Academic literature on the topic 'Mixed metal organic framework'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mixed metal organic framework.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Mixed metal organic framework"

1

Tahier, Tayyibah. "Crystal engineering of mixed-ligand metal-organic frameworks." Master's thesis, University of Cape Town, 2016. http://hdl.handle.net/11427/22913.

Full text
Abstract:
Research of solid state complexes has grown and developed exponentially over the past few years in terms of supramolecular chemistry and crystal engineering. The synthesis and characterisation of metal organic frameworks (MOFs) have attracted widespread attention owing to their potential in various applications. This includes gas sorption, which could aid in alleviating serious environmental issues such as global warming by sequestrating greenhouse gases. Advances in the design of these materials using the mixed ligand approach add to variation in structures and thus provide a further me
APA, Harvard, Vancouver, ISO, and other styles
2

Gcwensa, Nolwazi. "Porosity studies of isoreticular mixed-ligand metal-organic frameworks." Master's thesis, Faculty of Science, 2019. http://hdl.handle.net/11427/31385.

Full text
Abstract:
The syntheses of four novel mixed-ligand metal-organic frameworks (MOFs) are reported. Isoreticular, Zn(II)-based mixed-ligand MOFs with formulae [Zn(μ2-ia)(μ2-bpe)]n·nDMF (1) and [Zn(μ2-mia)(μ2- bpe)]n·nDMF (2), where ia = isophthalate, mia = 5-methoxyisophthalate, bpe = 1,2-bis(4-pyridyl)ethane and DMF = N,N’-dimethylformamide were synthesised and characterised. Both compounds 1 and 2 exhibit sql, 2-periodic, 2D net coordination layers. Catenation of neighbouring frameworks form 2-fold interpenetrated bilayers which are interdigitated resulting in channel voids containing DMF. Experimental v
APA, Harvard, Vancouver, ISO, and other styles
3

Mitchell, Laura. "Metal organic frameworks as Lewis acid catalysts." Thesis, University of St Andrews, 2014. http://hdl.handle.net/10023/6392.

Full text
Abstract:
Lewis acids are widely used in the pharmaceutical industry, generally homogeneously, to perform reactions such as C-C or C=N bond formation and acetalisation. Typically, metal salts such as those of Ti, Fe and especially Sc are used, the last typically as the triflate. Metal organic frameworks (MOFs) containing such metals should act as heterogeneous, removable and reusable catalysts for similar reactions if they can be prepared in stable forms and with large, open pores and metal cation sites that can be rendered coordinatively unsaturated. Families of novel MOFs with different structure type
APA, Harvard, Vancouver, ISO, and other styles
4

Nayak, Nayan Nagesh. "Development of mixed matrix membranes with metal - organic framework and ionic liquids for biogas upgrading." Master's thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/10419.

Full text
Abstract:
Dissertation presented to Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa for obtaining the master degree in Membrane Engineering<br>The EM3E Master is an Education Programme supported by the European Commission, the European Membrane Society (EMS), the European Membrane House (EMH), and a large international network of industrial companies, research centers and universities
APA, Harvard, Vancouver, ISO, and other styles
5

Doheny, Patrick William. "Elucidation of the Properties of Electroactive Metal-Organic Framework Materials via a Combined Experimental and Computational Approach." Thesis, The University of Sydney, 2019. https://hdl.handle.net/2123/21894.

Full text
Abstract:
The work presented in this dissertation details a systematic study of the fundamental and applied properties of electroactive metal-organic framework (MOF) materials from first design principles utilising a combined structural, electrochemical, spectroelectrochemical and computational approach. The structure-property relationships arising from the incorporation of organic-based electroactive ligands, specifically topology-driven through-space charge transfer and radical delocalisation, into a series of 3-dimensional MOF materials were investigated from both a fundamental and applied perspectiv
APA, Harvard, Vancouver, ISO, and other styles
6

Shahid, Salman. "Polymer-Metal Organic Frameworks (MOFs) Mixed Matrix Membranes For Gas Separation Applications." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS141/document.

Full text
Abstract:
Le comportement plastifiant de polymères purs a été bien étudié dans la littérature. Toutefois, il n'y a eu que peu d'études concernant les membranes à matrices mixtes (MMM). Dans le chapitre 2 de cette thèse, le comportement plastifiant de MMM préparés à partir de nanoparticules mésoporeuses Fe(BTC) et du polymère Matrimid® est étudié avec un gaz pur ou en mélange. Les réseaux métaux-organiques (MOF) sous forme particulaires ont présenté une relativement bonne compatibilité avec le polymère. L'incorporation de Fe(BTC) dans du Matrimid® a permis d'augmenter la perméabilité et la sélectivité de
APA, Harvard, Vancouver, ISO, and other styles
7

Benzaqui, Marvin. "Synthesis of Metal-Organic Framework nanoparticles and mixed-matrix membrane preparation for gas separation and CO2 capture." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLV075/document.

Full text
Abstract:
La séparation CO2/N2 et H2/CO2 permet de limiter le rejet de CO2 dans l’atmosphère issu des gaz industriels et les membranes présentent de nombreux avantages tant sur le plan économique que pratique. Les membranes polymère sont faciles à mettre en forme mais un compromis entre perméabilité et sélectivité doit généralement être trouvé : pour améliorer les performances, des membranes à matrice mixte (MMM) incorporant des MOFs (matériaux hybrides poreux cristallisés) dispersés dans la phase polymère ont été proposées. A la différence des matériaux poreux inorganiques, les MOFs ont une meilleure c
APA, Harvard, Vancouver, ISO, and other styles
8

Khdhayyer, Muhanned. "Mixed matrix membranes comprising metal organic frameworks and high free volume polymers for gas separations." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/mixed-matrix-membranes-comprising-metal-organic-frameworks-and-high-free-volume-polymers-for-gas-separations(172f6a4f-a531-44ae-979c-bbbd170f33db).html.

Full text
Abstract:
This research aimed to develop new composite membranes using a polymer of intrinsic microporosity (PIM-1) and metal organic frameworks (MOFs) for use in gas separations. PIM-1 was successfully synthesised using the high temperature method (40 min, 160 oC) and the resulting polymer was cast into membranes. PIM-1 membranes were chemically modified by reacting hexamethylenediamine (HMDA) with the nitrile group of PIM-1 to form HMDA-modified PIM-1 membranes. Surfaces of PIM-1 membranes were also modified by basic hydrolysis to form amide-modified PIM-1 membranes. These polymer materials were chara
APA, Harvard, Vancouver, ISO, and other styles
9

Mutti, Marcello. "Crystal engineering of mixed-ligand metal-organic frameworks based on simple carboxylate and bipyridyl ligands." Master's thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29726.

Full text
Abstract:
Over the last few decades research in supramolecular chemistry and crystal engineering have seen an exponential growth. The synthesis of metal-organic frameworks (MOFs) has attracted much interest worldwide due to the possibility of obtaining a large variety of structures with a wide range of applications in fields pertaining to storage, separation and catalysis. This work focuses on the crystal engineering of MOFs based on mixed ligands which may ultimately be used in the gas storage of pollutants, greenhouse gases or fuel. Two novel 2D mixed-ligand MOFs, both based on manganese, 4,4’-bipyrid
APA, Harvard, Vancouver, ISO, and other styles
10

Adams, Ryan Thomas. "High molecular sieve loading mixed matrix membranes for gas separations." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/39470.

Full text
Abstract:
Traditional gas separation technologies are thermally-driven and can have adverse environmental and economic impacts. Gas separation membrane processes are not thermally-driven and have low capital and operational costs which make them attractive alternatives to traditional technologies. Polymers are easily processed into large, defect-free membrane modules which have made polymeric membranes the industrial standard; however, polymers show separation efficiency-productivity trade-offs and are often not thermally or chemically robust. Molecular sieves, such as zeolites, have gas separation p
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!