To see the other types of publications on this topic, follow the link: Mixture of lognormal distributions.

Books on the topic 'Mixture of lognormal distributions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 books for your research on the topic 'Mixture of lognormal distributions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

L, Crow Edwin, and Shimizu Kunio 1948-, eds. Lognormal distributions: Theory and applications. M. Dekker, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lachos Dávila, Víctor Hugo, Celso Rômulo Barbosa Cabral, and Camila Borelli Zeller. Finite Mixture of Skewed Distributions. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98029-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Titterington, D. M. Statistical analysis of finite mixture distributions. Wiley, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Balakrishnan, N., and William W. S. Chen. Handbook of Tables for Order Statistics from Lognormal Distributions with Applications. Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5309-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

S, Chen William W., ed. Handbook of tables for order statistics from lognormal distributions with applications. Kluwer Academic Publishers, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

R, Hancock Gregory, and Samuelsen Karen M, eds. Advances in latent variable mixture models. Information Age Pub., 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Evans, Michael J. Numerical aspects in estimating the parameters of a mixture of normal distributions. University of Toronto, Dept. of Statistics, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ćwik, Jan. Nonidentifiability of components in a mixture of distributions corresponding to repeated observations. Institute of Computer Sciences, Polish Academy of Sciences, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gellert, Charles Lawrence. Misaligned (shuffled) data analysis with application to gene regulation. University at Albany, School of Public Health, Dept. of Biometry and Statistics, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

service), SpringerLink (Online, ed. Medical Applications of Finite Mixture Models. Springer-Verlag Berlin Heidelberg, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Cheng, Russell. Finite Mixture Examples; MAPIS Details. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198505044.003.0018.

Full text
Abstract:
Two detailed numerical examples are given in this chapter illustrating and comparing mainly the reversible jump Markov chain Monte Carlo (RJMCMC) and the maximum a posteriori/importance sampling (MAPIS) methods. The numerical examples are the well-known galaxy data set with sample size 82, and the Hidalgo stamp issues thickness data with sample size 485. A comparison is made of the estimates obtained by the RJMCMC and MAPIS methods for (i) the posterior k-distribution of the number of components, k, (ii) the predictive finite mixture distribution itself, and (iii) the posterior distributions o
APA, Harvard, Vancouver, ISO, and other styles
12

Crow. Lognormal Distributions: Theory and Applications. CRC Press LLC, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

Crow. Lognormal Distributions: Theory and Applications. CRC Press LLC, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

Crow. Lognormal Distributions: Theory and Applications. CRC Press LLC, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Crow. Lognormal Distributions: Theory and Applications. CRC Press LLC, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

Crow. Lognormal Distributions: Theory and Applications. CRC Press LLC, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

Finite Mixture Distributions. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Everitt, B. Finite Mixture Distributions. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
19

Dávila, Víctor Hugo Lachos, Celso Rômulo Barbosa Cabral, and Camila Borelli Zeller. Finite Mixture of Skewed Distributions. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Peel, David, and Geoffrey J. McLachlan. Finite Mixture Models. Wiley & Sons, Incorporated, John, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

Peel, David, and Geoffrey J. McLachlan. Finite Mixture Models. Wiley & Sons, Incorporated, John, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

Peel, David, and Geoffrey J. McLachlan. Finite Mixture Models. Wiley & Sons, Incorporated, John, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

Crow. Lognormal Distributions (Statistics: a Series of Textbooks and Monogrphs). CRC, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

Balakrishnan, N., and W. S. Chen. Handbook of Tables for Order Statistics from Lognormal Distributions with Applications. Springer London, Limited, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
25

Handbook of Tables for Order Statistics from Lognormal Distributions with Applications. Springer, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
26

Robert, Christian, Kerrie L. Mengersen, and Mike Titterington. Mixtures: Estimation and Applications. Wiley & Sons, Incorporated, John, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hancock, Gregory R., and Karen M. Samuelsen. Advances in Latent Variable Mixture Models. Information Age Publishing, Incorporated, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
28

