Dissertations / Theses on the topic 'Mixed valence'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Mixed valence.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Brown, Neil John. "Novel organometallic mixed valence complexes." Thesis, Durham University, 2010. http://etheses.dur.ac.uk/417/.
Full textMacpherson, Brendan P. "Discrete cyano-bridged mixed valence systems /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17778.pdf.
Full textLancaster, Kelly. "Intramolecular electron transfer in mixed-valence triarylamines." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31709.
Full textCommittee Chair: Bredas, Jean-Luc; Committee Member: Kippelen, Bernard; Committee Member: Marder, Seth; Committee Member: Orlando, Thomas; Committee Member: Sherrill, David. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Michaels, Hannes. "Cu(I)/(II) mixed-valence Coordination Polymers." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-330861.
Full textTong, Jin. "Homo- and Mixed-valence [2 × 2] Grid Complexes." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2016. http://hdl.handle.net/11858/00-1735-0000-0028-8736-B.
Full textLondergan, Casey H. "Electron transfer and delocalization in mixed-valence complexes /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3091312.
Full textRead, Nicholas. "Low temperature properties of models for mixed-valence compounds." Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38140.
Full textZhao, Xiaodong. "Studies of extended cyanines and related mixed valence compounds." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/28001.
Full textWhittle, Karl R. "Redox and mixed valence in some solid state systems." Thesis, Open University, 1998. http://oro.open.ac.uk/57915/.
Full textLear, Benjamin James. "The effects of electronic delocalization in highly coupled mixed valence systems." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3273182.
Full textTitle from first page of PDF file (viewed August 31, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 138-146).
Laidlaw, W. M. "A study of mixed-valence complexes and their nonlinear optical properties." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297227.
Full textRenz, Manuel [Verfasser], and Martin [Akademischer Betreuer] Kaupp. "Quantum Chemical Investigations on Mixed-Valence Systems / Manuel Renz. Betreuer: Martin Kaupp." Berlin : Universitätsbibliothek der Technischen Universität Berlin, 2012. http://d-nb.info/1029192847/34.
Full textHeyduk, Alan F. (Alan Frank) 1974. "Two-electron mixed-valence complexes small molecule activation and photocatalytic hydrogen production." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8251.
Full textVita.
Includes bibliographical references.
Two-electron mixed-valence complexes of rhodium may be supported by diphosphazane ligands (RN(PY2)2). Whereas diphosphazane ligands with strongly [pi]-acidic phosphine groups (Y = F, OCH2CF3) react with RhI starting materials to afford binuclear Rh20,II complexes, Rh20,II(MeN(PY)2)3X2(L) or Rh2"II(MeN(PY),)3X2 (X = Cl, Br), diphosphazane ligands with weaker [pi]-acid phosphines (Y = OMe, OPh) give only valence-symmetric Rh2I,I complexes, Rh2I,I(MeN(PY2)2X2(L)2. Moreover, the formation of Rh20,II(tfepma)3C12 and [ClRh'(tfepx)]2([mu]-tfepx) (tfepma = MeN[P(OCH2CF3)2]2; tfepx = (3,5-Me2C6H3)N[P(OCH2CF3)2] suggest that delocalization of the nitrogen lone pair into the [pi]-system of the aryl group defeats formation of the two-electron mixed-valence species. These results are interpreted in terms of a polarizable nitrogen lone pair mediating the [pi]-acid properties of the PY2 groups to induce disproportionation of valence-symmetric dirhodium cores. Application of this knowledge to iridium provided the first example of a two-electron mixed-valence complex for this metal, Ir20,II(tfepma)3C12. X-ray diffraction studies reveal a coordination environment with two bridging tfepma ligands and a third tfepma chelating the Ir0 center. Trigonal bipyramidal geometry at the Ir0 is completed by a metal-metal bond to a square pyramidal IrII containing cis-disposed chloride ligands. Ir20-II(tfepma)3C12 is Lewis-acidic, readily accepting donor ligands to form 36 e- complexes. Oxidative addition is also rapid: chlorine and hydrogen chloride react to afford Ir2I-III(tfepma)3C14 and Ir2I,III(tfepma)3HC13, respectively. Hydrogen adds reversibly to Ir20,II(tfepma)3C12, providing the first example of such an addition across a preserved metal-metal single bond.
(cont.) Two electron oxidation and reduction reactions also are facile for Rh20,II(dfpma)X2(L), affording Rh2II-II(dfpma)X4 and Rh20,0(dfpma)(L)2 complexes, respectively. These three species form a homologous series of metal-metal bonded complexes with well characterized trigonal bipyramidal Rh0 and octahedral RhII centers. Preservation of the metal-metal bond across the series supports the multi-electron reactivity of the system, as evidenced by photo-induced halogen elimination. We obtained the mixed-valence complex, Rh20-II(dfpma)X2(L), quantitatively when solutions of Rh2(dfpma)3X4 containing excess L were photolyzed in the presence of a halogen-atom trap such as THF. Further irradiation of the Rh20,II(dfpma)X2(L) photoproduct resulted in a second 2e- elimination reaction to give Rh20,0(dfpma)(L)2 in quantitative yield. In the overall transformation, the two-electron mixed-valence LRh0--RhIIX2 compound sustains the multi-electron photoreactivity of the system by coupling the 2e- M-X chemistry of the individual Rh centers. M-X photoactivation from this two-electron mixed-valence platform provides the basis for the photocatalytic production of H2 from HX in homogeneous solution ...
by Alan F. Heyduk.
