To see the other types of publications on this topic, follow the link: Mixed valence.

Journal articles on the topic 'Mixed valence'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Mixed valence.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bosi, Ferdinando. "Bond valence at mixed occupancy sites. I. Regular polyhedra." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 70, no. 5 (October 1, 2014): 864–70. http://dx.doi.org/10.1107/s2052520614017855.

Full text
Abstract:
Bond valence sum calculations at mixed occupancy sites show the occurrence of systematic errors leading to apparent violations of the Valence Sum Rule (bond valence theory) in regular and unstrained bonding environments. The systematic deviation of the bond valence from the expected value is observed in the long-range structure, and is discussed from geometric and algebraic viewpoints. In the valence–length diagram, such a deviation arises from discrepancies between the intersection points of the long-range bond valences and the theoretical bond valences with the valence–length curves of involved cations. Three factors cause systematic errors in the bond valences: difference in atomic valences, bond valence parametersRi(the length of a bond of unit valence) and bond valence parametersbi(the bond softness) between the involved cations over the same crystallographic site. One important consequence strictly related to the systematic errors is that they lead to erroneous bond strain values for mixed occupancy sites indicating underbonding or overbonding that actually does not exist.
APA, Harvard, Vancouver, ISO, and other styles
2

Larsson, Sven. "Mixed valence and superconductivity." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, no. 1862 (September 7, 2007): 47–54. http://dx.doi.org/10.1098/rsta.2007.2138.

Full text
Abstract:
Mixed-valence (MV) systems are referred to here as MV-2 and MV-3 depending on whether two or three consecutive valence states are involved. MV-3 systems range from systems with Hubbard U ≫0, corresponding to a single stable, intermediate valence state, and U ≪0, corresponding to stable alternating valences differing by two units. Experiments using inelastic neutron scattering or inelastic X-ray scattering show softening of breathing phonon modes in MV systems compared with related systems with a single valence. It is hypothesized that softening is due to coupling between potential energy surfaces, corresponding to differing localizations of the electron. As predicted, softening is larger in the delocalized case. A mechanism for superconductivity is suggested.
APA, Harvard, Vancouver, ISO, and other styles
3

Salsman, J. Catherine, Clifford P. Kubiak, and Tasuku Ito. "Mixed Valence Isomers." Journal of the American Chemical Society 127, no. 8 (March 2005): 2382–83. http://dx.doi.org/10.1021/ja042351+.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wenger, Oliver S. "Photoswitchable mixed valence." Chemical Society Reviews 41, no. 10 (2012): 3772. http://dx.doi.org/10.1039/c2cs15339d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Coey, J. M. D., M. Viret, and S. von Molnár. "Mixed-valence manganites." Advances in Physics 58, no. 6 (November 2009): 571–697. http://dx.doi.org/10.1080/00018730903363184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Coey, J. M. D., M. Viret, and S. von Molnár. "Mixed-valence manganites." Advances in Physics 48, no. 2 (March 1999): 167–293. http://dx.doi.org/10.1080/000187399243455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hankache, Jihane, and Oliver S. Wenger. "Organic Mixed Valence." Chemical Reviews 111, no. 8 (August 10, 2011): 5138–78. http://dx.doi.org/10.1021/cr100441k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Prassides, Kosmas, Yasuhiro Takabayashi, and Takeshi Nakagawa. "Mixed valency in rare-earth fullerides." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, no. 1862 (September 7, 2007): 151–61. http://dx.doi.org/10.1098/rsta.2007.2147.

