Academic literature on the topic 'MMC - Modular Multilevel Converter'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'MMC - Modular Multilevel Converter.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "MMC - Modular Multilevel Converter"
G, Ramya, and Ramaprabha R. "A Review on Designand Control Methods of Modular Multilevel Converter." International Journal of Power Electronics and Drive Systems (IJPEDS) 7, no. 3 (September 1, 2016): 863. http://dx.doi.org/10.11591/ijpeds.v7.i3.pp863-871.
Full textDiab, Ahmed A. Zaki, Terad Ebraheem, Raseel Aljendy, Hamdy M. Sultan, and Ziad M. Ali. "Optimal Design and Control of MMC STATCOM for Improving Power Quality Indicators." Applied Sciences 10, no. 7 (April 4, 2020): 2490. http://dx.doi.org/10.3390/app10072490.
Full textChang, Fei, Zhongping Yang, Yi Wang, Fei Lin, and Shihui Liu. "Fault Characteristics and Control Strategies of Multiterminal High Voltage Direct Current Transmission Based on Modular Multilevel Converter." Mathematical Problems in Engineering 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/502372.
Full textZygmanowski, M., B. Grzesik, M. Fulczyk, and R. Nalepa. "Selected aspects of Modular Multilevel Converter operation." Bulletin of the Polish Academy of Sciences Technical Sciences 62, no. 2 (June 1, 2014): 375–85. http://dx.doi.org/10.2478/bpasts-2014-0038.
Full textBlaszczyk, P., K. Koska, and P. Klimczak. "Energy balancing in modular multilevel converter systems." Bulletin of the Polish Academy of Sciences Technical Sciences 65, no. 5 (October 1, 2017): 685–94. http://dx.doi.org/10.1515/bpasts-2017-0073.
Full textWang, Longjun, Guoping Ou, Zhenwei Zhou, Gang Wang, Pengfei Yu, and Zheng Zhang. "Cumulative Fatigue Damage Balancing for Modular Multilevel Converter." Energies 13, no. 18 (September 7, 2020): 4640. http://dx.doi.org/10.3390/en13184640.
Full textChoi, Z. H., C. L. Toh, and M. H. Z. Hilmi. "Comparative study of two potential recuperating converters in DC railway electrification system for harmonic mitigation." International Journal of Power Electronics and Drive Systems (IJPEDS) 10, no. 3 (September 1, 2019): 1157. http://dx.doi.org/10.11591/ijpeds.v10.i3.pp1157-1166.
Full textde Souza, Victor Ramon França Bezerra, Luciano Sales Barros, and Flavio Bezerra Costa. "Modular Multilevel Converter for Low-Voltage Ride-Through Support in AC Networks." Energies 14, no. 17 (August 27, 2021): 5314. http://dx.doi.org/10.3390/en14175314.
Full textChen, Yong, and Xu Zhang. "Voltage Balancing Method on Expert System for 51-Level MMC in High Voltage Direct Current Transmission." Mathematical Problems in Engineering 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/2968484.
Full textYahiaoui, Abdelhalim, Koussaila Iffouzar, Kaci Ghedamsi, and Kamal Himour. "Dynamic Performance Analysis of VSC-HVDC Based Modular Multilevel Converter under Fault." Journal Européen des Systèmes Automatisés 54, no. 1 (February 28, 2021): 187–94. http://dx.doi.org/10.18280/jesa.540121.
Full textDissertations / Theses on the topic "MMC - Modular Multilevel Converter"
Džonlaga, Bogdan. "Contribution to the sizing of the modular multilevel converter." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS297/document.
Full textThe modular multilevel converter is a suitable solution for HVDC grids thanks to its modularity, low switching frequency and quasi-sinusoidal AC voltage. However, due to its topology, its mathematical model is quite complex and is therefore often simplified at the design stage. In particular, the arm equivalent resistance R, the arm inductance L and the circulating current are often neglected. But experimental results obtained with our 1-ph 6-level full-bridge MMC prototype showed that these hypotheses are not always acceptable. In this context, the goal of this thesis is to study the impact of accounting for R, L and the circulating current on the module capacitor voltage and on the operating area of the converter. First, we extended the commonly used integral based model and we clarified the hypotheses behind it. Among others, expressions for the circulating and dc currents have been developed and compared with the one that can be found in the literature. It allowed us to analyze the module capacitor voltage ripple as a function of R and L, without circulating current only. Second, to overcome the limitations of the integral based model, we proposed to use a steady state time invariant (DeltaSiga) MMC model in dq0 frame. Only few hypotheses are required to obtain this model, but a numerical evaluation is required. It allowed us to analyze the module capacitor average voltage and the module capacitor voltage ripple as a function of R and L, with and without circulating current. Third, using the steady state time invariant model, we developed a detailed PQ diagram of the MMC. In addition to the conventional AC current limit, DC current limit and modulation index limit, we added several internal limits: IGBT current, arm rms current and module capacitor voltage and current ripple. The results have been confirmed by numerical simulation using a detailed Matlab Simulink SimPowerSystems model. The results presented in this thesis could be used to optimize the sizing of the components of the MMC considering its operating area, and to assess the impact of different parameters on the MMC performance
Moberg, William. "Modular Multilevel Converters for Heavy Trucks." Thesis, Linköpings universitet, Elektroniska Kretsar och System, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-167760.
Full textGebreel, Abd Almula G. M. "POWER CONVERSION FOR UHVDC TO UHVAC BASED ON USING MODULAR MULTILEVEL CONVERTER." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429358686.
Full textFehr, Hendrik. "matlab scripts: mmc periodic signal model." Technische Universität Dresden, 2021. https://tud.qucosa.de/id/qucosa%3A75460.
Full textLi, Chen. "State Space Modeling and Power Flow Analysis of Modular Multilevel Converters." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/71811.
Full textMaster of Science
Cúnico, Lucas Mondardo. "Estudo do conversor modular multinível." Universidade do Estado de Santa Catarina, 2013. http://tede.udesc.br/handle/handle/1863.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The modular multilevel converter emerged as a new topology of multilevel converters, being introduced in 2002. The advantages of this topology are related to its modularity and scalability. This work presents the study and implementation of this converter, which includes the presentation of the main methods of modulation and voltage balancing of the foating capacitors and startup. The used modulation in modeled using switching functions, its allow one minimize the current ripple at system inductor due the correct selection of carriers shift angles. Moreover a current control and voltages equalization methodology are proposed. It is performed dynamic modeling and quantitative analysis of the converter and it is derived a design methodology. This methodology is used to design and build a 3 kVA prototype with bus voltage of 800 V. The results include transient analyses, efficiency, voltage charging and steady state.
O conversor modular multinível emergiu como uma nova topologia de conversores mutiníveis, sendo introduzido a partir de 2002. As vantagens desta topologia estão relacionadas a sua modularidade e escalabilidade. Este trabalho apresenta o estudo e implementação deste conversor, o que inclui a apresentação das principais metodologias de modulação e equilíbrio da tensão e pre-carga dos capacitores flutuantes. Apresenta-se um estudo da modulação por meio de funções de chaveamento que permite a minimização da ondulação de corrente nos indutores por meio da escolha adequada dos ângulos de defasagem das portadoras empregadas. Para que o projeto da estrutura seja possível, e realizada a modelagem dinâmica e a analise quantitativa do conversor em diferentes condições de operação, sendo derivada uma metodologia de projeto. Esta metodologia de posta a prova com a construção de um protótipo de 3 kVA com tensão de barramento de 800 V. Os resultados obtidos do protótipo incluem avaliações transitórias, verificação do rendimento, pre-carga e operação em regime.
Schmitt, Daniel [Verfasser]. "Modular Multilevel Converter M2C für Multiterminal HVDC / Daniel Schmitt." Aachen : Shaker, 2012. http://d-nb.info/1053903723/34.
Full textNajmi, Vahid. "Modeling, Control and Design Considerations for Modular Multilevel Converters." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/53703.
Full textMaster of Science
Costa, de Oliveira Guacira. "Advances in multi-terminal HVDC transmission systems : nonlinear controllers for modular multilevel converters." Electronic Thesis or Diss., université Paris-Saclay, 2020. http://www.theses.fr/2020UPASG037.