Ph.D.
Zhao, Jianhong. "Syntheses and characterizations of a new valence-averaged mixed-valence diiron complex and a carbonyl derivative of the isovalent diiron complex." Scholarly Commons, 1995. https://scholarlycommons.pacific.edu/uop_etds/2292.
Full textFischer, Håkon. "Magnetic and spectroscopic investigations of mineral transformations in mixed-valence oxides and magnesium silicates /." Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17774.
Full textLi, Aiping. "Electrochemical and spectral studies of a di-iron complex and its mixed-valence form." Scholarly Commons, 1993. https://scholarlycommons.pacific.edu/uop_etds/2255.
Full textOdom, Susan A. "Electron transfer and delocalization in mixed-valence monocations of bis- and tris-(diarylamino) derivatives." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26609.
Full textCommittee Chair: Marder, Seth; Committee Member: Bredas, Jean-Luc; Committee Member: Collard, David; Committee Member: Kippelen, Bernard; Committee Member: Tolbert, Laren. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Chang, Ho-chol. "Studies on Synthesis and Properties of Molecular Assemblies of Ligand-based Mixed-valence Metal Complexes." 京都大学 (Kyoto University), 2001. http://hdl.handle.net/2433/77890.
Full textEgan, Lindsay. "Tuning the magnetic properties of Prussian Blue analogues : size control and the effects of external stimuli." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3850.
Full textOtake, Ken-ichi. "Studies on the Dimensional-Extended Halogen-Bridged Mixed-Valence Transition-Metal Complexes: Neutral-Chains and Nanotubes." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/217132.
Full textAustin, Elliot John Winston. "Halogen-bridged mixed-valence linear-chain complexes of platinum : solid-state NMR and resonance Raman spectroscopic studies." Thesis, University College London (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338782.
Full textLiu, Chun Yuan. "Electronic localization versus delocalization: a dimetal approach." Texas A&M University, 2003. http://hdl.handle.net/1969.1/3903.
Full textDoheny, Patrick William. "Elucidation of the Properties of Electroactive Metal-Organic Framework Materials via a Combined Experimental and Computational Approach." Thesis, The University of Sydney, 2019. https://hdl.handle.net/2123/21894.
Full textMeyer, Gordon Joel. "Synthesis, Characterization, and Mixed-Valence Studies of Conformationally Constrained Bisferrocenyl Complexes for the Study of Through-Space S***π; Interactions." Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/337289.
Full textWardley, Marcus. "Valence Conversion and the Hedonic Equation: A New Framework for Understanding the Consumption of Aversive Experiences." Thesis, University of Oregon, 2017. http://hdl.handle.net/1794/22642.
Full text2019-07-28
Hashiguchi, Ryota. "Studies on Polynuclear Metal Complexes and Low-Dimensional Mixed-Valence Halogen-Bridged Transition Metal Complexes Based on them." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225426.
Full textTONG, JIN [Verfasser], Franc [Akademischer Betreuer] [Gutachter] Meyer, and Inke [Gutachter] Siewert. "Homo- and Mixed-valence [2 × 2] Grid Complexes / Jin Tong ; Gutachter: Franc Meyer, Inke Siewert ; Betreuer: Franc Meyer." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2016. http://d-nb.info/112945133X/34.
Full textKaspar, Jennifer Deloris. "Evaluating the extent of delocalization in mixed-valence iron dimers using X-ray absorption near-edge structure spectroscopy /." May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textFernández-Valverde, Suilma Marisela. "Echange isotopique dans des composes a valence mixte a l'etat solide." Université Louis Pasteur (Strasbourg) (1971-2008), 1986. http://www.theses.fr/1986STR13030.
Full textUebe, Masashi. "Studies on Triphenylamine-Based Organic Functional Materials." Kyoto University, 2018. http://hdl.handle.net/2433/232006.
Full textEr-Rakho, Lahcen. "Oxydes de cuivre a valence mixte : perovskites deficitaires en oxygene." Caen, 1987. http://www.theses.fr/1987CAEN2036.
Full textBalasubramanian, Ramachandran. "Inversion de valence induite par le Åh dans des complexes à deux fer." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENV080/document.