Full text
Abstract:
Mixed-valence phenomena associated with the highly correlated narrow-band behaviour of the 4f electrons in rare earths are well documented for a variety of rare-earth chalcogenides, borides and intermetallics (Kondo insulators and heavy fermions). The family of rare-earth fullerides with stoichiometry RE 2.75 C 60 (RE=Sm, Yb, Eu) also displays an analogous phenomenology and a remarkable sensitivity of the rare-earth valency to external stimuli (temperature and pressure) making them the first known molecular-based members of this fascinating class of materials. Using powerful crystallographic and spectroscopic techniques which provide direct indications of what is happening in these materials at the microscopic level, we find a rich variety of temperature- and pressure-driven abrupt or continuous valence transitions—the electronically active fulleride sublattice acts as an electron reservoir that can accept electrons from or donate electrons to the rare-earth 4f/5d bands, thereby sensitively modulating the valence of the rare-earth sublattice.
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Zhichang, Marco Frasconi, Wei-Guang Liu, Yu Zhang, Scott M. Dyar, Dengke Shen, Amy A. Sarjeant, William A. Goddard, Michael R. Wasielewski, and J. Fraser Stoddart. "Mixed-Valence Superstructure Assembled from a Mixed-Valence Host–Guest Complex." Journal of the American Chemical Society 140, no. 30 (June 27, 2018): 9387–91. http://dx.doi.org/10.1021/jacs.8b05322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kurella, Anna-Sophie, Thomas Bräuninger, and Franz Urban Pappi. "Centripetal and centrifugal incentives in mixed-member proportional systems." Journal of Theoretical Politics 30, no. 3 (May 27, 2018): 306–34. http://dx.doi.org/10.1177/0951629818774855.

Full text
Abstract:
How does competition for first (candidate) and second ballot (party-list) votes affect the strategic positioning of parties in mixed-member proportional systems? We study this question in a simulation study of multiparty competition in the two tiers. In the first step, we use data from elections for the German Bundestag to estimate individual vote function for each tier based on ideology, policy, and valence incentives. We then use these parameter estimates to calibrate a model in which parties compete for either first- or second-tier votes. Results suggest that parties may face a dilemma when adopting a positional strategy. When national parties and their candidates hold significantly different valences, large valence advantages generate centripetal incentives whereas smaller valences exert a centrifugal pull. Overall, centrifugal incentives dominate the German mixed-member system.
APA, Harvard, Vancouver, ISO, and other styles
11

Kindler, B., D. Finsterbusch, R. Graf, F. Ritter, W. Assmus, and B. Lüthi. "Mixed-valence transition inYbInCu4." Physical Review B 50, no. 2 (July 1, 1994): 704–7. http://dx.doi.org/10.1103/physrevb.50.704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Woodward, Patrick M., and Pavel Karen. "Mixed Valence in YBaFe2O5." Inorganic Chemistry 42, no. 4 (February 2003): 1121–29. http://dx.doi.org/10.1021/ic026022z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Jozefiak, Thomas H., Jan E. Almlof, Martin W. Feyereisen, and Larry L. Miller. "Mixed-valence, conjugated semiquinones." Journal of the American Chemical Society 111, no. 11 (May 1989): 4105–6. http://dx.doi.org/10.1021/ja00193a054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kimura, Shin-ichi, Yong Seung Kwon, and Takashi Suzuki. "Mixed valence of Yb3S4." Physica B: Condensed Matter 230-232 (February 1997): 301–3. http://dx.doi.org/10.1016/s0921-4526(96)00690-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Goeltz, John C., and Clifford P. Kubiak. "Mixed Valence Self-Assembled Monolayers: Electrostatic Polarizabilities of the Mixed Valence States." Journal of Physical Chemistry C 112, no. 22 (May 8, 2008): 8114–16. http://dx.doi.org/10.1021/jp802209u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Colman, Ross H., H. Esma Okur, Winfried Kockelmann, Craig M. Brown, Annette Sans, Claudia Felser, Martin Jansen, and Kosmas Prassides. "Elusive Valence Transition in Mixed-Valence Sesquioxide Cs4O6." Inorganic Chemistry 58, no. 21 (October 21, 2019): 14532–41. http://dx.doi.org/10.1021/acs.inorgchem.9b02122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ghosh, N. K., and R. L. Sarkar. "Finite Temperature Valence Transition in Mixed Valence Systems." physica status solidi (b) 176, no. 2 (April 1, 1993): 395–400. http://dx.doi.org/10.1002/pssb.2221760213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