Celeux, Gilles, Christian P. Robert, and Sylvia Fruhwirth-Schnatter. Handbook of Mixture Analysis. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
29

Celeux, Gilles, Christian P. Robert, and Sylvia Fruhwirth-Schnatter. Handbook of Mixture Analysis. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
30

Celeux, Gilles, Christian P. Robert, and Sylvia Fruhwirth-Schnatter. Handbook of Mixture Analysis. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
31

Frühwirth-Schnatter, Sylvia, Gilles Celeux, and Christian P. Robert. Handbook of Mixture Analysis. Taylor & Francis Group, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
32

Handbook of Mixture Analysis. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
33

Cheng, Russell. Examples of Embedded Distributions. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198505044.003.0006.

Full text
Abstract:
This chapter gives examples of probability distributions that, in their conventional parametrization, contain embedded models. Embeddedness is not intrinsic but depends on the parametrization. The simplest way to reveal and remove embeddedness is to reparametrize and make the log-likelihood, L, expandable as a Maclaurin series of one parameter, α‎: L = L0 + L1α‎ + L2α‎2 + … with L0 the log-likelihood of the embedded model hidden in the original parametrization. The quantity L1, rescaled using the information matrix, is the score statistic which can be used for formally comparing the original a
APA, Harvard, Vancouver, ISO, and other styles
34

Robert, Christian, Kerrie L. Mengersen, and Mike Titterington. Mixtures: Estimation and Applications. Wiley, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
35

Robert, Christian, Kerrie L. Mengersen, and Mike Titterington. Mixtures: Estimation and Applications. Wiley & Sons, Incorporated, John, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

Robert, Christian, Kerrie L. Mengersen, and Mike Titterington. Mixtures: Estimation and Applications. Wiley & Sons, Limited, John, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
37

Robert, Christian, Kerrie Mengersen, and Mike Titterington. Mixtures. Wiley & Sons, Incorporated, John, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
38

Robert, Christian, Kerrie Mengersen, and Mike Titterington. Mixtures: Estimation and Applications. Wiley & Sons, Incorporated, John, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
39

(Editor), Gregory R. Hancock, and Karen M. Samuelsen (Editor), eds. Advances in Latent Variable Mixture Models (HC). Information Age Publishing, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
40

Cheng, Russell. Finite Mixture Models. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198505044.003.0017.

Full text
Abstract:
Fitting a finite mixture model when the number of components, k, is unknown can be carried out using the maximum likelihood (ML) method though it is non-standard. Two well-known Bayesian Markov chain Monte Carlo (MCMC) methods are reviewed and compared with ML: the reversible jump method and one using an approximating Dirichlet process. Another Bayesian method, to be called MAPIS, is examined that first obtains point estimates for the component parameters by the maximum a posteriori method for different k and then estimates posterior distributions, including that for k, using importance sampli
APA, Harvard, Vancouver, ISO, and other styles
41

Frühwirth-Schnatter, Sylvia. Finite Mixture and Markov Switching Models. Springer New York, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
42

Mixture Model-Based Classification. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
43

McNicholas, Paul D. Mixture Model-Based Classification. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
44

McNicholas, Paul D. Mixture Model-Based Classification. Taylor & Francis Group, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
45

McNicholas, Paul D. Mixture Model-Based Classification. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
46

McNicholas, Paul D. Mixture Model-Based Classification. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
47

McNicholas, Paul D. Mixture Model-Based Classification. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
48

Louhibi, M. E. H. Degradation failure mode of transistors: The use of lognormal and exponential distributions in the reliability analysis of semiconductor devices. 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
49

Linear approximations in convex metric spaces and the application in the mixture theory of probability theory. World Scientific, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
50

Draper, Norman R., and George E. P. Box. Response Surfaces, Mixtures, and Ridge Analyses. Wiley & Sons, Incorporated, John, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!