Full textThe thesis matter concerns the valence inversion in FeIIFeIII induced by deprotonation of a FeII ligand. This study is of strong interest owing to the fact this process can be described as an electron transfer induced by a proton transfer. Protons and electrons transfers play essential roles in numerous catalytic or biologic reactions and therefore understanding whether they occur in a sequential or concerted manner is presently a major endeavor. The first part of the thesis is devoted to the characterization of the first system possessing this original property. It is based on binuclear complex FeIIFeIII where the two Fe ions are bridged by a dicarboxylate and a phenoxide. The ferric ion is bound by a bis-2-picolylamine group and the ferrous ion by a similar group where a pyridine has been replaced by aniline. Deprotonation of this FeII bound aniline induces the valence inversion, the resulting anilide being bound to the FeIII ion. The aniline complex was isolated with the aniline in trans position with respect to the bridging phenoxide, but it is not stable in solution and isomerizes, the aniline group moving to a cis position upon exchange with a pyridine. The same phenomenon was observed for the anilide complex obtained through deprotonation. This phenomenon was studied by combining UV-visible, 1H-RMN and Mössbauer spectroscopies, and the thermodynamic and kinetic characteristics of the isomerization were determined. The link between the electron transfer and the proton transfer were studied by electrochemical techniques. Thorough studies by cyclic voltammetry and isotopic labeling showed that in this system the electron and proton transfers are concerted. The second section of the thesis was aimed at studying the factors susceptible to influence the electron transfer, namely the redox potentials of the two Fe sites, and the proton transfer, namely the pKa of the protic ligand. To achieve it, new complexes were prepared by modifying either the protic ligand, the aniline being replaced by a benzimidazole, or the Fe binding group, substitution of bis-2-picolylamine by bis-(2-methyl-N-methylbenzimidazole)amine. Model complexes incorporating these changes but deprived of the protic ligand were also obtained to assess their influence on the redox properties of the Fe ions. The study of the influence of redox properties was considered first. The substitution of the group complexing FeIII has not a strong influence on the structure of the protonated complex which still exists as two isomers. By contrast, after deprotonation a single isomer exists. The spectroscopic properties are mostly unchanged which shows that the electronic structure of the system is not altered significantly. The study of the influence of the acidicity was then conducted. Two complexes differing by the nature of the FeIII bound group were considered. Replacing aniline by benzimidazole does not change significantly the structural properties of the system, but the valences of the Fe ions are less localized than in the original complex. The deprotonation of benzimidazole occurs and leads to a chromophore that differs from the preceding, revealing the difference in ligands. However, a preliminary electrochemical study reveals a behavior similar to that of the original complex
Lesturgez, Stephanie. "Propriétés redox de manganites à valence modulée de structure bi ou tridimensionnelle." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0303/document.
Full textThis work deals with the synthesis and characterization of manganese oxides with CaxMnyOz formulaand y/x >1. According to a solid state chemistry scope, the redox properties of these materials will becorrelated to their chemical composition and crystallographic structure which constitutes a forehandexploratory study of compounds that are intended to be used for the automotive catalysis exhaustbased on the three-way catalysis principle. The materials were synthesized by aqueous selfcombustionroute and structurally characterized. Redox properties and reducibility properties wereevaluated by TGA and H2-TPR, respectively. Whatever the structure, the dimensionality of the networkor the manganese valence in the starting oxidized material, all of the manganese ions are completelyreduced (Mn2+) in a Ar/H2 atmosphere. The reduced compounds crystallize in a rock-salt type solidsolution with the formula Ca1-xMnxO. The mechanisms of manganese reduction within these structureswere explored on the basis of TGA analysis. In order to tune the reduction temperatures, the ionocovalenceof the Mn-O bond has been modified by either cationic substitution of calcium in the 2Dnetworks or either substitution of manganese in the 3D networks. In this last case, Substituting ionswere Al3+ and Fe3+ which ionic radii comparable to Mn4+ and Mn3+, respectively. Solid solutions havebeen characterized from a structural point of view but also for their redox properties. One shouldnotice that iron substituted compounds exhibit remarkable redox properties because Fe3+ ions firstreduce in Fe2+ iron before a final reduction in Fe° that is consequently expulsed from the matrix. Atreoxidation, iron returns into the 3D network and cycling can be observed when reducing and oxidizingat temperatures lower than 1000°C
Dilley, Neil Ross. "Strongly correlated electrons in Ce- and Yb-intermetallic compounds : the superconducting mixed state of CeRu₂ and intermediate valence in YbFe₄Sb₁₂ /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC IP addresses, 1999. http://wwwlib.umi.com/cr/ucsd/fullcit?p9935479.
Full textSilva, Maria Aparecida Santiago da. "SÃntese e CaracterizaÃÃo do Composto HeterobimetÃlico trans-[(SO3)(cyclam)Co-NCS-Ru(NH3)4(NCS)](BF4)." Universidade Federal do CearÃ, 2009. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=3999.
