated protein kinase signalling pathway." In Abstracts of the 25th Biennial Congress of the European Association for Cancer Research, Amsterdam, The Netherlands, 30 June – 3 July 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/esmoopen-2018-eacr25.188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bahr, Julian C., Robert Robey, Arup Chakraborty, Victoria Luchenko, and Susan E. Bates. "Abstract 4708: Short-term romidepsin treatment combined with mitogen-activated protein kinase and phosphatidylinositol 3-kinase inhibition causes increased Bim expression and cell death in KRAS mutant cell lines." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-4708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Aung, Kyaw L., Trevor J. Pugh, Tracy Stockley, Lisa Wang, Greg Korpanty, Stefano Serra, Patricia Shaw, et al. "Abstract 02: Pan-cancer analysis of hotspot mutations in genes encoding the members of mitogen activated protein kinase (MAPK) and phosphoinosidtide-3 kinase (PI3K) pathways among smokers and non-smokers." In Abstracts: AACR Precision Medicine Series: Integrating Clinical Genomics and Cancer Therapy; June 13-16, 2015; Salt Lake City, UT. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1557-3265.pmsclingen15-02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kashyap, Meghana, Kristen T. Carter, Brent C. Sauer, and Christopher T. Chen. "NF-κB Mediates Cartilage Degradation Induced by Trauma Injury and Interleukin-1." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14513.

Full text
Abstract:
Chondrocyte death, induced by impact injury (necrosis) and/or apoptotic inducers such as cytokines, and high level of nitric oxide, is important for the development of post-traumatic arthritis (PTA) [1–3]. The upregulation of pro-inflammatory cytokines, such as interleukin −1 (IL-1) and Tumor necrosis factor (TNF) α, is known to mediate cartilage degradation in inflammatory diseases and after trauma injury [1,2, 6–9]. IL-1 induces the degradation of proteoglycan (PG) in cartilage through NF-κB and Mitogen-activated protein kinases (MAPK: p38, ERK and JNK) pathways [1,2,6]. IL-1 is highly upregulated in synovial joint after impact injury, but the role of IL-1 induced chondrocyte death and matrix/PG degradation in injured cartilage is not completely clear.
APA, Harvard, Vancouver, ISO, and other styles
10

Wong, Leo LY, Ian Lam, Tracy Y. N. Wong, Benny WL Lai, Yuan Zhou, Red Hung, and Wilson YP Ching. "Abstract 4429: An investigation on p21-activated protein kinase 1 inhibitor, IPA-3, in hepatocellular carcinoma." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-4429.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Mitogen-Activated Protein Kinase 3"

1

Bakin, Andrei V. P38 Mitogen-Activated Protein Kinase in Metastasis Associated With Transforming Growth Factor Beta. Fort Belvoir, VA: Defense Technical Information Center, June 2005. http://dx.doi.org/10.21236/ada443019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bakin, Andrei V. P38 Mitogen-Activated Protein Kinase in Metastasis Associated With Transforming Growth Factor Beta. Fort Belvoir, VA: Defense Technical Information Center, June 2003. http://dx.doi.org/10.21236/ada417915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bakin, Andrei. p38 Mitogen-Activated Protein Kinase in Metastasis Associated with Transforming Growth Factor Beta. Fort Belvoir, VA: Defense Technical Information Center, June 2006. http://dx.doi.org/10.21236/ada456265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bakin, Andrei V. P38 Mitogen-Activated Protein Kinase in Metastasis Associated with Transforming Growth Factor Beta. Fort Belvoir, VA: Defense Technical Information Center, June 2004. http://dx.doi.org/10.21236/ada427109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Coyner, Jennifer L. Differential Expression of Phosphorylated Mitogen-Activated Protein Kinase (pMAPK) in the Lateral Amygdala of Mice Selectively Bred for High and Low Fear. Fort Belvoir, VA: Defense Technical Information Center, June 2013. http://dx.doi.org/10.21236/ad1012913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography