Dissertations / Theses on the topic 'Mixed effects models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Mixed effects models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ribbing, Jakob. "Covariate Model Building in Nonlinear Mixed Effects Models." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7923.
Full textNagem, Mohamed O. "Diagnostics for Nonlinear Mixed-Effects Models." College Park, Md.: University of Maryland, 2009. http://hdl.handle.net/1903/9546.
Full textThesis research directed by: Applied Mathematics & Statistics, and Scientific Computation Program. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Sima, Adam. "Accounting for Model Uncertainty in Linear Mixed-Effects Models." VCU Scholars Compass, 2013. http://scholarscompass.vcu.edu/etd/2950.
Full textMahbouba, Raid. "Nonlinear mixed effects models for longitudinal DATA." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-120579.
Full textBarrowman, Nicholas J. "Nonlinear mixed effects models for meta-analysis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ57342.pdf.
Full textWang, Wei. "Linear mixed effects models in functional data analysis." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/253.
Full textBaverel, Paul. "Development and Evaluation of Nonparametric Mixed Effects Models." Doctoral thesis, Uppsala universitet, Institutionen för farmaceutisk biovetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-144583.
Full textJanzén, David. "Structural identifiability and indistinguishability in mixed-effects models." Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/93154/.
Full textWhitaker, Gavin Andrew. "Bayesian inference for stochastic differential mixed-effects models." Thesis, University of Newcastle upon Tyne, 2016. http://hdl.handle.net/10443/3398.
Full textTran, Vuong. "Bayesian variable selection in linear mixed effects models." Thesis, Linköpings universitet, Statistik och maskininlärning, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139069.
Full textErkan, Ibrahim. "Mixed Effects Models For Time Series Gene Expression Data." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613913/index.pdf.
Full textKyriakou, S. "Reduced-bias estimation and inference for mixed-effects models." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10049958/.
Full textBakbergenuly, Ilyas. "Transformation bias in mixed effects models of meta-analysis." Thesis, University of East Anglia, 2017. https://ueaeprints.uea.ac.uk/65314/.
Full textBotha, Imke. "Bayesian inference for stochastic differential equation mixed effects models." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/198039/1/Imke_Botha_Thesis.pdf.
Full textGalarza, Morales Christian Eduardo 1988. "Quantile regression for mixed-effects models = Regressão quantílica para modelos de efeitos mistos." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306681.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-27T06:40:31Z (GMT). No. of bitstreams: 1 GalarzaMorales_ChristianEduardo_M.pdf: 5076076 bytes, checksum: 0967f08c9ad75f9e7f5df339563ef75a (MD5) Previous issue date: 2015
Resumo: Os dados longitudinais são frequentemente analisados usando modelos de efeitos mistos normais. Além disso, os métodos de estimação tradicionais baseiam-se em regressão na média da distribuição considerada, o que leva a estimação de parâmetros não robusta quando a distribuição do erro não é normal. Em comparação com a abordagem de regressão na média convencional, a regressão quantílica (RQ) pode caracterizar toda a distribuição condicional da variável de resposta e é mais robusta na presença de outliers e especificações erradas da distribuição do erro. Esta tese desenvolve uma abordagem baseada em verossimilhança para analisar modelos de RQ para dados longitudinais contínuos correlacionados através da distribuição Laplace assimétrica (DLA). Explorando a conveniente representação hierárquica da DLA, a nossa abordagem clássica segue a aproximação estocástica do algoritmo EM (SAEM) para derivar estimativas de máxima verossimilhança (MV) exatas dos efeitos fixos e componentes de variância em modelos lineares e não lineares de efeitos mistos. Nós avaliamos o desempenho do algoritmo em amostras finitas e as propriedades assintóticas das estimativas de MV através de experimentos empíricos e aplicações para quatro conjuntos de dados reais. Os algoritmos SAEMs propostos são implementados nos pacotes do R qrLMM() e qrNLMM() respectivamente
Abstract: Longitudinal data are frequently analyzed using normal mixed effects models. Moreover, the traditional estimation methods are based on mean regression, which leads to non-robust parameter estimation for non-normal error distributions. Compared to the conventional mean regression approach, quantile regression (QR) can characterize the entire conditional distribution of the outcome variable and is more robust to the presence of outliers and misspecification of the error distribution. This thesis develops a likelihood-based approach to analyzing QR models for correlated continuous longitudinal data via the asymmetric Laplace distribution (ALD). Exploiting the nice hierarchical representation of the ALD, our classical approach follows the stochastic Approximation of the EM (SAEM) algorithm for deriving exact maximum likelihood (ML) estimates of the fixed-effects and variance components in linear and nonlinear mixed effects models. We evaluate the finite sample performance of the algorithm and the asymptotic properties of the ML estimates through empirical experiments and applications to four real life datasets. The proposed SAEMs algorithms are implemented in the R packages qrLMM() and qrNLMM() respectively
Mestrado
Estatistica
Mestre em Estatística
Richardson, Troy E. "Treatment heterogeneity and potential outcomes in linear mixed effects models." Diss., Kansas State University, 2013. http://hdl.handle.net/2097/15950.
Full textDepartment of Statistics
Gary L. Gadbury
Studies commonly focus on estimating a mean treatment effect in a population. However, in some applications the variability of treatment effects across individual units may help to characterize the overall effect of a treatment across the population. Consider a set of treatments, {T,C}, where T denotes some treatment that might be applied to an experimental unit and C denotes a control. For each of N experimental units, the duplet {r[subscript]i, r[subscript]Ci}, i=1,2,…,N, represents the potential response of the i[superscript]th experimental unit if treatment were applied and the response of the experimental unit if control were applied, respectively. The causal effect of T compared to C is the difference between the two potential responses, r[subscript]Ti- r[subscript]Ci. Much work has been done to elucidate the statistical properties of a causal effect, given a set of particular assumptions. Gadbury and others have reported on this for some simple designs and primarily focused on finite population randomization based inference. When designs become more complicated, the randomization based approach becomes increasingly difficult. Since linear mixed effects models are particularly useful for modeling data from complex designs, their role in modeling treatment heterogeneity is investigated. It is shown that an individual treatment effect can be conceptualized as a linear combination of fixed treatment effects and random effects. The random effects are assumed to have variance components specified in a mixed effects “potential outcomes” model when both potential outcomes, r[subscript]T,r[subscript]C, are variables in the model. The variance of the individual causal effect is used to quantify treatment heterogeneity. Post treatment assignment, however, only one of the two potential outcomes is observable for a unit. It is then shown that the variance component for treatment heterogeneity becomes non-estimable in an analysis of observed data. Furthermore, estimable variance components in the observed data model are demonstrated to arise from linear combinations of the non-estimable variance components in the potential outcomes model. Mixed effects models are considered in context of a particular design in an effort to illuminate the loss of information incurred when moving from a potential outcomes framework to an observed data analysis.
Jia, Yanan Jia. "Generalized Bilinear Mixed-Effects Models for Multi-Indexed Multivariate Data." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1469180629.
Full textKjellsson, Maria C. "Methodological Studies on Models and Methods for Mixed-Effects Categorical Data Analysis." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9333.
Full textFrühwirth-Schnatter, Sylvia, and Regina Tüchler. "Bayesian parsimonious covariance estimation for hierarchical linear mixed models." Institut für Statistik und Mathematik, WU Vienna University of Economics and Business, 2004. http://epub.wu.ac.at/774/1/document.pdf.
Full textSeries: Research Report Series / Department of Statistics and Mathematics
Du, Ye Ting. "Simultaneous fixed and random effects selection in finite mixtures of linear mixed-effects models." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110592.
Full textLes modèles linéaires mixtes (LME) sont fréquemment employés pour la modélisation des données longitudinales. Un facteur qui complique l'analyse de ce genre de données est que les échantillons sont parfois obtenus à partir d'une population d'importante hétérogénéité sous-jacente, qui serait difficile à capter par un seul LME. De tels problèmes peuvent être surmontés par un mélange fini de modèles linéaires mixtes (FMLME), qui segmente la population en sous-populations et modélise chacune de ces dernières par un LME distinct. Souvent, un grand nombre de variables explicatives sont introduites dans la phase initiale d'une étude. Cependant, leurs associations à la variable réponse varient d'un composant à l'autre du modèle FMLME. Afin d'améliorer la prévisibilité et de recueillir un modèle parcimonieux, il est d'un grand intérêt pratique d'identifier les effets importants, tant fixes qu'aléatoires, dans le modèle. Les techniques conventionnelles de sélection de variables telles que la suppression progressive et la sélection de sous-ensembles sont informatiquement chères, même lorsque le nombre de composants et de covariables est relativement modeste. La présente thèse introduit une approche basée sur la vraisemblance pénalisée et propose un algorithme EM imbriqué qui est computationnellement efficace. On démontre aussi que les estimateurs possèdent des propriétés telles que la cohérence, la parcimonie et la normalité asymptotique. On illustre la performance de la méthode proposée au moyen de simulations et d'une application sur un vrai jeu de données.
Xu, Xiaochen. "Estimation of structural parameters in credibility context using mixed effects models." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/b4020361x.
Full textStirrup, O. T. "Extending mixed effects models for longitudinal data before and after treatment." Thesis, University College London (University of London), 2016. http://discovery.ucl.ac.uk/1530997/.
Full textAlzubaidi, Samirah Hamid. "A case study on cumulative logit models with low frequency and mixed effects." Kansas State University, 2017. http://hdl.handle.net/2097/38252.
Full textDepartment of Statistics
Perla E. Reyes Cuellar
Data with ordinal responses may be encountered in many research fields, such as social, medical, agriculture or financial sciences. In this paper, we present a case study on cumulative logit models with low frequency and mixed effects and discuss some strengths and limitations of the current methodology. Two plant pathologists requested our statistical advice to fit a cumulative logit mixed model seeking for the effect of six commercial products on the control of a seed and seedling disease in soybeans in vitro. In their attempt to estimate the model parameters using a generalized linear mixed model approach with PROC GLIMMIX, the model failed to converge. Three alternative approaches to solve the problem were examined: 1) stratifying the data searching for the random effect; 2) assuming the random effect would be small and reducing the model to a fixed model; and 3) combining the original categories of the response variable to a lower number of categories. In addition, we conducted a power analysis to evaluate the required sample size to detect treatment differences. The results of all the proposed solutions were similar. Collapsing categories for a cumulative/proportional odds model has little effect on estimation. The sample size used in the case study is enough to detect a large shift of frequencies between categories, but not for moderated changes. Moreover, we do not have enough information to estimate a random effect. Even when it is present, the results regarding the fixed factors: pathogen, evaluation day, and treatment effects are the same as the obtained by the fixed model alternatives. All six products had a significant effect in slowing the effect of the pathogen, but the effects vary between pathogen species and assessment timing or date.
Ntirampeba, D. "Modelling growth patterns of bird species using non-linear mixed effects models." Master's thesis, University of Cape Town, 2008. http://hdl.handle.net/11427/19032.
Full textThe analysis of growth data is important as it allows us to assess how fast things grow and determine various factors that have impact on their growth. In the current study, growth measurements on body features (body mass, wing length, head length, bill (culmen) length, foot length, and tarsus length) for Grey-headed Gulls populating Bonaero Park and Modderfontein Pan in Gauteng province, South Africa, and for Swift Terns on Robben Island were taken. Different methods such as polynomial regressions, non-parametric models and non-linear mixed effects models have been used to fit models to growth data. In recent years, non-linear mixed effects models have become an important tool for growth models. We have fitted univariate inverse exponential, Gompertz, logistic, and Richards non-linear mixed effects models to each of the six body features. We have modeled these six features simultaneously by adding a categorical covariate, which distinguishes between different features, to the model. This approach allows for straightforward comparison of growth between the different body features. In growth studies, the knowledge of the age of each individual is an essential information for growth analysis. For Swift Terns, the exact age of most chicks was unknown, but a small portion of the sample was followed from nestling up to the end of the study period. For chicks with unknown age, we estimated age by fitting the growth curve, obtained from birds with known age, to the mass measurements of the chick with unknown age. It was found that the logistic models were most appropriate to describe the growth of body mass and wing length while the Gompertz models provided best fits for bill, tarsus, head and foot for Grey-headed Gulls. For Swift Terns, the inverse exponential model provided the best univariate fit for four of six features. The logistic model, with a variance function increasing as a power of fitted values, with a different power for each feature and autoregressive correlation structure for within bird errors with errors from different features within the same subject assumed to be independent, gave the best model to describe the growth of all body features taken simultaneously for both Grey-headed Gull and Swift Tern data. It was shown that growth of Grey-headed Gull and Swift Tern chicks occurs in the following order (foot, body mass, tarsus)-(bill, head)-( wing) and (tarsus, foot)-(body mass, bill, head)-(wing) , respectively.
Shieh, Yann-yann. "An evaluation of mixed effects multilevel modeling under conditions of error term nonnormality /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Full textHo, Kwok Wah. "RJMCMC algorithm for multivariate Gaussian mixtures with applications in linear mixed-effects models /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?ISMT%202005%20HO.
Full textMansour, Asmaa. "Modeling outcome estimates in meta-analysis using fixed and mixed effects linear models." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0001/MQ44216.pdf.
Full textMansour, Asmaâ. "Modeling outcome estimates in meta-analysis using fixed and mixed effects linear models." Thesis, McGill University, 1998. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=20585.
Full textThe first step of a meta-analysis is the literature search, conducted using computerized and manual search strategies to identify relevant studies. The second step is the data abstraction from different relevant papers. In general, at least two independent raters systematically abstract the information, and interrater reliability check is performed.
The next step is the quantitative analysis of the abstracted data. For this purpose, it is possible to use either fixed or mixed effects linear model. Under the fixed effects model, only the variability due to sampling error is considered. In contrast, under the mixed effects model, an additional random effects variance is being considered. Both, the method of moments and the method of maximum likelihood can be used to estimate the parameters of the model.
Finally, the use of the above mentioned models and methods of estimation is illustrated with a data set on the prognosis of depression in the elderly, made available by Dr. Martin Cole from the Department of Psychiatry at St. Mary's Hospital Center in Montreal.
Maldonado, Lizmarie Gabriela. "Linear Mixed-Effects Models: Applications to the Behavioral Sciences and Adolescent Community Health." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4363.
Full textChen, Ren. "Bayesian Inference on Mixed-effects Models with Skewed Distributions for HIV longitudinal Data." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4298.
Full textNyberg, Joakim. "Practical Optimal Experimental Design in Drug Development and Drug Treatment using Nonlinear Mixed Effects Models." Doctoral thesis, Uppsala universitet, Institutionen för farmaceutisk biovetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-160481.
Full textThorp, John III. "Joint Mixed-Effects Models for Longitudinal Data Analysis: An Application for the Metabolic Syndrome." VCU Scholars Compass, 2009. http://scholarscompass.vcu.edu/etd/1943.
Full textTüchler, Regina. "Bayesian Variable Selection for Logistic Models Using Auxiliary Mixture Sampling." Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 2006. http://epub.wu.ac.at/984/1/document.pdf.
Full textSeries: Research Report Series / Department of Statistics and Mathematics
Largajolli, Anna. "Nonlinear Mixed-Effects Intravenous and Oral Minimal Models to Assess Insulin Secretion and Action." Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3422635.
Full textIl diabete è una grave malattia metabolica che secondo l'International Diabetes Federation (IDF) colpisce circa 371 milioni di persone in tutto il mondo. Questo numero è destinato a crescere nei prossimi anni grazie al contributo dei paesi dove la sanità e la prevenzione sono meno efficaci. Questo è il motivo per cui in questi anni la ricerca scientifica è stata portata avanti intensamente studiando il diabete da diversi punti di vista: dalla biologia cellulare alla farmacologia alla ingegneria e via dicendo. Molti quesiti scientifici sono stati risolti ma molti altri sono ancora aperti. Recentemente sono stati sviluppati diversi test per studiare il sistema glucosio insulina in vivo i cui dati sono stati analizzati con approcci basati su modelli matematici che servono a estrapolare della conoscenza sui fenomeni sottostanti del controllo glicemico. La ricerca qui presentata si propone di analizzare i dati provenienti da test differenti sfruttando l' approccio di popolazione non lineare a effetti misti (NLMEM) per studiare il sistema glucosio-insulina. Questo approccio statistico è largamente impiegato in studi di farmacocinetica e farmacodinamica (PKPD) durante lo sviluppo di farmaci, ma non è molto diffuso negli studi metabolici. Questa tecnica è molto interessante perchè non solo è in grado di quantificare i parametri del l' individuo e della popolazione, ma è in grado di identificare le fonti biologiche della variabilità inter-individuale e intra-individuale. Inoltre l' approccio non lineare a effetti misti è particolarmente indicato in "dataset sparsi", la condizione tipica degli studi epidemiologici in cui le tecniche standard individuali hanno difficoltà ad ottenere le informazioni dai dati. In questo caso una descrizione completa statistica è ottenibile recuperando la mancanza di informazioni dalla popolazione riducendo così potenzialmente la necessità di campioni di sangue e di prove invasive. Grazie al suo potenziale, l' approccio non lineare a effetti misti offre un valido strumento di modellazione da utilizzare e convalidare su dati provenienti da studi metabolici, come quelli che riguardano il sistema glucosio-insulina
Ernest, II Charles. "Benefits of Non-Linear Mixed Effect Modeling and Optimal Design : Pre-Clinical and Clinical Study Applications." Doctoral thesis, Uppsala universitet, Institutionen för farmaceutisk biovetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-209247.
Full textMy name should be listed as "Charles Steven Ernest II" on cover.
Wang, Liangliang. "Estimating nonlinear mixed-effects models by the generalized profiling method and its application to pharmacokinetics." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=18424.
Full textIl n'y a aucune solution de exacte pour beaucoup de modèles non-linéaires à effets mixtes (NLME) exprimés comme un ensemble d'équations ordinaires (ODE) en modèles de compartiment. Cette thèse passe en revue plusieurs méthodes et outils courants de logiciel pour NLME, et explore une nouvelle manière d'estimer des effets mixtes non-linéaires en modèles de compartiment basée sur le cadre de la méthode de profilage généralisée proposée par Ramsay, Hooker, Campbell, et Cao (2007). Quatre types de paramètres sont identifiés et estimés d'en cascade par une optimisation de multiple-niveau: le paramètre regularisateur est choisi par le critère de la contre-vérification généralisée (GCV); les paramètres structuraux, y compris les effets fixes, la matrice de variance-covariance pour les effets aléatoires, et la variance résiduelle sont optimisés par un critère basé sur une expansion de premier ordre de Taylor de fonction non-linéaire ; les effets aléatoires sont optimisés par une methode des moindres carrés non-linéaires pénalisés ; et les coefficients d'expansions de fonction de base sont optimisés par un lissage pénalisé avec la pénalité définie par l'equation differentielle. En conséquence, certains des paramètres sont exprimés en tant que fonctions explicites ou implicites d'autres paramètres. La dimensionnalité de l'espace des paramètres est réduite, et la surface d'optimisation devient plus lisse. L'algorithme de Newton-Raphson est appliqué aux paramètres d'évaluation pour chaque niveau d'optimisation, où le théorème des fonctions implicites est employé couramment pour établir les gradients et les matrices de Hessiennes de facon analytiques. La méthode proposée et des codes de MATLAB sont examinés par des applications à plusieurs modèles de compartiment en pharmacocinétique sur des donnees simulées et vraies. Des résultats sont comparés aux valeurs ou aux évaluations vraies obtenues pa
Gentry, Amanda E. "Penalized mixed-effects ordinal response models for high-dimensional genomic data in twins and families." VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5575.
Full textKidney, Darren. "Random coeffcient models for complex longitudinal data." Thesis, University of St Andrews, 2014. http://hdl.handle.net/10023/6386.
Full textForster, Jeri E. "Varying-coefficient models for longitudinal data : piecewise-continuous, flexible, mixed-effects models and methods for analyzing data with nonignorable dropout /." Connect to full text via ProQuest. Limited to UCD Anschutz Medical Campus, 2006.
Find full textTypescript. Includes bibliographical references (leaves 72-75). Free to UCD Anschutz Medical Campus. Online version available via ProQuest Digital Dissertations;
Zhang, Hanze. "Bayesian inference on quantile regression-based mixed-effects joint models for longitudinal-survival data from AIDS studies." Scholar Commons, 2017. https://scholarcommons.usf.edu/etd/7456.
Full textYan, Huan. "Statistical adjustment, calibration, and uncertainty quantification of complex computer models." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52290.
Full textOspina, Arango Juan David. "Predictive models for side effects following radiotherapy for prostate cancer." Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S046/document.
Full textExternal beam radiotherapy (EBRT) is one of the cornerstones of prostate cancer treatment. The objectives of radiotherapy are, firstly, to deliver a high dose of radiation to the tumor (prostate and seminal vesicles) in order to achieve a maximal local control and, secondly, to spare the neighboring organs (mainly the rectum and the bladder) to avoid normal tissue complications. Normal tissue complication probability (NTCP) models are then needed to assess the feasibility of the treatment and inform the patient about the risk of side effects, to derive dose-Volume constraints and to compare different treatments. In the context of EBRT, the objectives of this thesis were to find predictors of bladder and rectal complications following treatment; to develop new NTCP models that allow for the integration of both dosimetric and patient parameters; to compare the predictive capabilities of these new models to the classic NTCP models and to develop new methodologies to identify dose patterns correlated to normal complications following EBRT for prostate cancer treatment. A large cohort of patient treated by conformal EBRT for prostate caner under several prospective French clinical trials was used for the study. In a first step, the incidence of the main genitourinary and gastrointestinal symptoms have been described. With another classical approach, namely logistic regression, some predictors of genitourinary and gastrointestinal complications were identified. The logistic regression models were then graphically represented to obtain nomograms, a graphical tool that enables clinicians to rapidly assess the complication risks associated with a treatment and to inform patients. This information can be used by patients and clinicians to select a treatment among several options (e.g. EBRT or radical prostatectomy). In a second step, we proposed the use of random forest, a machine-Learning technique, to predict the risk of complications following EBRT for prostate cancer. The superiority of the random forest NTCP, assessed by the area under the curve (AUC) of the receiving operative characteristic (ROC) curve, was established. In a third step, the 3D dose distribution was studied. A 2D population value decomposition (PVD) technique was extended to a tensorial framework to be applied on 3D volume image analysis. Using this tensorial PVD, a population analysis was carried out to find a pattern of dose possibly correlated to a normal tissue complication following EBRT. Also in the context of 3D image population analysis, a spatio-Temporal nonparametric mixed-Effects model was developed. This model was applied to find an anatomical region where the dose could be correlated to a normal tissue complication following EBRT
Flask, Thomas V. "An Application of Multi-Level Bayesian Negative Binomial Models with Mixed Effects on Motorcycle Crashes in Ohio." University of Akron / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=akron1333046055.
Full textJohansson, Åsa M. "Methodology for Handling Missing Data in Nonlinear Mixed Effects Modelling." Doctoral thesis, Uppsala universitet, Institutionen för farmaceutisk biovetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-224098.
Full textKliegl, Reinhold, Ping Wei, Michael Dambacher, Ming Yan, and Xiaolin Zhou. "Experimental effects and individual differences in linear mixed models: Estimating the relationship between spatial, object, and attraction effects in visual attention." Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5685/.
Full textCharpentier, Bernadette. "The Role of Colony Size in the Resistance and Tolerance of Scleractinian Corals to Bleaching Caused by Thermal Stress." Thèse, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/30662.
Full textCohen, Rachel. "Estimating the above-ground biomass of mangrove forests in Kenya." Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/9956.
Full textPolicastro, Catherine. "The Effects of Ecological Context and Individual Characteristics on Stereotyped Displays in Male Anolis carolinensis." ScholarWorks@UNO, 2013. http://scholarworks.uno.edu/td/1757.
Full textRobertson, Rebecca. "Examining the Effects of Mixed-Models and Self-Observation on Motor Skill Acquisition Within a Gymnastics Environment." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34241.
Full textSavaþcý, Duygu. "Three studies on semi-mixed effects models." Doctoral thesis, 2011. http://hdl.handle.net/11858/00-1735-0000-000D-F1E3-3.
Full text