Journal articles on the topic 'MMW (mm-wave)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'MMW (mm-wave).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Powell, J., and D. Bannister. "Business prospects for commercial mm-wave MMICs." IEEE Microwave Magazine 6, no. 4 (2005): 34–43. http://dx.doi.org/10.1109/mmw.2005.1580321.
Full textA, S. Keerthi Nayani, and Anantha Sai C. "LTE and MMW 5G Integrated MIMO Antenna System." Indian Journal of Science and Technology 17, no. 3 (2024): 301–11. https://doi.org/10.17485/IJST/v17i3.2224.
Full textMehrotra, Parikha, Baibhab Chatterjee, and Shreyas Sen. "EM-Wave Biosensors: A Review of RF, Microwave, mm-Wave and Optical Sensing." Sensors 19, no. 5 (2019): 1013. http://dx.doi.org/10.3390/s19051013.
Full textMitsudo, Seitaro, S. Inagaki, I. Nyoman Sudiana, and K. Kuwayama. "Grain Growth in Millimeter Wave Sintered Alumina Ceramics." Advanced Materials Research 789 (September 2013): 279–82. http://dx.doi.org/10.4028/www.scientific.net/amr.789.279.
Full textSethi, Waleed Tariq, Hamsakutty Vettikalladi, and Majeed A. Alkanhal. "Millimeter Wave Antenna with Mounted Horn Integrated on FR4 for 60 GHz Gbps Communication Systems." International Journal of Antennas and Propagation 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/834314.
Full textAli Esmail, Bashar, Huda A. Majid, Zuhairiah Zainal Abidin, et al. "Reconfigurable Radiation Pattern of Planar Antenna Using Metamaterial for 5G Applications." Materials 13, no. 3 (2020): 582. http://dx.doi.org/10.3390/ma13030582.
Full textSurendran, Arjun, Aravind B, Tanweer Ali, Om Prakash Kumar, Pradeep Kumar, and Jaume Anguera. "A Dual-Band Modified Franklin mm-Wave Antenna for 5G Wireless Applications." Applied Sciences 11, no. 2 (2021): 693. http://dx.doi.org/10.3390/app11020693.
Full textB., A. F. Esmail, A. Majid H., A. Saparudin F., et al. "Negative refraction metamaterial with low loss property at millimeter wave spectrum." Bulletin of Electrical Engineering and Informatics 9, no. 3 (2020): 1038–45. https://doi.org/10.11591/eei.v9i3.1853.
Full textHu, Cheng-Nan, Dau-Chyrh Chang, Chung-Hang Yu, Tsai-Wen Hsaio, and Der-Phone Lin. "Millimeter-Wave Microstrip Antenna Array Design and an Adaptive Algorithm for Future 5G Wireless Communication Systems." International Journal of Antennas and Propagation 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/7202143.
Full textShareef, Oras Ahmed, Ahmed Mohammed Ahmed Sabaawi, Karrar Shakir Muttair, Mahmood Farhan Mosleh, and Mohammad Bashir Almashhdany. "Design of multi-band millimeter wave antenna for 5G smartphones." Indonesian Journal of Electrical Engineering and Computer Science 25, no. 1 (2022): 382. http://dx.doi.org/10.11591/ijeecs.v25.i1.pp382-387.
Full textWei, Shunjun, Zichen Zhou, Mou Wang, et al. "3DRIED: A High-Resolution 3-D Millimeter-Wave Radar Dataset Dedicated to Imaging and Evaluation." Remote Sensing 13, no. 17 (2021): 3366. http://dx.doi.org/10.3390/rs13173366.
Full textFeng, Shang, Xu Xin, and Ren Chuxuan. "5G Millimeter Wave Endfire Array Antenna with Printed Inverted-F Structure." International Journal of Antennas and Propagation 2022 (August 12, 2022): 1–11. http://dx.doi.org/10.1155/2022/8940715.
Full textGuo, JunJia. "Beamforming design based on particle swarm algorithm in IRS-assisted communication system." Applied and Computational Engineering 6, no. 1 (2023): 203–8. http://dx.doi.org/10.54254/2755-2721/6/20230767.
Full textHesham Emara, Sherif K. El Dyasti, Hussein Hamed Ghouz, and Mohamed Fathy Abo Sree. "Design of a Compact Dual-Frequency Microstrip Antenna using DGS Structure for Millimeter-Wave Applications." Journal of Advanced Research in Applied Sciences and Engineering Technology 28, no. 3 (2022): 221–34. http://dx.doi.org/10.37934/araset.28.3.221234.
Full textOgura, Nobuo, Siddharth Ravichandran, Tailong Shi, et al. "First Demonstration of Ultra-Thin Glass Panel Embedded (GPE) Package with Sheet Type Epoxy Molding Compound for 5G/mm-wave Applications." International Symposium on Microelectronics 2019, no. 1 (2019): 000202–7. http://dx.doi.org/10.4071/2380-4505-2019.1.000202.
Full textLee, Jongwon, Jae Yong Lee, Jonghyun Song, Gapseop Sim, Hyoungho Ko, and Seong Ho Kong. "Implementation of Flip-Chip Microbump Bonding between InP and SiC Substrates for Millimeter-Wave Applications." Micromachines 13, no. 7 (2022): 1072. http://dx.doi.org/10.3390/mi13071072.
Full textKumi, Petra, Stephanie A. Martin, Vadim V. Yakovlev, Martin S. Hilario, Brad W. Hoff, and Ian M. Rittersdorf. "Electromagnetic-thermal model of a millimeter-wave heat exchanger based on an AlN:Mo susceptor." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 39, no. 2 (2020): 481–96. http://dx.doi.org/10.1108/compel-07-2019-0271.
Full textMeng, Yang, Chuan Lin, Jiefeng Zang, Anyong Qing, and Natalia K. Nikolova. "Ka Band Holographic Imaging System Based on Linear Frequency Modulation Radar." Sensors 20, no. 22 (2020): 6527. http://dx.doi.org/10.3390/s20226527.
Full textAL-Fadhali, Najib, Huda A. Majid, Rosli Omar, et al. "Wideband millimeter-wave substrate integrated waveguide cavity-backed antenna for satellites communications." Bulletin of Electrical Engineering and Informatics 9, no. 5 (2020): 1933–40. http://dx.doi.org/10.11591/eei.v9i5.2238.
Full textNajib, AL-Fadhali, A. Majid Huda, Omar Rosli, et al. "Wideband millimeter-wave substrate integrated waveguide cavity-backed antenna for satellites communications." Bulletin of Electrical Engineering and Informatics 9, no. 5 (2020): 1933–40. https://doi.org/10.11591/eei.v9i5.2238.
Full textA. F. Esmail, B., H. A. Majid, F. A. Saparudin, et al. "Negative refraction metamaterial with low loss property at millimeter wave spectrum." Bulletin of Electrical Engineering and Informatics 9, no. 3 (2020): 1038–45. http://dx.doi.org/10.11591/eei.v9i3.1853.
Full textOch, Andreas, Jochen O. Schrattenecker, Stefan Schuster, et al. "Accuracy Bounds and Measurements of a Contactless Permittivity Sensor for Gases Using Synchronized Low-Cost mm-Wave Frequency Modulated Continuous Wave Radar Transceivers." Sensors 19, no. 15 (2019): 3351. http://dx.doi.org/10.3390/s19153351.
Full textLi, Jinfeng, and Haorong Li. "Liquid Crystal-Filled 60 GHz Coaxially Structured Phase Shifter Design and Simulation with Enhanced Figure of Merit by Novel Permittivity-Dependent Impedance Matching." Electronics 13, no. 3 (2024): 626. http://dx.doi.org/10.3390/electronics13030626.
Full textXiao, Jun, Jing Wu, Zihang Ye, Tongyu Ding, Chongzhi Han, and Qiubo Ye. "A High-Gain Circularly Polarized Magnetoelectric Dipole Antenna Array for Millimeter-Wave Applications." Sensors 25, no. 10 (2025): 3046. https://doi.org/10.3390/s25103046.
Full textZheng, Bin, Xiangyang Li, Xin Rao, and Na Li. "Multi-Beam Conformal Array Antenna Based on Highly Conductive Graphene Films for 5G Micro Base Station Applications." Sensors 22, no. 24 (2022): 9681. http://dx.doi.org/10.3390/s22249681.
Full textBubukin, I. T., I. V. Rakut, M. I. Agafonov, et al. "A modified tipping-curve method in the comparative study of sites for space communications and radio astronomy systems in the millimeter wavelength range." Radiotehnika i èlektronika 69, no. 6 (2024): 524–32. https://doi.org/10.31857/s0033849424060038.
Full textIkari, Tomofumi, Yoshiaki Sasaki, and Chiko Otani. "275–305 GHz FM-CW Radar 3D Imaging for Walk-Through Security Body Scanner." Photonics 10, no. 3 (2023): 343. http://dx.doi.org/10.3390/photonics10030343.
Full textEsmail, Bashar A. F., Slawomir Koziel, and Dustin Isleifson. "Metamaterial-Based Series-Fed Antenna with a High Gain and Wideband Performance for Millimeter-Wave Spectrum Applications." Electronics 12, no. 23 (2023): 4836. http://dx.doi.org/10.3390/electronics12234836.
Full textBian, Chengzhen, Weiping Li, Mingxu Wang, Xinyi Wang, Yi Wei, and Wen Zhou. "Path Loss Measurement of Outdoor Wireless Channel in D-band." Sensors 22, no. 24 (2022): 9734. http://dx.doi.org/10.3390/s22249734.
Full textCabezas, C., C. Bermúdez, Y. Endo, B. Tercero, and J. Cernicharo. "Rotational spectroscopy and astronomical search for glutaronitrile." Astronomy & Astrophysics 636 (April 2020): A33. http://dx.doi.org/10.1051/0004-6361/202037769.
Full textWang, Huei, Jeng-Han Tsai, Kun-You Lin, Zuo-Min Tsai, and Tian-Wei Huang. "MM-Wave Integration and Combinations." IEEE Microwave Magazine 13, no. 5 (2012): 49–57. http://dx.doi.org/10.1109/mmm.2012.2197143.
Full textKosugi, Toshihiko, Akihiko Hirata, Tadao Nagatsuma, and Yuichi Kado. "MM-wave long-range wireless systems." IEEE Microwave Magazine 10, no. 2 (2009): 68–76. http://dx.doi.org/10.1109/mmm.2008.931668.
Full textMustafa, Mohammed Jawad, Noordini Nik Abd Malik Nik, Asniza Murad Noor, Riduan Ahmad Mohd, Riza Mohd Esa Mona, and Mahmood Hussein Yaqdhan. "Design of substrate integrated waveguide with Minkowski-Sierpinski fractal antenna for WBAN applications." Bulletin of Electrical Engineering and Informatics 9, no. 6 (2020): 2455–61. https://doi.org/10.11591/eei.v9i6.2194.
Full textAsha and Dahiya Sandeep. "A comprehensive review of Millimeter wave based radio over fiber for 5G front haul transmissions." Indian Journal of Science and Technology 14, no. 1 (2021): 86–100. https://doi.org/10.17485/IJST/v14i1.2177.
Full textMohammed, Ayad Saad, S. T. Mustafa, Hussein Ali Mohammed, M. Hashim M., Bin Ismail Mahamod, and H. Ali Adnan. "Spectrum sensing and energy detection in cognitive networks." Indonesian Journal of Electrical Engineering and Computer Science (IJEECS) 17, no. 1 (2021): 465–72. https://doi.org/10.5281/zenodo.5242967.
Full textAbdullah, Mohammed Abdullah Al-Amodi, and Datta Amlan. "The Impact of Heterogenous Ultra-dense Network Technologies on the Performance of 4G and 5GNetworks." International Journal of Innovative Technology and Exploring Engineering (IJITEE) 10, no. 1 (2020): 35–44. https://doi.org/10.35940/ijitee.A8070.1110120.
Full textMohammed, Khudhur Hussein, and N. Khamiss Nasser. "Integrating millimeter wave with hybrid precoding multiuser massive MIMO for 5G communication." TELKOMNIKA Telecommunication, Computing, Electronics and Control 18, no. 1 (2020): 90–98. https://doi.org/10.12928/TELKOMNIKA.v18i1.13674.
Full textMuataz, W. Sabri, A. Murad Noor, and K.A. Rahim Mohammed. "Bi-directional Beams Waveguide Slotted Antenna at Millimeter Wave." TELKOMNIKA Telecommunication, Computing, Electronics and Control 16, no. 4 (2018): 1515–21. https://doi.org/10.12928/TELKOMNIKA.v16i4.9057.
Full textShang, Lei, Aijun Wen, Bo Li, Tonggang Wang, Yang Chen, and Ming'an Li. "An optical mm-wave generation scheme by frequency octupling using a nested MMI." Optics Communications 284, no. 24 (2011): 5618–22. http://dx.doi.org/10.1016/j.optcom.2011.08.070.
Full textDewan, Atiqur Rahman, Yasmin Mohamad Sarah, Abdul Malek Norun, Arifur Rahman Dewan, and Normi Zabri Siti. "A Wideband mm-Wave Printed Dipole Antenna for 5G Applications." Indonesian Journal of Electrical Engineering and Computer Science 10, no. 3 (2018): 943–50. https://doi.org/10.11591/ijeecs.v10.i3.pp943-950.
Full textZhu, Xi, and Lang Chen. "Recent Advances in Integrated mm-Wave Power Amplifiers for 5G and Beyond." IEEE Microwave Magazine 25, no. 12 (2024): 112–27. http://dx.doi.org/10.1109/mmm.2024.3453234.
Full textTamayo-Dominguez, Adrian, Jose-Manuel Fernandez-Gonzalez, and Manuel Sierra-Perez. "Metal-Coated 3D-Printed Waveguide Devices for mm-Wave Applications [Application Notes]." IEEE Microwave Magazine 20, no. 9 (2019): 18–31. http://dx.doi.org/10.1109/mmm.2019.2922121.
Full textInoue, Akira. "Millimeter-Wave GaN Devices for 5G: Massive MIMO Antenna Arrays for Sub-6-Ghz and mm-Wave Bandwidth." IEEE Microwave Magazine 22, no. 5 (2021): 100–110. http://dx.doi.org/10.1109/mmm.2021.3056936.
Full textES-SAQY, Abdelhafid, Maryam Abata, Mohammed Fattah, et al. "High Conversion Gain Self-Oscillating Mixer for 5G mm-wave Applications." ASM Science Journal 17 (March 15, 2022): 1–8. http://dx.doi.org/10.32802/asmscj.2022.948.
Full textNawaz, Asad Ali, Wasif Tanveer Khan, and Ahmet Cagri Ulusoy. "Organically Packaged Components and Modules: Recent Advancements for Microwave and mm-Wave Applications." IEEE Microwave Magazine 20, no. 11 (2019): 49–72. http://dx.doi.org/10.1109/mmm.2019.2935365.
Full textTripathy, P. R. "Dynamic properties and avalanche noise analysis of 4H-SiC over wz-GaN based IMPATTs at mm-wave window frequency." Semiconductor Physics Quantum Electronics and Optoelectronics 14, no. 2 (2011): 137–44. http://dx.doi.org/10.15407/spqeo14.02.137.
Full textSalah Hameed, Salam, Bashar Al-Amiri, Nibbras Al-Hamadani, Osama Yhyia Al-Sudani, Montadhar Hameed Nima, and Hayder A. Fawzi. "Comparison between Flexible Uretero-Renoscope and Shock Wave Lithotripsy in ?Management of Lower Pole Renal Stones 10-20 mm?" International Journal of Science and Research (IJSR) 12, no. 10 (2023): 249–54. http://dx.doi.org/10.21275/sr23930174514.
Full textM., Raja Kumar, Koteswara Rao M., AshaJyothi G., et al. "Mutual Coupling Reduction Using 8x8 MIMO Antenna for MM Wave Applications." International Journal of Innovative Research in Computer Science and Technology (IJIRCST) 11, no. 03 (2023): 61–66. https://doi.org/10.5281/zenodo.8113659.
Full textQazwan, Abdullah, Abdullah Noorsaliza, Balfaqih Mohammed, et al. "Maximising system throughput in wireless powered sub-6 GHz and millimetre-wave 5G heterogeneous networks." TELKOMNIKA Telecommunication, Computing, Electronics and Control 18, no. 3 (2020): 1185–94. https://doi.org/10.12928/TELKOMNIKA.v18i3.15049.
Full textMohammed, B. Majed, A. Rahman Tharek, and Abdul Aziz Omar. "Propagation Path Loss Modeling and Outdoor Coverage Measurements Review in Millimeter Wave Bands for 5G Cellular Communications." International Journal of Electrical and Computer Engineering (IJECE) 8, no. 4 (2018): 2254–60. https://doi.org/10.11591/ijece.v8i4.pp2254-2260.
Full text