van Koningsbruggen, Petra J., Jaap G. Haasnoot, Huub Kooijman, Jan Reedijk, and Anthony L. Spek. "A Mixed-Valence Tetranuclear Copper Cluster with Localized Valencies." Inorganic Chemistry 36, no. 11 (May 1997): 2487–89. http://dx.doi.org/10.1021/ic9611002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Dong, Teng Yuan, Michelle J. Cohn, David N. Hendrickson, and Cortlandt G. Pierpont. "Valence delocalization in mixed-valence 1,6'-diiodobi ferrocenium triiodide." Journal of the American Chemical Society 107, no. 16 (August 1985): 4777–78. http://dx.doi.org/10.1021/ja00302a029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Larsson, Sven. "Mixed valence model for superconductivity." Brazilian Journal of Physics 33, no. 4 (December 2003): 744–49. http://dx.doi.org/10.1590/s0103-97332003000400022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Szytuła, A., B. Penc, M. Konyk, and A. Winiarski. "Mixed-Valence State in Yb2CuGe6." Acta Physica Polonica A 113, no. 4 (April 2008): 1205–9. http://dx.doi.org/10.12693/aphyspola.113.1205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Coey, J. M. D., J. E. M. Allan, A. A. Minakov, and Yu V. Bugaslavsky. "Ce2Fe17: Mixed valence or 4fband?" Journal of Applied Physics 73, no. 10 (May 15, 1993): 5430–32. http://dx.doi.org/10.1063/1.353705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Skurski, Piotr, Maciej Gutowski, and Jack Simons. "Mixed valence/dipole-bound dianions." Journal of Chemical Physics 111, no. 21 (December 1999): 9469–74. http://dx.doi.org/10.1063/1.480277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Day, Peter, Noel S. Hush, and Robin J. H. Clark. "Mixed valence: origins and developments." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, no. 1862 (September 7, 2007): 5–14. http://dx.doi.org/10.1098/rsta.2007.2135.

Full text
Abstract:
Mixed-valence compounds were recognized by chemists more than a century ago for their unusual colours and stoichiometries, but it was just 40 years ago that two seminal articles brought together the then available evidence. These articles laid the foundations for understanding the physical properties of such compounds and how the latter correlate with molecular and crystal structures. This introduction to a discussion meeting briefly surveys the history of mixed valence and sets in context contributions to the discussion describing current work in the field.
APA, Harvard, Vancouver, ISO, and other styles
25

Liu, S. H. "Pseudoexcitons in mixed-valence metals." Physical Review B 39, no. 2 (January 15, 1989): 1403–6. http://dx.doi.org/10.1103/physrevb.39.1403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Rassat, André, Giuseppe Del Re, and Andrea Peluso. "Neutral mixed-valence organic monoradicals." Chemical Physics Letters 313, no. 3-4 (November 1999): 582–86. http://dx.doi.org/10.1016/s0009-2614(99)01105-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kepinski, Leszek, Wlodzimierz Mista, and Damian Szymanski. "The mixed-valence Ce4Al2O10 aluminate." Solid State Ionics 331 (March 2019): 1–5. http://dx.doi.org/10.1016/j.ssi.2018.12.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Kimura, Shin-ichi, Fumitaka Arai, and Mikihiko Ikezawa. "Mixed valence of praseodymium oxides." Journal of Electron Spectroscopy and Related Phenomena 78 (May 1996): 135–38. http://dx.doi.org/10.1016/s0368-2048(96)80045-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

