Contents
Academic literature on the topic 'Mitogen-activated protéine kinase'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mitogen-activated protéine kinase.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Mitogen-activated protéine kinase"
Morel, Marion. "Les récepteurs venus kinase (VKRs) de schistosoma mansoni : étude des voies de signalisation de SmVKR1 et rôle de la protéine adaptatrice SmShb." Thesis, Lille 2, 2016. http://www.theses.fr/2016LIL2S003/document.
Full textSchistosomiasis is a parasitic disease caused by trematode flatworm species belonging to the genus Schistosoma. Responsible for about 300,000 deaths per year, the disease is mainly due to the high fertility of the worms and to encystment of eggs in host tissues. In order to fight against schistosomiasis, a single drug (Praziquantel) is efficient and massively distributed in endemic areas. To deal with the emergence of resistance to Praziquantel, one alternative is to consider the design of molecules that target parasite reproduction.Venus Kinase Receptors (VKRs) constitute an invertebrate Receptor Tyrosine Kinase (RTK) family initially discovered in the parasite Schistosoma mansoni. VKRs are atypical RTKs formed by an extracellular Venus Fly Trap (VFT) ligand binding domain associated via a transmembrane domain with an intracellular tyrosine kinase (TK) domain. Two VKRs are expressed in S. mansoni: SmVKR1 and SmVKR2. They both activate Erk, Akt and JNK signaling pathways and act on the parasite reproduction.As they are absent from the human genome and as they have potential roles in the modulation of reproductive processes and development of parasites, SmVKRs appear as attractive targets to fight schistosomiasis.The first part of my thesis work sets known data concerning the role of RTKs in schistosome reproduction. Here, we show that the catalytic domains are conserved across various RTKs and we open the perspective to design drugs which could inhibit several RTKs at the same time to control egg laying by schistosomes.The second part of my work describes the importance of using an alternative strategy of inhibiting downstream partners of RTKs. By screening a kinase inhibitor library, we defined the Akt pathway components as potential targets to fight schistosomiasis. Nanomolar doses of Akt inhibitors can inhibit schistosome pairing and egg laying.In the last part, we present the specific interaction of the adaptor protein SmShb with the phosphorylated form of SmVKR1. This binding occurs between the SH2 domain of SmShb and a phosphotyrosine residue (pY979) located in the juxtamembrane region of the receptor. That interaction leads to the phosphorylation of SmShb and promotes the signal of SmVKR1 towards a JNK pathway. In situ hybridization experiments highlighted that SmShb and Smvkr1 transcripts were both located in mature oocytes and testes of adult worms. RNA interference experiments using double-stranded RNA targeting SmShb led to an accumulation of mature sperm in testes of male worms. Finally, a yeast three hybrid screening, using SmShb phosphorylated by SmVKR1 as prey, allowed us to identify various protein partners. Taking advantage of previous results, we focused on two partners and confirmed their interaction with SmShb. 1) RhoU GTPase which has potential functions in JNK signalling and cytoskeleton dynamic. 2) The dynein light chain TcTex-1, with potential role in sperm motility. Altogether, this results argue for a potential role of SmShb in the regulation of the SmVKR1 activity by forming a multiprotein complex including proteins with various roles in cytoskeleton reorganization
Mennour, Sabrina. "Activité de liaison à l’ARN des protéines de la voie de signalisation MAPK (Mitogen-Activated Protein Kinase) dans le mélanome LncRNA-Mediated Protein-Protein Scaffolding in Intracellular Signal Transduction Pathways." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASL062.