Full textOs compostos trans-[Co(cyclam)(SO3)(NCS)]Â4H2O, trans-[Ru(NH3)4(NCS)(SO4)] e trans-[(SO3)(cyclam)Co−NCS−Ru(NH3)4(NCS)](BF4), onde cyclam = 1,4,8,11-tetraazaciclotetradecano, foram sintetizados e caracterizados por difraÃÃes de raios-X, espectroscopias vibracional na regiÃo do infravermelho e eletrÃnica nas regiÃes do ultravioleta e visÃvel (UV-Vis) e por tÃcnicas eletroquÃmicas. O grau de comunicaÃÃo eletrÃnica entre os Ãtomos de Co e Ru do complexo binuclear foi avaliado por eletroquÃmica e espectroscopia eletrÃnica na regiÃo do infravermelho prÃximo. Apenas para o complexo trans-[Co(cyclam)(SO3)(NCS)]Â4H2O foi possÃvel a obtenÃÃo de cristais que permitiram a determinaÃÃo estrutural. Os dados obtidos indicam estrutura monoclÃnica com o ligante cyclam no plano equatorial e os ligantes SO32− e NCS− ocupando posiÃÃes trans e coordenados ao Ãtomo de Co atravÃs, respectivamente, dos Ãtomos de S e N. Este resultado à reforÃado atravÃs da observaÃÃo, no espectro vibracional, de bandas tipicamente atribuÃdas ao ligante cyclam quando este se encontra em uma geometria trans. Os resultados de voltametria cÃclica deste composto indicam um mecanismo eletroquÃmico-quÃmico-eletroquÃmico. De fato, os experimentos de espectroeletroquÃmica (potencial controlado em -0,80 V vs Ag/AgCl) indicam que este composto experimenta, apÃs reduÃÃo, reaÃÃo de substituiÃÃo das molÃculas SO32− e NCS− por molÃculas do solvente (L), formando compostos do tipo [Co(cyclam)(L)2]2+. A observaÃÃo, no espectro vibracional do complexo trans-[Ru(NH3)4(NCS)(SO4)], das bandas em 2132, 887 e 478 cm-1, atribuÃdas aos modos de νCN, νCS e δ(NCS), respectivamente, do ligante NCS−, indica a coordenaÃÃo deste grupo atravÃs do Ãtomo de nitrogÃnio. Estudos eletroquÃmicos e de espectroscopia eletrÃnica deste composto em meio aquoso indicam que a reduÃÃo do centro metÃlico induz a reaÃÃo de substituiÃÃo do ligante SO42− por uma molÃcula de H2O. A reaÃÃo para formaÃÃo do composto binuclear, portanto, foi realizada em condiÃÃes redutoras a fim de induzir a formaÃÃo do aquo-complexo de rutÃnio e, em seguida, a reaÃÃo de substituiÃÃo da molÃcula de H2O por um sÃtio de coordenaÃÃo do monÃmero trans- [Co(cyclam)(SO3)(NCS)]Â4H2O. Os resultados obtidos para o material isolado indicam que hà a formaÃÃo do complexo binuclear com o ligante NCS− ocupando a posiÃÃo ponte. A curva voltamÃtrica obtida para este composto apresenta dois pares de ondas redox com potenciais formais de meia-onda (E1/2) em −0,27 e 0,13 V vs Ag|AgCl atribuÃdos, respectivamente, aos centros metÃlicos de Co e Ru. Comparativamente aos monÃmeros, hà a observaÃÃo de um deslocamento positivo de potencial o que reflete a estabilizaÃÃo do estado reduzido para o Ãtomo de rutÃnio, RuII, e desestabilizaÃÃo do estado oxidado para o Ãtomo de cobalto, CoIII. Este resultado à atribuÃdo a coordenaÃÃo a um centro oxidado, CoIII, cuja carga nuclear efetiva aumenta a deslocalizaÃÃo de densidade eletrÃnica aumentando o carÃter retirador do ligante ponte NCS−. O valor da constante de comproporcionamento, Kc = 5,78 x 106, calculada a partir da diferenÃa entre os valores de E1/2, indica um forte grau de comunicaÃÃo entre os centros metÃlicos e classifica este complexo como um sistema de valÃncia mista de classe II.