von Molnár, Stephan, and JMD Coey. "Heterogeneity in mixed-valence manganites." Current Opinion in Solid State and Materials Science 3, no. 2 (April 1998): 171–74. http://dx.doi.org/10.1016/s1359-0286(98)80084-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Parks, R. D. "Mixed valence phenomena: An overview." Hyperfine Interactions 25, no. 1-4 (November 1985): 565–81. http://dx.doi.org/10.1007/bf02354667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bała, J., and A. M. Oleś. "Mixed Valence Quasiparticles in CuO2Planes." Acta Physica Polonica A 91, no. 2 (February 1997): 333–36. http://dx.doi.org/10.12693/aphyspola.91.333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Zeuner, Martin, Sandro Pagano, Philipp Matthes, Daniel Bichler, Dirk Johrendt, Thomas Harmening, Rainer Pöttgen, and Wolfgang Schnick. "Mixed Valence Europium Nitridosilicate Eu2SiN3." Journal of the American Chemical Society 131, no. 31 (August 12, 2009): 11242–48. http://dx.doi.org/10.1021/ja9040237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kasaya, M., F. Iga, M. Takigawa, and T. Kasuya. "Mixed valence properties of YbB12." Journal of Magnetism and Magnetic Materials 47-48 (February 1985): 429–35. http://dx.doi.org/10.1016/0304-8853(85)90458-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Gul�csi, M., and Zs Gul�csi. "Superconductivity in mixed valence systems." Journal of Low Temperature Physics 63, no. 5-6 (June 1986): 553–59. http://dx.doi.org/10.1007/bf00681498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Coey, J. M. D., M. Viret, and S. von Molnar. "ChemInform Abstract: Mixed-Valence Manganites." ChemInform 41, no. 43 (September 30, 2010): no. http://dx.doi.org/10.1002/chin.201043222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lin, Meng Shan, Yi Chong Wu, and Bor Iuan Jan. "Mixed-valence compound-based biosensor." Biotechnology and Bioengineering 62, no. 1 (January 5, 1999): 56–61. http://dx.doi.org/10.1002/(sici)1097-0290(19990105)62:1<56::aid-bit7>3.0.co;2-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hankache, Jihane, and Oliver S. Wenger. "ChemInform Abstract: Organic Mixed Valence." ChemInform 42, no. 43 (September 29, 2011): no. http://dx.doi.org/10.1002/chin.201143279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Coey, J. M. D., M. Viret, and S. Von Molnar. "ChemInform Abstract: Mixed-Valence Manganites." ChemInform 30, no. 39 (June 13, 2010): no. http://dx.doi.org/10.1002/chin.199939229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wenger, Oliver S. "ChemInform Abstract: Photoswitchable Mixed Valence." ChemInform 43, no. 31 (July 5, 2012): no. http://dx.doi.org/10.1002/chin.201231261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Coppens, P., Y. Gao, M. R. Pressprich, and A. Frost-Jensen. "Valence contrast studies on mixed-valence inorganic and metallorganic solids." Acta Crystallographica Section A Foundations of Crystallography 49, s1 (August 21, 1993): c246. http://dx.doi.org/10.1107/s0108767378093186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Spreer, L. O., C. B. Allan, D. B. MacQueen, J. W. Otvos, and M. Calvin. "Evidence for a New Valence-Averaged Mixed-Valence Diruthenium Complex." Journal of the American Chemical Society 116, no. 5 (March 1994): 2187–88. http://dx.doi.org/10.1021/ja00084a086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Webb, Robert J., Paula M. Hagen, Richard J. Wittebort, Michio Sorai, and David N. Hendrickson. "Valence detrapping in mixed-valence biferrocenes: evidence for phase transitions." Inorganic Chemistry 31, no. 10 (May 1992): 1791–801. http://dx.doi.org/10.1021/ic00036a015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lee, D. H. "RESONATING VALENCE BONDS: A NEW STATE FOR MIXED VALENCE SYSYEMS?" International Journal of Modern Physics B 02, no. 05 (October 1988): 721–29. http://dx.doi.org/10.1142/s021797928800055x.

Full text
Abstract:
In this paper, we briefly review the recent efforts to understand the novel resonating valence bond (RVB) state for the S = 1/2 antiferromagnetic (AFM) Heisenberg model. We propose a pair hopping mechanism which generates a new form of AFM superexchange, and argue that the RVB wavefunction is successful because it takes full advantage of this pair hopping. Finally, we will argue that the high T c copper oxides represent a new fixed point of mixed valence systems, in which the low energy charge transfer process is governed by pair hopping between copper and oxygen orbitals.
APA, Harvard, Vancouver, ISO, and other styles
44

Aoyagi, Yoshio, Maki Okube, and Satoshi Sasaki. "Distribution of mixed-valence ions in Mn1+xFe2-xO4ferrites." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1354. http://dx.doi.org/10.1107/s2053273314086458.

