To see the other types of publications on this topic, follow the link: MMIC amplifier.

Journal articles on the topic 'MMIC amplifier'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'MMIC amplifier.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Schuh, Patrick, Hardy Sledzik, Rolf Reber, et al. "X-band T/R-module front-end based on GaN MMICs." International Journal of Microwave and Wireless Technologies 1, no. 4 (2009): 387–94. http://dx.doi.org/10.1017/s1759078709990389.

Full text
Abstract:
Amplifiers for the next generation of T/R modules in future active array antennas are realized as monolithically integrated circuits (MMIC) on the basis of novel AlGaN/GaN (is a chemical material description) high electron mobility transistor (HEMT) structures. Both low-noise and power amplifiers are designed for X-band frequencies. The MMICs are designed, simulated, and fabricated using a novel via-hole microstrip technology. Output power levels of 6.8 W (38 dBm) for the driver amplifier (DA) and 20 W (43 dBm) for the high-power amplifier (HPA) are measured. The measured noise figure of the l
APA, Harvard, Vancouver, ISO, and other styles
2

Schmid, Ulf, Rolf Reber, Sébastien Chartier, et al. "GaN devices for communication applications: evolution of amplifier architectures." International Journal of Microwave and Wireless Technologies 2, no. 1 (2010): 85–93. http://dx.doi.org/10.1017/s1759078710000218.

Full text
Abstract:
This paper presents the design and implementation of power amplifiers using high-power gallium nitride (GaN) high electronic mobility transistor (HEMT) powerbars and monolithic microwave integrated circuits (MMICs). The first amplifier is a class AB implementation for worldwide interoperability for microwave access (WiMAX) applications with emphasis on a low temperature cofired ceramics (LTCC) packaging solution. The second amplifier is a class S power amplifier using a high power GaN HEMT MMIC. For a 450 MHz continuous wave (CW) signal, the measured output power is 5.8 W and drain efficiency
APA, Harvard, Vancouver, ISO, and other styles
3

Darwish, Ali M., H. Alfred Hung, Edward Viveiros, and Amr A. Ibrahim. "Broadband AlGaN/GaN MMIC amplifier." International Journal of Microwave and Wireless Technologies 3, no. 4 (2011): 399–404. http://dx.doi.org/10.1017/s1759078711000195.

Full text
Abstract:
A broadband Monolithic Microwave Integrated Circuit (MMIC) amplifier, with 12 ± 2 dB gain across the 0.1–27 GHz band has been demonstrated using the AlGaN/GaN on SiC technology. The amplifier design employs a non-conventional, series-DC/RF-High Electron Mobility Transistor (HEMT) configuration. This configuration provides an alternative design to the conventional traveling-wave amplifier (TWA). It results in a smaller MMIC chip size, and extends amplifier gain to the low-frequency region. The amplifier MMIC utilizes four HEMT devices in series and could be biased at voltages up to 120 V.
APA, Harvard, Vancouver, ISO, and other styles
4

Makri, R., M. Gargalakos, and N. K. Uzunoglu. "Design and Development of Monolithic Microwave Integrated Amplifiers and Coupling Circuits for Telecommunication Systems Applications." Active and Passive Electronic Components 25, no. 1 (2002): 1–22. http://dx.doi.org/10.1080/08827510211275.

Full text
Abstract:
Recent advances in printed circuit and packaging technology of microwave and millimeter wave circuits result to the increasing use of MMICs in telecommunication systems. At Microwave and Fiber Optics Lab of NTUA several designs of various MMICs were conducted using the HP Eesof CAD Tool and FET and HEMT models of F20 and H40 GaAs foundry process of GEC Marconi. The designed MMICs are constructed in Europractice Organization while on-wafer probe measurements are performed in the Lab. In that framework, MMIC technologies are employed in the design of power and low noise amplifiers and couplers t
APA, Harvard, Vancouver, ISO, and other styles
5

Ouyang, Si Hua, Ming Zeng Peng, Jin Wu, Yan Kui Li, and Xin Yu Liu. "Multistage MMIC Power Amplifier Automatic Testing System." Applied Mechanics and Materials 241-244 (December 2012): 227–33. http://dx.doi.org/10.4028/www.scientific.net/amm.241-244.227.

Full text
Abstract:
Based on GaN HEMT the monolithic microwave power amplifier (MMIC) with great advantages of high operating voltage, high output power, wide frequency bandwidth and small features loss has been widely used in phased-array radar, aerospace, missile interception system. However, MMIC test has many disadvantages, such as, including many microwave instruments, test process is complex, manual operate lots of instruments, and write down test data, result in slowed down test process. In the paper, it introduces a new system by ourselves. This can simplify the MMIC test process, and free ourselves from
APA, Harvard, Vancouver, ISO, and other styles
6

Sieth, Matthew, Sarah Church, Judy M. Lau, et al. "Technology developments for a large-format heterodyne MMIC array at W-band." International Journal of Microwave and Wireless Technologies 4, no. 3 (2012): 299–307. http://dx.doi.org/10.1017/s1759078712000293.

Full text
Abstract:
We report on the development of W-band (75–110 GHz) heterodyne receiver technology for large-format astronomical arrays. The receiver system is designed to be both mass producible, so that the designs could be scaled to thousands of receiver elements, and modular. Most of the receiver functionality is integrated into compact monolithic microwave integrated circuit (MMIC) amplifier-based multichip modules. The MMIC modules include a chain of InP MMIC low-noise amplifiers, coupled-line bandpass filters, and sub-harmonic Schottky diode mixers. The receiver signals will be routed to and from the M
APA, Harvard, Vancouver, ISO, and other styles
7

Moronval, Xavier, Reza Abdoelgafoer, and Adeline Déchansiaud. "MMIC-based asymmetric Doherty power amplifier for small cells applications." International Journal of Microwave and Wireless Technologies 7, no. 5 (2014): 499–505. http://dx.doi.org/10.1017/s1759078714000737.

Full text
Abstract:
We present the results obtained on a multi-mode multi-band 20 W Monolithic Microwave Integrated Circuit (MMIC) power amplifier. The proposed two-stage circuit is based on the silicon Laterally Diffused Metal Oxide Semiconductor (LDMOS) technology. Thanks to dedicated design techniques, it can cover the Digital Cellular Service (DCS), Personal Communications Service (PCS), and UMTS bands (ranging from 1.805 to 2.17 GHz) and deliver more than 20 W of output power, 30 dB of gain and 50% of power added efficiency. When combined in a Doherty configuration with an incremental 40 W MMIC in a dual-pat
APA, Harvard, Vancouver, ISO, and other styles
8

Elkhaldi, Said, Naima Amar Touhami, Mohamed Aghoutane, and Taj-Eddin Elhamadi. "LINC Method for MMIC Power Amplifier Linearization." Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering) 12, no. 5 (2019): 402–7. http://dx.doi.org/10.2174/2352096511666180611101146.

Full text
Abstract:
Background: This article proposes the design and implementation of a MMIC (monolithic microwave integrated circuits) Power amplifier using the ED02AH process. Methods: The MMIC ED02AH technology have been developed specifically for microwave applications up to millimeter waves, and for high-speed digital circuits. The use of a single branch of a power amplifier can produce high distortion. In the present paper, the Linear amplification with nonlinear components (LINC) method is introduced and applied as a solution to linearize the power amplifier, it can simultaneously provide high efficiency
APA, Harvard, Vancouver, ISO, and other styles
9

SCHLECHTWEG, M. "HIGH FREQUENCY CIRCUITS BASED ON GaAs PHEMT TECHNOLOGY FOR MODERN SENSOR AND COMMUNICATION SYSTEMS." International Journal of High Speed Electronics and Systems 10, no. 01 (2000): 393–411. http://dx.doi.org/10.1142/s0129156400000404.

Full text
Abstract:
For sensor and communication system applications, monolithic microwave integrated circuits (MMICs) feature performance, functionality, reliability, and competitive price. In this paper, the potential of PHEMT ICs for communication and sensor applications up to 100 GHz is discussed. Specifically, I will address the application of coplanar waveguide technology for rf ICs, millimeter-wave multifunctional ICs and power amplifiers, as well as mixed-signal ICs and OEICs. A 77-GHz transceiver MMIC designed for automotive collision avoidance radar is presented as an example of a very compact, multifun
APA, Harvard, Vancouver, ISO, and other styles
10

Yu, C., Z. Z. He, Q. B. Liu, et al. "Graphene Amplifier MMIC on SiC Substrate." IEEE Electron Device Letters 37, no. 5 (2016): 684–87. http://dx.doi.org/10.1109/led.2016.2544938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Strohm, K. M., C. Rheinfelder, J. F. Luy, et al. "Coplanar Ka-band SiGe-MMIC amplifier." Electronics Letters 31, no. 16 (1995): 1353–54. http://dx.doi.org/10.1049/el:19950940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lee, Sang-Heung, Seong-Il Kim, Ho-Kyun Ahn та ін. "ETRI 0.25 μm GaN MMIC Process and X-Band Power Amplifier MMIC". Journal of Korean Institute of Electromagnetic Engineering and Science 28, № 1 (2017): 1–9. http://dx.doi.org/10.5515/kjkiees.2017.28.1.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ерофеев, Е. В., Д. А. Шишкин, В. В. Курикалов, А. В. Когай та И. В. Федин. "РАЗРАБОТКА СВЧ МОНОЛИТНЫХ ИНТЕГРАЛЬНЫХ СХЕМ МИЛЛИМЕТРОВОГО ДИАПАЗОНА НА ОСНОВЕ GAAS ДЛЯ ПРИМЕНЕНИЯ В СОВРЕМЕННЫХ ИНФОРМАЦИОННОКОММУНИКАЦИОННЫХ СИСТЕМАХ НОВОГО ПОКОЛЕНИЯ (5G)". NANOINDUSTRY Russia 96, № 3s (2020): 321–24. http://dx.doi.org/10.22184/1993-8578.2020.13.3s.321.324.

Full text
Abstract:
В данной работе представлены результаты разработки СВЧ монолитной интегральной схемы шестиразрядного фазовращателя и усилителя мощности диапазона частот 26-30 ГГц. СКО ошибки по фазе и амплитуде фазовращателя составили 1,2 град. и 0,13 дБ соответственно. Максимальная выходная мощность и КПД по добавленной мощности усилителя в точке сжатия Ку на 1 дБ составили 30 дБм и 20 % соответственно. This paper describes the design, layout, and performance of 6-bit phase shifter and power amplifier monolithic microwave integrated circuit (MMIC), 26-30 GHz band. Phase shifter MMIC has RMS phase error of 1.
APA, Harvard, Vancouver, ISO, and other styles
14

van Heijningen, Marc, Jeroen A. Hoogland, Peter de Hek, and Frank E. van Vliet. "6–12 GHz double-balanced image-reject mixer MMIC in 0.25 µm AlGaN/GaN technology." International Journal of Microwave and Wireless Technologies 7, no. 3-4 (2015): 307–15. http://dx.doi.org/10.1017/s1759078715000471.

Full text
Abstract:
The front-end circuitry of transceiver modules is slowly being updated from GaAs-based monolithic microwave integrated circuits (MMICs) to Gallium-Nitride (GaN). Especially GaN power amplifiers and T/R switches, but also low-noise amplifiers (LNAs), offer significant performance improvement over GaAs components. Therefore it is interesting to also explore the possible advantages of a GaN mixer to enable a fully GaN-based front-end. In this paper, the design-experiment and measurement results of a double-balanced image-reject mixer MMIC in 0.25 μm AlGaN/GaN technology are presented. First an in
APA, Harvard, Vancouver, ISO, and other styles
15

Bakkali, Moustapha El, Said Elkhaldi, Intissar Hamzi, Abdelhafid Marroun, and Naima Amar Touhami. "UWB-MMIC Matrix Distributed Low Noise Amplifier." Proceedings 63, no. 1 (2020): 52. http://dx.doi.org/10.3390/proceedings2020063052.

Full text
Abstract:
In this paper, a 3.1–11 GHz ultra-wideband low noise amplifier with low noise figure, high power gain S21, low reverse gain S12, and high linearity using the OMMIC ED02AH process, which employs a 0.18 μm Pseudomorphic High Electron Mobility Transistor is presented. This Low Noise Amplifier (LNA) was designed with the Advanced Design System simulator in distributed matrix architecture. For the low noise amplifier, four stages were used obtaining a good input/output matching. An average power gain S21 of 11.6 dB with a gain ripple of ±0.6 dB and excellent noise figure of 3.55 to 4.25 dB is obtai
APA, Harvard, Vancouver, ISO, and other styles
16

Chaudhry, Q., R. Alidio, G. Sakamoto, and T. Cisco. "A SiGe MMIC variable gain cascode amplifier." IEEE Microwave and Wireless Components Letters 12, no. 11 (2002): 424–25. http://dx.doi.org/10.1109/lmwc.2002.805533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Arell, T., and T. Hongsmatip. "A unique MMIC broadband power amplifier approach." IEEE Journal of Solid-State Circuits 28, no. 10 (1993): 1005–10. http://dx.doi.org/10.1109/4.237514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

D'Agostino, Stefano, and Claudio Paoloni. "On stability in the MMIC distributed amplifier." Microwave and Optical Technology Letters 7, no. 5 (1994): 215–16. http://dx.doi.org/10.1002/mop.4650070502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Eron, M., G. Taylor, R. Menna, S. Y. Narayan, and J. Klatskin. "X-Band MMIC amplifier on GaAs/Si." IEEE Electron Device Letters 8, no. 8 (1987): 350–52. http://dx.doi.org/10.1109/edl.1987.26656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Murgulescu, M. H., E. Penard, I. E. Zaquine, A. Boulouard, M. LeRouzic, and P. Legaud. "38 GHz, coplanar waveguide GaAs MMIC amplifier." Electronics Letters 30, no. 21 (1994): 1768–70. http://dx.doi.org/10.1049/el:19941200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ayllon, Natanael, Juan-Mari Collantes, Aitziber Anakabe, Geoffroy Soubercaze-Pun, Stephane Forestier, and Dominique Langrez. "Joint RF and large-signal stability optimization of MMIC power combining amplifiers." International Journal of Microwave and Wireless Technologies 5, no. 6 (2013): 683–88. http://dx.doi.org/10.1017/s1759078713000767.

Full text
Abstract:
In this paper, authors report on an enhanced approach for the design of monolithic microwave integrated circuit (MMIC) power combining amplifiers. Commonly used techniques for the stabilization of such circuits are empirical and too conservative. This leads very often to a non-desired degradation of the radio frequency (RF) performances that are inherent to the physical properties of such stabilization networks at the fundamental frequency of operation. The methodology proposed here is based on the use of large-signal optimization processes that combine RF and stability analyses from the early
APA, Harvard, Vancouver, ISO, and other styles
22

Shin, Low Wen, and Arjuna Marzuki . "5GHz MMIC LNA Design Using Particle Swarm Optimization." Information Management and Business Review 5, no. 6 (2013): 257–62. http://dx.doi.org/10.22610/imbr.v5i6.1050.

Full text
Abstract:
This research presents an optimization study of a 5 GHz Monolithic Microwave Integrated Circuit (MMIC) design using Particle Swarm Optimization (PSO). MMIC Low Noise Amplifier (LNA) is a type of integrated circuit device used to capture signal operating in the microwave frequency. This project consists of two stages: implementation of PSO using MATLAB and simulation of MMIC design using Advanced Design System (ADS). PSO model that mimics the biological swarm behavior is developed to optimize the MMIC design variables in order to achieve the required circuit performance and specifications such
APA, Harvard, Vancouver, ISO, and other styles
23

Gonzalez-Garrido, M. Angeles, Jesus Grajal, Pablo Cubilla, Claudio Lanzieri, and Antonio Cetronio. "Two Broadband GaN MMIC Power Amplifiers for EW Systems." Materials Science Forum 615-617 (March 2009): 975–78. http://dx.doi.org/10.4028/www.scientific.net/msf.615-617.975.

Full text
Abstract:
This paper describes and evaluates two MMIC broadband high power amplifiers in the frequency band 2-6 GHz in microstrip technology. These amplifiers have scalable output-stage periphery of 4 and 8 mm. The amplifiers are based on 1 mm AlGaN/GaN high electron mobility transistor (HEMT) technology on SiC substrate. They were fabricated in the European foundry SELEX Sistemi Integrati, which has a gate process technology of 0.5 μm. The 4 mm amplifier has exhibited an output power of 15 W and the 8 mm of 28 W at Vds=25 V in pulsed conditions. The best power performance in continuous wave are 10.5 W
APA, Harvard, Vancouver, ISO, and other styles
24

Zhu, Chen, Huang, Wang, and Yu. "A High-Efficiency K-band MMIC Linear Amplifier Using Diode Compensation." Electronics 8, no. 5 (2019): 487. http://dx.doi.org/10.3390/electronics8050487.

Full text
Abstract:
This paper describes the design and measured performance of a high-efficiency and linearity-enhanced K-band MMIC amplifier fabricated with a 0.15 μm GaAs pHEMT processing technology. The linearization enhancement method utilizing a parallel nonlinear capacitance compensation diode was analyzed and verified. The three-stage MMIC operating at 20–22 GHz obtained an improved third-order intermodulation ratio (IM3) of 20 dBc at a 27 dBm per carrier output power while demonstrating higher than a 27 dB small signal gain and 1-dB compression point output power of 30 dBm with 33% power added efficiency
APA, Harvard, Vancouver, ISO, and other styles
25

Moore, C. R., W. C. Trimble, M. L. Edwards, and T. R. Sanderson. "Cryogenic performance of a GaAs MMIC distributed amplifier." IEEE Transactions on Microwave Theory and Techniques 39, no. 3 (1991): 567–71. http://dx.doi.org/10.1109/22.75303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Majidi-Ahy, R., C. Nishimoto, M. Riaziat, et al. "100-GHz high-gain InP MMIC cascode amplifier." IEEE Journal of Solid-State Circuits 26, no. 10 (1991): 1370–78. http://dx.doi.org/10.1109/4.90088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Darwish, Ali Mohamed, K. Boutros, B. Luo, Benjamin D. Huebschman, E. Viveiros, and H. Alfred Hung. "AlGaN/GaN $Ka$-Band 5-W MMIC Amplifier." IEEE Transactions on Microwave Theory and Techniques 54, no. 12 (2006): 4456–63. http://dx.doi.org/10.1109/tmtt.2006.883599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Majidi-Ahy, R., M. Riaziat, C. Nishimoto, et al. "94 GHz InP MMIC five-section distributed amplifier." Electronics Letters 26, no. 2 (1990): 91. http://dx.doi.org/10.1049/el:19900061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Weiss, M., G. I. Ng, and D. Pavlidis. "New generation MMIC amplifier using InGaAs/InAlAs HEMTs." Electronics Letters 26, no. 4 (1990): 264. http://dx.doi.org/10.1049/el:19900176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wang, Dongfang, Xiaojuan Chen, Tingting Yuan, Ke Wei, and Xinyu Liu. "A Ka-band 22 dBm GaN amplifier MMIC." Journal of Semiconductors 32, no. 8 (2011): 085011. http://dx.doi.org/10.1088/1674-4926/32/8/085011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bartusiak, P. J., T. Henderson, T. Kim, and B. Bayraktaroglu. "High-efficiency Ku-band HBT MMIC power amplifier." IEEE Electron Device Letters 13, no. 11 (1992): 584–86. http://dx.doi.org/10.1109/55.192847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Campbell, C. F. "A fully integrated Ku-band Doherty amplifier MMIC." IEEE Microwave and Guided Wave Letters 9, no. 3 (1999): 114–16. http://dx.doi.org/10.1109/75.761678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bae, Kyung-Tae, Ik-Joon Lee, Hyun-Seok Kang, and Dong-Wook Kim. "2~16 GHz GaN Nonuniform Distributed Power Amplifier MMIC." Journal of Korean Institute of Electromagnetic Engineering and Science 27, no. 11 (2016): 1019–22. http://dx.doi.org/10.5515/kjkiees.2016.27.11.1019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Han, Jang-Hoon, and Jeong-Geun Kim. "A S/C/X-Band GaN Low Noise Amplifier MMIC." Journal of Korean Institute of Electromagnetic Engineering and Science 28, no. 5 (2017): 430–33. http://dx.doi.org/10.5515/kjkiees.2017.28.5.430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Maroldt, Stephan, Rüdiger Quay, Christian Haupt, Rudolf Kiefer, Dirk Wiegner, and Oliver Ambacher. "GaN HFET MMICs with integrated Schottky-diode for highly efficient digital switch-mode power amplifiers at 2 GHz." International Journal of Microwave and Wireless Technologies 3, no. 3 (2011): 319–27. http://dx.doi.org/10.1017/s1759078711000304.

Full text
Abstract:
This work describes the integration of Schottky diodes into fast GaN MMIC process technology suitable for the realization of switch-mode power amplifier core chips for class-S operation at 2 GHz. With the demonstration of this technology, the so-called third-quadrant issue, which reduces the efficiency in band pass-Δ-Σ class-S operation can be diminished on device level. Compared to a hybrid diode assembly, the broadband properties of the amplifier module with on-chip-integrated diode can be improved by the reduction of parasitic losses. The GaN heterostructure field effect transistors (HFETs)
APA, Harvard, Vancouver, ISO, and other styles
36

Tazzoli, Augusto, Isabella Rossetto, Enrico Zanoni, Dai Yufeng, Tiziana Tomasi, and Gaudenzio Meneghesso. "ESD sensitivity of a GaAs MMIC microwave power amplifier." Microelectronics Reliability 51, no. 9-11 (2011): 1602–7. http://dx.doi.org/10.1016/j.microrel.2011.06.051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kuo, Nai-Chung, Jing-Lin Kuo, and Huei Wang. "Novel MMIC Power Amplifier Linearization Utilizing Input Reflected Nonlinearity." IEEE Transactions on Microwave Theory and Techniques 60, no. 3 (2012): 542–54. http://dx.doi.org/10.1109/tmtt.2011.2180537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Archer, J. W., R. Lai, R. Grundbacher, M. Barsky, R. Tsai, and P. Reid. "An indium phosphide MMIC amplifier for 180-205 GHz." IEEE Microwave and Wireless Components Letters 11, no. 1 (2001): 4–6. http://dx.doi.org/10.1109/7260.905950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wang, N. L., W. J. Ho, A. L. Sailer, and J. A. Higgins. "7.5-14-GHz CE HBT MMIC linear power amplifier." IEEE Microwave and Guided Wave Letters 3, no. 3 (1993): 64–66. http://dx.doi.org/10.1109/75.205666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Lam, F., M. Matloubian, A. Igawa, et al. "44-GHz high-efficiency InP-HEMT MMIC power amplifier." IEEE Microwave and Guided Wave Letters 4, no. 8 (1994): 277–78. http://dx.doi.org/10.1109/75.311497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Shiga, N., S. Nakajima, K. Otobe, et al. "X-band MMIC amplifier with pulse-doped GaAs MESFET's." IEEE Transactions on Microwave Theory and Techniques 39, no. 12 (1991): 1987–94. http://dx.doi.org/10.1109/22.106537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Cheung, T. S. D., and J. R. Long. "A 21-26-GHz SiGe bipolar power amplifier MMIC." IEEE Journal of Solid-State Circuits 40, no. 12 (2005): 2583–97. http://dx.doi.org/10.1109/jssc.2005.857424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mata-Contreras, Javier, Diego Palombini, Teresa M. Martin-Guerrero, Ernesto Limiti, and Carlos Camacho-Penalosa. "Design and Experimental Performance of Diplexing MMIC Distributed Amplifier." IEEE Microwave and Wireless Components Letters 23, no. 7 (2013): 365–67. http://dx.doi.org/10.1109/lmwc.2013.2262262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Shin, Dong-Hwan, In-Bok Yom, and Dong-Wook Kim. "4–20 GHz GaAs True-Time Delay Amplifier MMIC." IEEE Microwave and Wireless Components Letters 27, no. 12 (2017): 1119–21. http://dx.doi.org/10.1109/lmwc.2017.2763754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Majidi-Ahy, R., C. K. Nishimoto, M. Riaziat, et al. "5-100 GHz InP coplanar waveguide MMIC distributed amplifier." IEEE Transactions on Microwave Theory and Techniques 38, no. 12 (1990): 1986–93. http://dx.doi.org/10.1109/22.64584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Dawson, D., L. Samoska, A. K. Fung, et al. "Beyond G-band: a 235 GHz InP MMIC amplifier." IEEE Microwave and Wireless Components Letters 15, no. 12 (2005): 874–76. http://dx.doi.org/10.1109/lmwc.2005.859984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Chenyang, Jia, and Peng Longxin. "Design of Ka band MMIC limiter low noise amplifier." Journal of Physics: Conference Series 1168 (February 2019): 022040. http://dx.doi.org/10.1088/1742-6596/1168/2/022040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Apel, T., and S. Ludvik. "A compact, high-gain, 2-20-GHz MMIC amplifier." IEEE Journal of Solid-State Circuits 27, no. 10 (1992): 1463–69. http://dx.doi.org/10.1109/4.156455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Huang, C. W., S. J. Chang, W. Wu, C. L. Wu, and C. S. Chang. "A three-stage Ka band PHEMT wideband amplifier MMIC." Microwave and Optical Technology Letters 42, no. 4 (2004): 277–80. http://dx.doi.org/10.1002/mop.20277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Paolella, A., and P. R. Herczfeld. "Optical gain control of a GaAs MMIC distributed amplifier." Microwave and Optical Technology Letters 1, no. 1 (1988): 13–16. http://dx.doi.org/10.1002/mop.4650010106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!