Trans-[Co(cyclam)(SO3)(NCS)]Â4H2O, trans-[Ru(NH3)4(NCS)(SO4)], and trans-[(SO3)(cyclam)Co−NCS−Ru(NH3)4(NCS)](BF4) complexes, where cyclam = 1,4,8,11-tetraazacyclotetradecane, were synthesized and characterized by X-ray difraction, vibrational and electronic (ultraviolet, visible and near infrared) spectroscopies, and electrochemical techniques. The electronic communication between Co and Ru metal centers of the binuclear complex was evaluated by electrochemistry and electronic spectrocopy in the near infrared region. Crystals suitable for X-ray studies were only isolated for the trans-[Co(cyclam)(SO3)(NCS)]Â4H2O complex. The obtained results indicate a monoclic structure with cyclam ligand at the equatorial plane and SO32− and NCS− moieties occupying the axial positions being coordinated through, respectively, sulfur and nitrogen atoms. This result is reinforced by the observation, in the vibrational spectrum, of bands typically assigned to the cyclam ligand in a trans configuration. The cyclic voltammograms obtained for this compound indicate as Electrochemical-Chemical-Electrochemical mechanism. In fact, the spectroelectrochemical experiments obtained at -0.80 V vs Ag/AgCl show that this compound, upon reduction, suffers a substitution reaction in which the SO32− and NCS− moieties are replaced by solvent molecules (L) thus forming [Co(cyclam)(L)2]2+ type complexes. The observation in the vibrational spectrum of the trans-[Ru(NH3)4(NCS)(SO4)] complex of the 2132, 887 e 478 cm-1 bands assigned, respectively, to the νCN, νCS e δ(NCS) vibrational modes of the NCS− ligand indicates that this moiety is coordinated through the nitrogen atom. Electrochemical and spectroscopic studies of this compound in aqueous medium indicate that the reduction of the metal center induces the replacement of SO42− ligand by a water molecule. The synthesis of the binuclear compound, therefore, was made under reductive conditions aiming to produce the aquo-complex and, then, replace the water molecule by a coordination site of the trans-[Co(cyclam)(SO3)(NCS)]Â4H2O complex. The results obtained for the isolated material hints that the binuclear complex is formed with the NCS− fragment as the bridge ligand. The acquired cyclic voltammogram presents two redox process with the half-wave formal potentials (E1/2) observed at −0.27 and 0.13 V vs Ag|AgCl and being assigned to the Co and Ru metal centers, respectively. In comparison to the monomers, the positive potential shift reflects the stabilization of the reduced state of the ruthenium metal atom (RuII) and the destabilization of the cobalt metal center (CoIII). This result is assigned to the coordination to an oxidated metal center, CoIII, whose effective nuclear charge increased the electronic delocalization increasing the withdrawing character of the NCS− bridge ligand. The comproportionation constant, Kc = 5.78 x 106, was calculated from the difference between the E1/2 values. The Kc value indicates a strong electronic communication between the metal atoms and classifies this binuclear complex as a mixed valence system of class II.
Silva, Maria Aparecida Santiago da. "Síntese e Caracterização do Composto Heterobimetálico trans-[(SO3)(cyclam)Co-NCS-Ru(NH3)4(NCS)](BF4)." reponame:Repositório Institucional da UFC, 2009. http://www.repositorio.ufc.br/handle/riufc/14189.
Full textSubmitted by Daniel Eduardo Alencar da Silva (dealencar.silva@gmail.com) on 2014-11-24T22:44:20Z No. of bitstreams: 1 2009_dis_massilva.pdf: 2887733 bytes, checksum: 595bebd5e087742ed6f88b835417ecf7 (MD5)
Approved for entry into archive by José Jairo Viana de Sousa(jairo@ufc.br) on 2015-11-26T21:03:00Z (GMT) No. of bitstreams: 1 2009_dis_massilva.pdf: 2887733 bytes, checksum: 595bebd5e087742ed6f88b835417ecf7 (MD5)
Made available in DSpace on 2015-11-26T21:03:00Z (GMT). No. of bitstreams: 1 2009_dis_massilva.pdf: 2887733 bytes, checksum: 595bebd5e087742ed6f88b835417ecf7 (MD5) Previous issue date: 2009
Trans-[Co(cyclam)(SO3)(NCS)]·4H2O, trans-[Ru(NH3)4(NCS)(SO4)], and trans-[(SO3)(cyclam)Co−NCS−Ru(NH3)4(NCS)](BF4) complexes, where cyclam = 1,4,8,11-tetraazacyclotetradecane, were synthesized and characterized by X-ray difraction, vibrational and electronic (ultraviolet, visible and near infrared) spectroscopies, and electrochemical techniques. The electronic communication between Co and Ru metal centers of the binuclear complex was evaluated by electrochemistry and electronic spectrocopy in the near infrared region. Crystals suitable for X-ray studies were only isolated for the trans-[Co(cyclam)(SO3)(NCS)]·4H2O complex. The obtained results indicate a monoclic structure with cyclam ligand at the equatorial plane and SO32− and NCS− moieties occupying the axial positions being coordinated through, respectively, sulfur and nitrogen atoms. This result is reinforced by the observation, in the vibrational spectrum, of bands typically assigned to the cyclam ligand in a trans configuration. The cyclic voltammograms obtained for this compound indicate as Electrochemical-Chemical-Electrochemical mechanism. In fact, the spectroelectrochemical experiments obtained at -0.80 V vs Ag/AgCl show that this compound, upon reduction, suffers a substitution reaction in which the SO32− and NCS− moieties are replaced by solvent molecules (L) thus forming [Co(cyclam)(L)2]2+ type complexes. The observation in the vibrational spectrum of the trans-[Ru(NH3)4(NCS)(SO4)] complex of the 2132, 887 e 478 cm-1 bands assigned, respectively, to the νCN, νCS e δ(NCS) vibrational modes of the NCS− ligand indicates that this moiety is coordinated through the nitrogen atom. Electrochemical and spectroscopic studies of this compound in aqueous medium indicate that the reduction of the metal center induces the replacement of SO42− ligand by a water molecule. The synthesis of the binuclear compound, therefore, was made under reductive conditions aiming to produce the aquo-complex and, then, replace the water molecule by a coordination site of the trans-[Co(cyclam)(SO3)(NCS)]·4H2O complex. The results obtained for the isolated material hints that the binuclear complex is formed with the NCS− fragment as the bridge ligand. The acquired cyclic voltammogram presents two redox process with the half-wave formal potentials (E1/2) observed at −0.27 and 0.13 V vs Ag|AgCl and being assigned to the Co and Ru metal centers, respectively. In comparison to the monomers, the positive potential shift reflects the stabilization of the reduced state of the ruthenium metal atom (RuII) and the destabilization of the cobalt metal center (CoIII). This result is assigned to the coordination to an oxidated metal center, CoIII, whose effective nuclear charge increased the electronic delocalization increasing the withdrawing character of the NCS− bridge ligand. The comproportionation constant, Kc = 5.78 x 106, was calculated from the difference between the E1/2 values. The Kc value indicates a strong electronic communication between the metal atoms and classifies this binuclear complex as a mixed valence system of class II.
Os compostos trans-[Co(cyclam)(SO3)(NCS)]·4H2O, trans-[Ru(NH3)4(NCS)(SO4)] e trans-[(SO3)(cyclam)Co−NCS−Ru(NH3)4(NCS)](BF4), onde cyclam = 1,4,8,11-tetraazaciclotetradecano, foram sintetizados e caracterizados por difrações de raios-X, espectroscopias vibracional na região do infravermelho e eletrônica nas regiões do ultravioleta e visível (UV-Vis) e por técnicas eletroquímicas. O grau de comunicação eletrônica entre os átomos de Co e Ru do complexo binuclear foi avaliado por eletroquímica e espectroscopia eletrônica na região do infravermelho próximo. Apenas para o complexo trans-[Co(cyclam)(SO3)(NCS)]·4H2O foi possível a obtenção de cristais que permitiram a determinação estrutural. Os dados obtidos indicam estrutura monoclínica com o ligante cyclam no plano equatorial e os ligantes SO32− e NCS− ocupando posições trans e coordenados ao átomo de Co através, respectivamente, dos átomos de S e N. Este resultado é reforçado através da observação, no espectro vibracional, de bandas tipicamente atribuídas ao ligante cyclam quando este se encontra em uma geometria trans. Os resultados de voltametria cíclica deste composto indicam um mecanismo eletroquímico-químico-eletroquímico. De fato, os experimentos de espectroeletroquímica (potencial controlado em -0,80 V vs Ag/AgCl) indicam que este composto experimenta, após redução, reação de substituição das moléculas SO32− e NCS− por moléculas do solvente (L), formando compostos do tipo [Co(cyclam)(L)2]2+. A observação, no espectro vibracional do complexo trans-[Ru(NH3)4(NCS)(SO4)], das bandas em 2132, 887 e 478 cm-1, atribuídas aos modos de νCN, νCS e δ(NCS), respectivamente, do ligante NCS−, indica a coordenação deste grupo através do átomo de nitrogênio. Estudos eletroquímicos e de espectroscopia eletrônica deste composto em meio aquoso indicam que a redução do centro metálico induz a reação de substituição do ligante SO42− por uma molécula de H2O. A reação para formação do composto binuclear, portanto, foi realizada em condições redutoras a fim de induzir a formação do aquo-complexo de rutênio e, em seguida, a reação de substituição da molécula de H2O por um sítio de coordenação do monômero trans- [Co(cyclam)(SO3)(NCS)]·4H2O. Os resultados obtidos para o material isolado indicam que há a formação do complexo binuclear com o ligante NCS− ocupando a posição ponte. A curva voltamétrica obtida para este composto apresenta dois pares de ondas redox com potenciais formais de meia-onda (E1/2) em −0,27 e 0,13 V vs Ag|AgCl atribuídos, respectivamente, aos centros metálicos de Co e Ru. Comparativamente aos monômeros, há a observação de um deslocamento positivo de potencial o que reflete a estabilização do estado reduzido para o átomo de rutênio, RuII, e desestabilização do estado oxidado para o átomo de cobalto, CoIII. Este resultado é atribuído a coordenação a um centro oxidado, CoIII, cuja carga nuclear efetiva aumenta a deslocalização de densidade eletrônica aumentando o caráter retirador do ligante ponte NCS−. O valor da constante de comproporcionamento, Kc = 5,78 x 106, calculada a partir da diferença entre os valores de E1/2, indica um forte grau de comunicação entre os centros metálicos e classifica este complexo como um sistema de valência mista de classe II.
Lemoine, Pascale. "Combinaisons ternaires soufrées formées par l'europium et un second métal : exemples de dérivés de l'europium à valence mixte; synthèse, structures et propriétés physiques." Paris 6, 1986. http://www.theses.fr/1986PA066416.
Full textKitagawa, Hiroshi. "Systematic Studies on the Mixed-Valence States of Perovskite-Type Transition-Metal ComplexesCs[2]Au[2]X[6](X=Cl,Br,I)." 京都大学 (Kyoto University), 1992. http://hdl.handle.net/2433/168823.
Full textKyoto University (京都大学)
0048
新制・課程博士
博士(理学)
甲第4980号
理博第1377号
新制||理||769(附属図書館)
UT51-92-J27
京都大学大学院理学研究科化学専攻
(主査)教授 齋藤 軍治, 教授 小菅 皓二, 教授 新庄 輝也
学位規則第4条第1項該当
Risko, Chad Michael. "Theoretical Evaluations of Electron-Transfer Processes in Organic Semiconductors." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7272.
Full textLi, Yu. "Electron Transport in Ferrocenes Linked by Molecular Wires." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16198.
Full textTao, Mei. "X -ray absorption studies of strongly coupled diiron complexes." Scholarly Commons, 2000. https://scholarlycommons.pacific.edu/uop_etds/2639.
Full textHunt, Sheri A. "Deuterium NMR spectroscopy of solid state electronically labile complexes : mixed valence iron triangles, iron (II) spin crossover complexes and horse heart cytochrome c /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1997. http://wwwlib.umi.com/cr/ucsd/fullcit?p9804515.
Full textAllan, Christian Bruce. "Macrocyclic chemistry: Part I. Synthesis, characterization and alkali metal stability constants of a new bis(phosphotriester) macrobicyclic polyether cryptand; Part II. Characterization of a new valence-averaged mixed-valence di-ruthenium complex, and of an iron beta-diimine keto macrocyclic complex." Scholarly Commons, 1994. https://scholarlycommons.pacific.edu/uop_etds/2667.
Full textSugimoto, Wataru. "Synthesis and structure of titanates and niobates possessing mixed valence states = Kongō genshika jōtai o fukumu chitan sanʼen oyobi niobu sanʼen no gōsei to kōzō /." Electronic version of summary, 1999. http://www.wul.waseda.ac.jp/gakui/gaiyo/2734.pdf.
Full textIsaac, James Alfred. "Conception et synthèse de catalyseurs de cuivre bio-inspirés pour l'activation de liaisons C-H." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAV068/document.
Full textCopper-oxygen adducts in enzymes have been proposed to be responsible for the activation of C-H bonds, a process that has industrial applications. The first part of this thesis is therefore dedicated to a discussion on various copper oxygenases and their model complexes. Recently, key reactive intermediates have emerged and among them mixed valent CuIICuIII species have been proposed to be responsible for strong C-H bond activation.In this work the stabilisation and spectroscopic characterisation of high valent intermediates using dinucleating ligands based on a 1,8-naphthyridine spacer are explored. The generation of Cu2:O2 species from the activation of O2 by CuI2 complexes is discussed. Two µ-ɳ2:ɳ2-peroxo-CuII2 complexes have been prepared at -80°C and characterised by spectroscopy and density functional theory (DFT). Our attempts at generating dinuclear systems using new dissymmetric ligands with an amide function are also discussed. Finally the successful characterisation of mixed valent CuIICuIII species by mono-electronic oxidation of CuII2 complexes is described (cyclic voltammetry, electron paramagnetic resonance, UV-visible, near infrared and DFT).The last part focusses on probing the reactivity of CuIICuIII species, for which the literature is almost inexistent. When sterically congested ligands are used to support the mixed valent system, intramolecular aliphatic C-H oxidation was observed, whether as the CuIICuIII species supported by a less bulky ligand was able to oxidise toluene. Interestingly the addition of a base made the system catalytic
Evoung-Evoung, Ferdinand. "Immobilisation des systèmes cavitaires métalliques bio-inspirés sur électrode d'or via les monocouches auto-assemblées pour la détection et la catalyse." Thesis, Brest, 2016. http://www.theses.fr/2016BRES0053/document.
Full textThis work depends on functionalized surface theme using modification of selfassembled monolayers (SAMs). The main objective consists to elaborate a new general pathway to modify monolayers with miscellaneous objects of interest. For this, we decide to focus our work to synthesize a versatile platform handling two ethynyl arms. These functions are available to operate two CuAAC reactions. The first one is use for linking platform with object of interest (in general ferrocenyl derivatives). Ligands obtained by that way were used for complexation of Cu2+ and Zn2+ ions. Electrochemical and spectroscopic (UV-Visible and EPR) studies were performed on these compounds. The second CuAAC reaction is used to immobilize copper complexes on azide modified electrode (azide derivatives SAMs on gold and ITO or direct functionnalization of glassy carbon surface). The grafting is operating through “self-induced electroclick” method; this means the CuAAC reaction is catalysed by the copper complex which is immobilized. Functionalized electrodes were characterized by cyclic voltammetry. It appears that similar complexes have closed grafting kinetic. These studies also demonstrate the both influence of copper and spacer on a second electroactive site (ferrocene moieties). The reactivity of copper centre is evaluated for complexes in solution and immobilized on surface with electrocatalytic reduction of nitrite ions by copper (I) species. The catalytic efficiency strongly depends on potential of copper reduction. Also, similar complexes show a loss of catalytic power with immobilization on surface
NICOLINI, ALESSIO. "EMAC (Extended Metal Atom Chains) a base di Ferro(II) come Magneti Molecolari: Sintesi, Struttura e Comportamento Magnetico." Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2021. http://hdl.handle.net/11380/1250760.
Full textThe annual size of the Global DataSphere (the total amount of data created across the world) has experienced an exponential increase during the last decade, and it will exceed 150 trillion of gigabytes within 2025. Storage, transfer and elaboration of data became one of the most appealing targets in emerging fields such as quantum technologies and spintronics (spin electronics). A primary goal is the control of magnetic properties and spin at the atomic and molecular level. Interesting are specific nanostructures called Single-Molecule Magnets (SMMs), which possess similar magnetic properties to those of bulk magnets but of pure molecular origin. SMMs can feature magnetic bistability and long relaxation times, which make them attractive to be implemented as single bits. Their physical properties can be tuned by chemical design. Iron(II)-based Extended Metal Atom Chains (EMACs) are appealing synthetic targets as SMMs, because of the large spin and magnetic anisotropy of high-spin iron(II). EMACs are linear arrays of at least 3 metal ions wrapped together by polydentate organic ligands, which promote short separations between the metal centers and, sometimes, metal-metal bonds. However, these compounds proved to be very elusive, due to the exceeding tendency of iron(II) to undergo oxidation and hydrolysis processes. In fact, before our report of a tetrairon(II) chain [Fe4(tpda)3Cl2] (1) based on oligo--pyridylamido ligand tpda2– in 2018, the only known iron(II)-based EMAC was a triiron(II) complex with formamidinato ligands (2) described by Cotton et al. in 1998. In 2020, Guillet et al. reported a new triiron(II) chain (3) supported by silylated diaminopyridines. Complexes 1, 2 and 3 exhibit ferromagnetic interactions, while 3 also contains metal-metal bonds. The aim of this Thesis was the design, the synthesis and the characterization of transition metal compounds with highly magnetic electronic states, containing ferromagnetic interactions and, possibly, metal-metal bonds. In particular, it describes a systematic study of a series of iron-based EMACs, obtained and handled in strictly anaerobic and anhydrous conditions. The novel synthesized compounds were firstly characterized by single crystals X-ray diffraction, to define their molecular structures with atomic precision. Afterwards, their properties were investigated in solution (mass spectrometry, electronic and NMR spectroscopy, cyclic voltammetry) and in solid state (Mössbauer spectroscopy, DC and AC magnetometry). The effect of replacing axial Cl– − with Br– ligands in 1 was firstly investigated. Complex [Fe4(tpda)3Br2] (4) exhibits dominant ferromagnetic coupling at room temperature and similar magnetic behavior to 1. Surprisingly, AC experiments pointed out a significant difference: although both 1 and 4 showed SMM behavior, slow magnetic relaxation in 4 was observable even in zero applied field. To attempt activating the double-exchange mechanism, which could strengthen the ferromagnetic interaction in mixed valent compounds, the chemical oxidation of 1 was carried out, isolating two linear triiron mixed-valence species: one- ([Fe2IIFeIII(tpda)3]PF6, 5) and two-electron oxidized ([FeIIFe2III(tpda)3Cl]PF6, 6). Variable temperature 57Fe Mössbauer and electronic spectra suggest that 5 is best classified as a Robin-Day Class II mixed-valence system at 298 K, while no delocalization occurs at 10 and 77 K. Furthermore, 5 exhibits zero-field SMM behavior. In order to better stabilize these chain like structures, a challenging new tripodal ligand, N(CH2CH2NH-Py-NH-Py)3, based on three covalently linked oligo-α-pyridylamido units, was designed and synthesized. Its coordination chemistry towards iron and cobalt was preliminary explored, although no new EMACs were obtained so far.
Jiang, Changcheng. "Charge Distribution in the MLCT States of trans-M2L2L’2 and M2L4 Compounds Studied by Femtosecond Spectroscopy, where M= Mo and W." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1480533126857473.
Full textNtantie, Elizabeth. "Investigation of Equilibrium and Charge Transfer in the Iron(III) N-Hydroxyethylethylenediammine N,N'N'-Triacetic Acid / Hexacyanoferrate System." Digital Commons @ East Tennessee State University, 2006. https://dc.etsu.edu/etd/2164.
Full textParthey, Matthias [Verfasser], Martin [Akademischer Betreuer] Kaupp, Wolfgang [Akademischer Betreuer] Kaim, and Arne [Akademischer Betreuer] Thomas. "Investigations of mixed-valence and open-shell transition-metal complexes employing modern density functional methods / Matthias Parthey. Gutachter: Wolfgang Kaim ; Martin Kaupp ; Arne Thomas. Betreuer: Martin Kaupp." Berlin : Technische Universität Berlin, 2014. http://d-nb.info/1066161569/34.
Full text