Full textMMC is a very important topic in the context of high voltage direct-current transmission systems applications. This topology is suitable for several applications, as a result of smaller switching losses due to lower switching frequency, low alternating-current harmonic distortion, modular structure enabling scalability construction and practical maintenance. However, a more complex control strategy is required to control circulating current, to compensate the voltage imbalance between legs and voltage balancing of SM, such as to maintain SM's capacitors voltages constant. This thesis presents two nonlinear controllers for an MMC, able to control circulating currents, and the energy in the converter. First proposed controller is developed using Lyapunov theory, strongly based on singular perturbation and feedback linearization techniques. Second one is designed following bilinear theory based on quadratic feedback control. For both, a mathematical proof is given for its stability, which is based on Lyapunov's theory. This result provides asymptotic stabilization for the three-phases MMC. The use of a Lyapunov function implies a formal verification of stability and a broad region of attraction for the considered model. Both control techniques are developed by means of an average bilinear model and performances are verified by means of a detailed MMC switching model at Matlab Simscape Electrical environment. The evaluation includes active and reactive power reference variations, grid imbalance conditions, parameters uncertainties and even a comparison with a standard PI controller. Also, for the nonlinear controllers, it is studied the effect of control gains on the system's dynamics. The main thesis' contributions can then be stated as the two distinct nonlinear control algorithms, based on a bilinear mathematical model, designed for MMC converters; Both algorithms are able to control circulating currents and converter's energy at the switching MMC model; There are formal stability analysis by Lyapunov theory for these controllers; and once these proposed controllers are not based on a linearized model, a broad operation region is obtained
Conversor multinível modular é o tópico de interesse amplo e atual no contexto de aplicações de sistemas de transmissão de corrente contínua de alta tensão. Essa topologia é adequada para várias aplicações, como resultado de menores perdas de chaveamento, devido à menor frequência de comutação dos IGBTs, baixa distorção harmônica na corrente alternada, estrutura modular que permite escalabilidade na construção e manutenção prática. No entanto, é necessária uma estratégia de contrôle mais complexa para controlar a corrente circulante, para compensar o desequilíbrio de tensão entre as pernas e o equilíbrio de tensão dos sub-módulos, de forma a manter constantes as tensões dos capacitores dos sub-módulos. Esta tese apresenta dois controles não-lineares para conversores MMC, capazes de controlar correntes circulantes e a energia no conversor. O primeiro é projetado seguindo a teoria bilinear baseada no controle de feedback quadrático. O segundo controlador proposto é desenvolvido usando a teoria de Lyapunov, fortemente baseada em técnicas singular perturbation e feedback linearization. Para ambos, é definida uma prova matemática de sua estabilidade, baseada na teoria de Lyapunov. Este resultado fornece estabilização assintotica para as três fases MMC. O uso de uma função de Lyapunov implica uma verificação formal da estabilidade e uma região explícita de atração para o modelo considerado. Ambas as técnicas de controle são desenvolvidas por meio de um modelo médio bilinear e a robustez e o desempenho são verificados por meio de um modelo chaveado de conversores MMC nas simulações do Matlab Simscape Electrical. A avaliação inclui variações de referência de potência ativa e reativa, condições de desequilíbrio da rede, incertezas de parâmetros e até uma comparação com um controlador PI. Além disso, para os controladores não lineares, são estudados: o efeito do controle de ganho na dinâmica do sistema e no desempenho do controlador em caso de alteração no ponto de operação. As principais contribuições da tese são os dois algoritmos distintos de controle não-linear, baseados em um modelo matemático bilinear, projetados para conversores MMC; Ambos os algoritmos são capazes de controlar o equilíbrio de corrente circulante e a energia do conversor; Há uma análise formal de estabilidade pela teoria de Lyapunov para esse sistema; e uma vez que os controles propostos não se baseiam em um modelo linearizado, uma vasta região de operação é alcançável
Lyu, Yadong. "Modeling and Control Strategy for Capacitor Minimization of Modular Multilevel Converters." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/75111.
Full textMaster of Science
Books on the topic "MMC - Modular Multilevel Converter"
Institute Of Electrical and Electronics Engineers. IEEE 2745.1-2019 IEEE Guide for Technology of Unified Power Flow Controller Using Modular Multilevel Converter - Part 1: Functions. IEEE, 2019.
Find full textBook chapters on the topic "MMC - Modular Multilevel Converter"
Steckler, Pierre-Baptiste, Jean-Yves Gauthier, Xuefang Lin-Shi, and François Wallart. "Structural Analysis and Modular Control Law for Modular Multilevel Converter (MMC)." In Lecture Notes in Electrical Engineering, 179–91. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37161-6_14.
Full textNair, Nithin S., and Mukti Barai. "Performance Evaluation of Carrier-Based Modulation Strategies for Five-Level Modular Multilevel Converter (MMC)." In Advances in Automation, Signal Processing, Instrumentation, and Control, 1369–80. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8221-9_127.
Full textGrégoire, Luc A., Jean Bélanger, Christian Dufour, Handy F. Blanchette, and Kamal Al-Haddad. "Real-Time Simulation of Modular Multilevel Converters (MMCs)." In Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications, 591–607. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118755525.ch18b.
Full textKalariya, Rushikesh Chakubhai, and Mukesh Bhesaniya. "Improved Model of Modular Multilevel Converter." In Proceedings of the International Conference on Intelligent Systems and Signal Processing, 263–78. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6977-2_24.
Full textEncarnação, Luis, José Fernando Silva, Sónia F. Pinto, and Luis M. Redondo. "A New Modular Marx Derived Multilevel Converter." In Technological Innovation for Sustainability, 573–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19170-1_63.
Full textLiu, Li, Meng Huang, Liangjun Bai, and Min Qiao. "Maintenance Optimization Strategy of Modular Multilevel Converter." In Lecture Notes in Electrical Engineering, 995–1003. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1870-4_104.
Full textTayyab, Mohammad, Adil Sarwar, and Javed Ahmad. "High Gain DC-DC Converter for Modular Multilevel Converter Applications." In Lecture Notes in Electrical Engineering, 605–14. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4080-0_58.
Full textZhang, Bo, and Dongyuan Qiu. "m-Mode Controllability Applying to Modular Multilevel Converter." In CPSS Power Electronics Series, 155–67. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1382-0_8.
Full textOutazkrit, Mbarek, Faicel El Aamri, Essaid Jaoide, Azeddine Mouhsen, and Abdelhadi Radouane. "Inner Differential Current Suppression in Modular Multilevel Converter." In Digital Technologies and Applications, 592–602. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01942-5_59.
Full textKrishnakumar, Lakshmi, and Elizabeth Rita Samuel. "Solar-Fed Hybrid Modular Multilevel Converter for Motor Drives." In Springer Transactions in Civil and Environmental Engineering, 35–46. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1063-2_3.
Full textConference papers on the topic "MMC - Modular Multilevel Converter"
Cunico, Lucas M., Gustavo Lambert, Rodrigo P. Dacol, Sergio Vidal Garcia Oliveira, and Yales Romulo de Novaes. "Parameters design for modular multilevel converter (MMC)." In 2013 Brazilian Power Electronics Conference (COBEP 2013). IEEE, 2013. http://dx.doi.org/10.1109/cobep.2013.6785126.
Full textHsieh, Yi-Hsun, and Fred C. Lee. "Decoupled αβ model of modular multilevel converter (MMC)." In 2017 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2017. http://dx.doi.org/10.1109/ecce.2017.8095971.
Full textLiu, Liming, and Sandeep Bala. "Modular multilevel converter (MMC) based resonant high voltage multiplier." In 2015 IEEE Energy Conversion Congress and Exposition. IEEE, 2015. http://dx.doi.org/10.1109/ecce.2015.7310367.
Full textWang, C., Y. M. Yang, and P. Y. Zhu. "A Hybrid Modular Multilevel Converter (MMC) for MVDC Application." In 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 - ECCE Asia). IEEE, 2019. http://dx.doi.org/10.23919/icpe2019-ecceasia42246.2019.8796875.
Full textArazm, Saeed, and Kamal Al-Haddad. "ZPUC9-MMC: An Increased Voltage Level Modular Multilevel Converter." In 2021 22nd IEEE International Conference on Industrial Technology (ICIT). IEEE, 2021. http://dx.doi.org/10.1109/icit46573.2021.9453681.
Full textJiajie Luo, Kai Lin, Jianing Li, Ying Xue, and Xiao-Ping Zhang. "Cost Analysis and Comparison between Modular Multilevel Converter (MMC) and Modular Multilevel Matrix Converter (M3C) for Offshore Wind Power Transmission." In 15th IET International Conference on AC and DC Power Transmission (ACDC 2019). Institution of Engineering and Technology, 2019. http://dx.doi.org/10.1049/cp.2019.0063.
Full textNajmi, Vahid, Jun Wang, Rolando Burgos, and Dushan Boroyevich. "Reliability-oriented switching frequency analysis for Modular Multilevel Converter (MMC)." In 2015 IEEE Energy Conversion Congress and Exposition. IEEE, 2015. http://dx.doi.org/10.1109/ecce.2015.7310441.
Full textMeshram, P. M., and V. B. Borghate. "A novel voltage balancing method of Modular Multilevel Converter (MMC)." In 2011 International Conference on Energy, Automation, and Signal (ICEAS). IEEE, 2011. http://dx.doi.org/10.1109/iceas.2011.6147159.
Full textR. F. B. de Souza, Victor, Luciano S. Barros, and Flavio B. Costa. "Performance Comparison of 2L-VSC, 3L-NPC, and 3L-MMC Converter Topologies for Interfacing Grid-Connected Systems." In Simpósio Brasileiro de Sistemas Elétricos - SBSE2020. sbabra, 2020. http://dx.doi.org/10.48011/sbse.v1i1.2297.
Full textPopova, L., J. Pyrhonen, K. Ma, and F. Blaabjerg. "Device loading of modular multilevel converter MMC in wind power application." In 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 ECCE-ASIA). IEEE, 2014. http://dx.doi.org/10.1109/ipec.2014.6869638.
Full text