Full textRecent studies have underscored the importance of RNAs in the regulation of protein-protein interactions. By allowing the assembly of protein complexes, non-coding RNAs act as scaffolds and thus promote protein-protein interactions in order to regulate the chromatin state. RNAs are also able to interact with proteins in order to modulate their activities, interactions or localisation. In the cytoplasm, signalling pathways are regulated through a cascade of protein-protein interactions. In the MAPK (Mitogen-Activated Protein Kinase) signalling pathway, the binding of a ligand to a membrane receptor triggers a cascade of phosphorylation and protein-protein interactions that allow the transduction of the signal. Abnormal activity of this pathway through increased ligand binding or activating mutations lead to cellular dysfunction associated with tumor initiation and progression.The potential role of RNAs in the direct regulation of protein-protein interactions of key cytoplasmic signal transduction pathways remains largely unknown. The aim of the thesis was to investigate and demonstrate the direct RNA binding activity of proteins involved in the MAPK pathway and to evaluate the role of RNA-protein interactions on intracellular signalling.Using a combination of CLIP (crosslinking and immunoprecipitation) and silica matrix-based affinity capture (2C complex capture) approaches that can uncover direct interactions between proteins and RNAs in vivo, we demonstrated a direct interaction between key MAPK signalling proteins and RNA in melanoma cells. Subsequent microscopy studies using proximity ligation assay (PLA) led us to demonstrate an RNA-dependent modulation of protein-protein interactions in the MAPK pathway, suggesting that an RNA component is involved in the stabilization of these protein-protein interactions. We specifically identified a deletion mutant in BRAF, a central oncogenic protein and therapeutic target in melanoma, that lacks RNA binding activity and harbors decreased signalling activity.By highlighting the existence of an RNA-mediated modulation of protein-protein interactions, this study shows the unprecedented importance of the RNA binding activity of key signal transduction proteins that should be considered in the understanding and targeting of tumor cells
Duquesnes, Nicolas. "Signalisation cellulaire et formation de complexes protéiques lors de l'étirement des cardiomyocytes de rats nouveaux-nés." Phd thesis, Université Paris-Est, 2008. http://tel.archives-ouvertes.fr/tel-00842230.
Full textGarnier, Camille. "Rôle de la protéine MAP3K8 et impact de la rigidité dans les cancers ovariens sereux de haut grade." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC223/document.
Full textOvarian cancers, which develop in a silent manner in the peritoneal cavity, resulting in a late diagnosis and a poor prognosis, urgently require new therapeutic strategies. In this context, my thesis aimed at better characterize the physical and biological properties of the High Grade Serous ovarian cancers (HGSOCs), accounting for 75% of the tumours.First, we found that the protein MAP3K8 accumulates in HGSOC and is a potential prognostic marker for these tumours. We demonstrated that MAP3K8 controls cancer cell proliferation and migration by regulating key players in Gl/S transition and adhesion dynamics. Importantly, we highlighted that MAP3K8 function is mainly mediated by the MEK pathway, and exhibits a predictive potential for MEK inhibitors, defining them as a promising therapeutic option, in combination with conventional therapy, for HGSOC patients.In a second part of my thesis, we showed that tumor stiffness is increased during tumor growth in HGSOC presenting a "Fibrosis" molecular signature. Moreover, tumor stiffening is associated with high stromal content and remodeling of the collagen network. Interestingly, the MEK kinase was specifically activated upon tumor stiffening. Furthermore, tumor stiffness accompanies a glycolytic metabolic switch, restricted to the central part of stiff tumors. Indeed, the periphery of stiff tumors remains softer than the central part with stromal cells secreting high levels of collagens and showing an OXPHOS metabolism. Thus, tumor stiffness could be at the crossroad of three major processes, i.e. matrix remodeling, MEK activation and stromal metabolic switch, that might explain, at least in part, the progression of HGSOC
Le, May Nicolas. "Mécanismes de pathogenèse de la protéine non structurale NSs du virus de la Fièvre de la Vallée du Rift." Paris 7, 2005. http://www.theses.fr/2005PA077205.
Full textThe Rift Valley fever virus is a phlebovirus of the Bunyaviridae family transmitted by mosquitoes and affecting cattle, sheep, goats and humans. It causes many dramatic epidémies and epizootics in Africa and recently it was introduced in Yemen and in Saudi Arabia with a high mortality rate. The viral genome is composed of three segments of RNA: the L and M segments are of negative polarity and encode respectively for the RNA polymerase RNA dependent and the precursor of envelope glycoproteins. The S segment utilises an ambisense strategy and codes for the nucleoprotein N and the non structural protein NSs. Although the viral cycle is cytoplasmic, the NSs protein (256 amino acids, 31 kDa) is nuclear and forms filament. Moreover, it was shown that NSs is the major pathogenicity factor, inhibiting IFN beta messenger RNA synthesis but do not disturb the formation of the enhanceosome (NF-KB, IRF3 and ATF2/cjun). We found that infection by RVFV leads to i) a rapid and drastic suppression of host cellular RNA synthesis that parallels a decrease of the TFIIH transcription factor concentration, ii) an inhibition of CBP recruitment and histones acetylation on IFNp promoter and iii) STAT1 proteolysis. Using yeast two hybrid System, immunoprecipitations, Chips and confocal microscopy, we further demonstrated that each event is linked to the association of the nonstructural viral NSs protein with respectively the TFIIH subunit p44, co-repressors subunit SAP30 and Socs 1 in the nuclear filaments. NSs prevents the assembly of newly synthesized TFIIH subunits. NSs, through the interaction between SAP30 and YY1 transcription factor, stabilizes co-repressors like N-coR or Sin3 responsible of histones deacetylation on IFNp promoter and preventing the association between CBP and YY1. Finally NSs provokes Socs 1 accumulation and, through a Socs 1 containing-E3 ligase complex, it degrades STAT1 and inhibes induction by IFNy. These observations shed light on the mechanisms utilized by RVFV to evade the host response
Dacher, Mariko. "Genetic analysis of Leishmania signal transduction through the establishment and application of a novel conditional knock-out system." Paris 7, 2012. http://www.theses.fr/2012PA077121.
Full textProtein phosphorylation is an important process in Leishmania proliferation and differentiation, and mitogen-activated protein kinases (MAPKs) are likely to play a crucial regulatory role. The aim of my work was to elucidate Leishmania signalling mechanisms relevant for parasite virulence. My thesis work comprises three main projects. I first studied the role of LmaMPK4 using a novel knock-out System based on the episome pXNG that renders transgenic parasites sensitive to the drug ganciclovir. Our data demonstrate an essential role for MPK4 expression in parasite viability and for MPK4 phospho-transferase activity in environmental sensing and infectivity. The second project is focalized on the study of a chaperone Heat shock protein 70-related (Hsp70r) and LmaMPK7 by defining a novel drug résistance mechanism dependent on post-translational mechanisms. Finally, during a collaborative project I identified two phosphorylation sites that were essential for parasite survival for a chaperone Stress-inducible protein 1 (STI1). The genetic approaches presented here allow new insight into the fonction of essential Leishmania signaling and stress protein, which escape classical KO analyses due to lethal null mutant phenotypes
Boulven, Isaline. "Réseaux de transduction stimulés par les récepteurs à activité tyrosine kinase et les récepteurs couplés aux protéines G dans les cellules myométriales : rôle dans l'activation des protéines ERK et impact sur la prolifération cellulaire." Paris 11, 2002. http://www.theses.fr/2002PA112007.
Full textIn this study, we aimed to analyse the signalling pathways involved in the regulation of myometrial cells proliferation which plays an essential role in uterine functions. We demonstrated, in rat myometrial cells in primary culture, the involvement of MAP kinases of the ERK type in the mitogenic effect of various agents: PDGF, a growth factor acting through a receptor tyrosine kinase, endothelin-1 (ET -1), a mitogenic peptide which interacts in the myometrium with receptors coupled to Gi and Gq proteins, and pervanadate (PV), a potent protein tyrosine phosphatase inhibitor. Our results showed that PDGF and PV induced PLC-γ1/Ins3 stimulation and ERK activation that both contribute to cAMP production by increasing the release of arachidonic acid and the biosynthesis of prostaglandin. The inhibition of ERK activation and DNA synthesis by cAMP constitutes a potentially important negative feedback loop for PDGF and PV- mediated responses. The presence and the activation by PV of tyrosine kinases of the Src family was also demonstrated in rat myometrial cells. These kinases contributed to the activation of PLCγ1 and the production of InsP3 triggered by PV, and to the activation of ERK induced by ET-1. Indeed, we demonstrated that ET-1-mediated ERK activation involves the sequential activation of PKC, Src and Ras. We also showed that two signalling pathways contribute to the PKC-dependant ERK activation induced by ET-1: a Gq-PLCβ-InsP3-conventional/novel PKC and a Gi-PI3kinase-atypical PKC pathway. Altogether, the results demonstrate the presence of signalling networks required for the regulation of myometrial cells proliferation which play an essential role in physiological conditions (gestation) as well as pathological (fibroma) and physiopathological (preterm) conditions
Valluet, Agathe. "Utilisation de modèles murins pour l'étude du rôle physiologique des isoformes de BRaf et du rôle des protéines Raf dans le lignage mélanocytaire." Paris 7, 2010. http://www.theses.fr/2010PA077167.
Full textOur team works on the ERK pathway and we mainly focus on the Raf proteins family. We have demonstrated that the BRAF gene encoded several isoforms resulting from alternative splicing of exons 8b and 9b. The presence of these sequences modulates the biochemical and oncogenic properties of the protein. The aim of my project was to analyse the phenotype of knockout mice for each £/to/alternatively spliced exons. Constitutive ablation revealed no obvious defects during embryogenesis and adulthood. However, behavioural analyses revealed a specific role for exon 9b-containing BRaf isoforms in certain types of hippocampal-dependent learning and memory. BRaf and CRaf protein kinases have recently emerged as critical players in cutaneous melanoma but little is known about their putative role in the melanocyte lineage in vivo. The aim of my second project was to analyse the phenotype of mice deleted for both BRaf and CRaf in this lineage. Surprisingly, the double knockouts displayed normal pigmentation at birth and did not show signifîcant defect in melanoblasts. However, fbllowing the first hair | molting, the double knockout animals unveiled a progressive hair graying phenotype resulting from depletion of j melanocyte stem cells (MSC). In vitro cultures of melanocytic cells derived from knockout animals could not sustain growth in the presence of TPA but proliferated in the presence of the Kit ligand, SCF. Taken together, our results show that Raf signalling is required for proper MSC maintenance, but dispensable for early melanocyte lineage development. Our observations reveal an unexpected uncoupling between Kit and Raf signalling in the melanocyte lineage
Kragelj, Jaka. "Structure and dynamics of intrinsically disordered regions of MAPK signalling proteins." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENV060/document.
Full textProtein signal transduction pathways allow cells respond to and process signals from the environment. A group of such pathways, called mitogen-activated protein kinase (MAPK) signal transduction pathways, is well conserved in all eukaryotic cells and is involved in regulating many important cell processes. Long intrinsically disordered region (IDRs), present in many MAPKs, have remained structurally uncharacterised. The IDRs of MAPKs are especially important as they contain docking-site motifs which control the interactions between MAPK proteins themselves and also between MAPKs and other interacting proteins containing the same motifs. Nuclear magnetic resonance (NMR) spectroscopy in combination with other biophysical techniques was used to study IDRs of MAPKs. NMR spectroscopy is well suited for studying intrinsically disordered proteins (IDPs) at atomic-level resolution. NMR observables, such as for example chemical shifts and residual dipolar couplings, can be used together with ensemble selection methods to study residual structure in IDRs. Nuclear spin relaxation informs us about fast pico-nanosecond motions. NMR titrations and exchange spectroscopy techniques can be used to monitor kinetics of protein-protein interactions. The mechanistic insight into function of IDRs and motifs will contribute to understanding of how signal transduction pathways work
Sipieter, François. "Development and validation of kinase activity reporters for the dynamical study of cell response modalities by microscopy : Role of the Mitogen-Activated Protein Kinase / Extracellular signal-Regulated Kinase in necroptosis." Thesis, Lille 1, 2015. http://www.theses.fr/2015LIL10167.
Full textNecroptosis is defined as a caspase-independent programmed cell death and relies on a signaling pathway involving two serine-threonine kinases: Receptor-Interacting Protein Kinase 1 and 3 (RIPK1 and RIPK3) and the pseudo-kinase Mixed-Lineage Kinase Like (MLKL). Activation of Extracellular signal-Regulated Kinases 1 and 2 (ERK1/2) was reported to be involved in different modes of programmed cell death. It is now accepted that the regulation of the duration, magnitude and subcellular compartmentalization of ERK1/2 activity by specific spatio-temporal regulators is interpreted by the cell towards cell fate determination. ERK1/2 inhibition delays TNFα-induced necroptosis in L929 cells in a dose dependent manner but did not block it, providing arguments for a pro-necrotic function of ERK1/2. In this context, a compartmentalized biphasic phosphorylation of ERK1/2 was observed. Our results indicate a RIPK1-dependent phosphorylation of ERK1/2. Owing to the importance of ERK1/2 spatio-temporal dynamics in determining cellular responses, we developed a new reporter of ERK2 localization named ERK2-LOC. We observed a transient translocation of ERK2 when necroptosis was triggered in L929 upon TNFα stimulation, followed by progressive ERK2 accumulation in the nucleus. ERK1/2 activities were monitored during necroptosis using a FRET-based kinase biosensor for ERK1/2 (ERK1/2-ACT). Using ERK1/2-ACT, a dedicated spatio-temporal signature of ERK1/2 activity was recorded during necroptosis. Finally, to correlate ERK1/2 activity code with necroptosis occurrence, we also engineered a first generation of FRET biosensors to report on both RIPK1 and RIPK3 activities during necroptosis