Full text
Abstract:
Mn ferrite has a spinel structure to show the ferrimagnetism, where the magnetic moments show a collinear ferrimagnetic ordering between tetrahedral A and octahedral B sites. Since Mn2+ and Fe3+ have the same electronic configuration, it is not easy to determine the cation distribution of Mn ferrite from usual magnetization measurements. Especially in Mn ferrite, both Mn2+ and Fe3+ have a large spin polarization to give strong magnetic moments through the super exchange interaction between the two sites. Replacing Fe3+ by Mn2+ and Mn4+, the ferrimagnetic property weakens through magnetic balance between the sites. Since Mn and Fe ions may have multiple valences in the oxide structure, the scheme of site preference, based on careful study of various valence states, has been investigated for Mn1+xFe2-xO4. Single crystals for Mn1+xFe2-xO4 (x = 0.05, 0.20, 1.36 and 1.50) were synthesized from stoichiometric proportions of Mn3O4 and Fe3O4 in an evacuated silica capsule at 1353 K for 96 h. Each of spherical or parallel-piped crystals, ranging 0.05 to 0.08 mm, was mounted on the glass fiber. Conventional intensity measurements were made using a Rigaku AFC-5S four-circle diffractometer with a graphite (002) monochromator for Mo Kα radiation. Least-squares refinements were made to obtain atomic parameters, converged with R factors ranging 0.023 to 0.029. The site occupancy of Mn and Fe atoms was then determined on the basis of the resonant scattering effect at the Fe K absorption edge (λ = 1.7535 Å), by using a vertical-type four-circle diffractometer at PF-BL-10A. The results show that 89, 82, 100 and 100 percent of Mn atoms occupy the A site for the four samples, respectively. In the third step of analyses, absorption experiments were performed at PF-BL-6C. XANES and XMCD spectra were used at Mn and Fe K edges for determining the valence states of Mn and Mn ions. Finally, the distribution of mixed-valence ions for Mn1.20Fe1.80O4 was determined by the valence-difference contrast method, where the intensity data were collected for a spherical single crystal of 0.08 mm in a diameter at both threshold and pre-edge regions of Mn K edge, by using an AFC-5u four-circle diffractometer installed in PF-BL-6C. The site occupancy with the valence state will be discussed in the presentation, compared with the other type of transition-metal ferrites.
APA, Harvard, Vancouver, ISO, and other styles
45

Nov�k, P., K. Kn�?ek, M. K�pferling, R. Gr�ssinger, and M. W. Pieper. "Magnetism of mixed valence (LaSr) hexaferrites." European Physical Journal B 43, no. 4 (February 2005): 509–15. http://dx.doi.org/10.1140/epjb/e2005-00084-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Coey, J. M. D., M. Viret, and S. von Molnár. "Mixed-valence manganites – ten years on." Advances in Physics 58, no. 6 (November 2009): 567–69. http://dx.doi.org/10.1080/00018730903303370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Silverman, Lisa N., Pakorn Kanchanawong, Thomas P. Treynor, and Steven G. Boxer. "Stark spectroscopy of mixed-valence systems." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, no. 1862 (September 7, 2007): 33–45. http://dx.doi.org/10.1098/rsta.2007.2137.

Full text
Abstract:
Many mixed-valence systems involve two or more states with different electric dipole moments whose magnitudes depend upon the charge transfer distance and the degree of delocalization; these systems can be interconverted by excitation of an intervalence charge transfer transition. Stark spectroscopy involves the interaction between the change in dipole moment of a transition and an electric field, so the Stark spectra of mixed-valence systems are expected to provide quantitative information on the degree of delocalization. In limiting cases, a classical Stark analysis can be used, but in intermediate cases the analysis is much more complex because the field affects not only the band position but also the intrinsic bandshape. Such non-classical Stark effects lead to widely different bandshapes. Several examples of both classes are discussed. Because electric fields are applied to immobilized samples, complications arise from inhomogeneous broadening, along with other effects that limit our ability to extract unique parameters in some cases. In the case of the radical cation of the special pair in photosynthetic reaction centres, where the mixed-valence system is in a very complex but structurally well-defined environment, a detailed analysis can be performed.
APA, Harvard, Vancouver, ISO, and other styles
48

Lin, Y. H., C. R. Wang, C. L. Dong, M. N. Ou, and Y. Y. Chen. "Size effects on mixed valence CePd3." Journal of Physics: Conference Series 273 (January 1, 2011): 012041. http://dx.doi.org/10.1088/1742-6596/273/1/012041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hoekstra, Ryan M., Marcelle M. Dibrell, Michael N. Weaver, Stephen F. Nelsen, and Jeffrey I. Zink. "Three-Chromophore Excited-State Mixed Valence." Journal of Physical Chemistry A 113, no. 2 (January 15, 2009): 456–63. http://dx.doi.org/10.1021/jp807940h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Sun, Ziming, Peter K. Gantzel, and David N. Hendrickson. "Supercubane Mixed-Valence Tridecanuclear Manganese Complex." Inorganic Chemistry 35, no. 23 (January 1996): 6640–41. http://dx.doi.org/10.1021/ic9607200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography