Academic literature on the topic 'Mobility of molecules'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mobility of molecules.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mobility of molecules":

1

Russina, Margarita, Evout Kemner, and Ferenc Mezei. "Impact of the Confinement on the Intra-Cage Dynamics of Molecular Hydrogen in Clathrate Hydrates." Materials Science Forum 879 (November 2016): 1294–99. http://dx.doi.org/10.4028/www.scientific.net/msf.879.1294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We have studied the diffusive mobility of hydrogen molecules confined in different size cages in clathrate hydrates. In clathrate hydrate H2 molecules are effectively stored by confinement in two different size cages of the nanoporous host structure with accessible volumes of about 0.50 and 0.67 nm diameters, respectively. For the processes of sorption and desorption of the stored hydrogen the diffusive mobility of the molecules plays a fundamental role. In the present study we have focused on the dynamics of the H2 molecules inside the cages as one aspect of global guest molecule mobility across the crystalline host structure. We have found that for the two cage sizes different in diameter by only 34 % and in volume by about a factor of 2.4, the dimension can modify the diffusive mobility of confined hydrogen in both directions, i.e. reducing and surprisingly enhancing mobility compared to the bulk at the same temperature. In the smaller cages of clathrate hydrates hydrogen molecules are localized in the center of the cages even at temperatures >100 K. Confinement in the large cages leads to the onset already at T=10 K of jump diffusion between sorption sites separated from each other by about 2.9 Å at the 4 corners of a tetrahedron. At this temperature bulk hydrogen is frozen at ambient pressure and shows no molecular mobility on the same time scale. A particular feature of this diffusive mobility is the pronounced dynamic heterogeneity: only a temperature dependent fraction of the H2 molecules was found mobile on the time scale covered by the neutron spectrometer used. The differences in microscopic dynamics inside the cages of two different sizes can help to explain the differences in the parameters of macroscopic mobility: trapping of hydrogen molecules in smaller pores matching the molecule size can to play a role in the higher desorption temperature for the small cages.
2

Almeida, A. M., M. M. D. Ramos, and H. G. Correia. "Change mobility in conjugated polymer molecules." Computational Materials Science 27, no. 1-2 (March 2003): 128–32. http://dx.doi.org/10.1016/s0927-0256(02)00436-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bhardwaj, Bishwajeet, Takeshi Sugiyama, Naoko Namba, Takayuki Umakoshi, Takafumi Uemura, Tsuyoshi Sekitani, and Prabhat Verma. "Raman Spectroscopic Studies of Dinaphthothienothiophene (DNTT)." Materials 12, no. 4 (February 18, 2019): 615. http://dx.doi.org/10.3390/ma12040615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The application of dinaphthothienothiophene (DNTT) molecules, a novel organic semiconductor material, has recently increased due to its high charge carrier mobility and thermal stability. Since the structural properties of DNTT molecules, such as the molecular density distribution and molecular orientations, significantly affect their charge carrier mobility in organic field-effect transistors devices, investigating these properties would be important. Here, we report Raman spectroscopic studies on DNTT in a transistor device, which was further analyzed by the density functional theory. We also show a perspective of this technique for orientation analysis of DNTT molecules within a transistor device.
4

Crawford, Jeremie J., Frannie Itzkow, Joanna MacLean, and Douglas B. Craig. "Conformational change in individual enzyme molecules." Biochemistry and Cell Biology 93, no. 6 (December 2015): 611–18. http://dx.doi.org/10.1139/bcb-2015-0099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Single β-galactosidase molecule assays were performed using a capillary electrophoresis based protocol, employing post-column laser-induced fluorescence detection. In a first set of experiments, the distribution of single β-galactosidase molecule catalytic rates and electrophoretic mobilities were determined from lysates of Escherichia coli strains containing deletions for different heat shock proteins and grown under normal and heat shock conditions. There was no clear observed pattern of effect of heat shock protein expression on these distributions. In a second set of experiments, individual enzyme molecule catalytic rates were determined at 21 °C before and after 2 sequential brief periods of incubation at 50, 28, and 10 °C. The brief incubations at 50 °C caused a change in the enzyme molecules resulting in a different catalytic rate. Any given molecule was just as likely to show an increase in rate as a decrease, resulting in no significant difference in the average rate of the population. The average change in individual molecule rate was dependent upon the temperature of the brief incubation period, with a lesser average change occurring at 28 °C and negligible change at 10 °C. A third set of experiments was similar to that of the second with the exception that it was electrophoretic mobility that was considered. This provided a similar result. Incubation at higher temperature resulted in a change in electrophoretic mobility. The probability of an individual molecules switching to a higher mobility was approximately equal to that of switching to a lower mobility, resulting in no net average change in the population. The magnitude of the changes in electrophoretic mobilities suggest that the associated conformational changes are subtle.
5

Mecheri, S., M. Edidin, G. Dannecker, R. S. Mittler, and M. K. Hoffmann. "Immunogenic Ia-binding peptides immobilize the Ia molecule and facilitate its aggregation on the B cell membrane. Control by the M1s-1 gene." Journal of Immunology 144, no. 4 (February 15, 1990): 1361–68. http://dx.doi.org/10.4049/jimmunol.144.4.1361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Aggregation (e.g., through cross-linkage) of cell surface molecules is in various biologic systems a necessary event in cellular activation. Examining the Ia molecule on B cells we found that aggregation is a function of the surface Ag mobility; the higher the fraction of immobile molecules on the plane of the membrane, the better Ia forms aggregates and patches. We identify two factors that control Ia mobility and aggregability. One factor is the M1s-1a gene product; the other factor is an Ia-reactive immunogenic peptide. Both factors increase Ia aggregability and reduce the MHC Ag mobility.
6

Jäger, Alexander, Jette Schwarz, Yamuna Kunhi Mouvenchery, Gabriele E. Schaumann, and Marko Bertmer. "Physical long-term regeneration dynamics of soil organic matter as followed by 1H solid-state NMR methods." Environmental Chemistry 13, no. 1 (2016): 50. http://dx.doi.org/10.1071/en14216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Environmental context The mobility of soil organic matter and water molecules has a strong influence on the availability of fertilisers as well as on the fate of pollutants in soil. Magnetic resonance techniques identified two regimes of mobility change on the molecular level occurring on a timescale of 1 year after initially heating the sample. The results can help to understand the effect of soil type and water content for agricultural use and soil protection. Abstract 1H wide-line solid-state NMR methods have been applied to monitor long-term mobility changes in the supramolecular network of soil organic matter and water induced by short thermal treatment. NMR line widths are a direct measure of the mobility of water molecules and organic matter components. For the first time, we obtained an insight into the long-term physical mechanisms in terms of molecular mobility governing soil organic matter–water interactions. All time series reveal a systematic, attenuated proton demobilisation on time scales with a maximum of 1 year that depends on water content and type of soil. Results are discussed in the context of water molecule bridges and are compared with the results of structural transition temperatures obtained from differential scanning calorimetry measurements. The analysis is based on a porous system with random field characteristics. Two major features, a logarithmic time dependence in the first hours and a linear time dependence at longer times after the heating event, are observed in all investigated samples. In peat samples, a temporary increase of mobility was observed, the point in time depending on water content. The soil organic matter physicochemical matrix aging mechanism could also be relevant for the aging of organic chemicals in soil samples, suggesting a long-term reduction in molecular mobility.
7

Lichtner, Frank. "Phloem mobility of crop protection products." Functional Plant Biology 27, no. 6 (2000): 609. http://dx.doi.org/10.1071/pp99185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Phloem mobility of a crop protectant is an attribute that contributes positively to its efficacy. Herbicides, insecticides and fungicides, generally organic molecules of small molecular weight, are applied foliarly and often must move to remote plant parts (such as meristems, emerging leaves, roots and fruits) via the phloem to achieve economically useful activity. In addition, insecticides must move within the phloem to be effective against piercing and sucking insects. Conversely, phloem mobility of crop protectants and their metabolites can also contribute to detectable residues in raw agricultural commodities. This is especially true of compounds that are biologically stable and applied during fruit development or seed set. Thus, the knowledge of phloem mobility allows an understanding of potential benefits (efficacy) and potential risks (dietary exposure) of a crop protection chemical. The customers for this knowledge range from the discovery chemist and biologist (who participate in the design of the chemical), through to the regulatory official (who grants permission to sell) and the farmer, the ultimate beneficiary of the technology. One can estimate or predict phloem mobility (based on physical/chemical properties and molecular structure) using a number of models, or measure it directly (in whole plants or explants) with a variety of techniques. In the future, crop protection and crop production technology will increasingly rely on effective transport of macro-molecules, such as protein toxins for insect control and mRNA for signal initiation and coordination of growth and development processes. Phloem mobility will be equally important for these macromolecules and for the small molecules that currently control pests and influence plant growth and development. Understanding the processes that control macromolecular transport in the phloem will lay the foundation for effective use of this technology in the decades to come.
8

Jaqaman, Khuloud, James A. Galbraith, Michael W. Davidson, and Catherine G. Galbraith. "Changes in single-molecule integrin dynamics linked to local cellular behavior." Molecular Biology of the Cell 27, no. 10 (May 15, 2016): 1561–69. http://dx.doi.org/10.1091/mbc.e16-01-0018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Recent advances in light microscopy permit visualization of the behavior of individual molecules within dense macromolecular ensembles in live cells. It is now conceptually possible to relate the dynamic organization of molecular machinery to cellular function. However, inherent heterogeneities, as well as disparities between spatial and temporal scales, pose substantial challenges in deriving such a relationship. New approaches are required to link discrete single-molecule behavior with continuous cellular-level processes. Here we combined intercalated molecular and cellular imaging with a computational framework to detect reproducible transient changes in the behavior of individual molecules that are linked to cellular behaviors. Applying our approach to integrin transmembrane receptors revealed a spatial density gradient underlying characteristic molecular density increases and mobility decreases, indicating the subsequent onset of local protrusive activity. Integrin mutants further revealed that these density and mobility transients are separable and depend on different binding domains within the integrin cytoplasmic tail. Our approach provides a generalizable paradigm for dissecting dynamic spatiotemporal molecular behaviors linked to local cellular events.
9

Zadrapa, Petr, Jiri Malac, and Petr Konecny. "Filler and mobility of rubber matrix molecules." Polymer Bulletin 67, no. 5 (June 9, 2011): 927–36. http://dx.doi.org/10.1007/s00289-011-0533-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Girlich, D., and H. D. Lüdemann. "Molecular Mobility of Sucrose in Aqueous Solution Studied by 13C NMR Relaxation." Zeitschrift für Naturforschung C 48, no. 5-6 (June 1, 1993): 407–13. http://dx.doi.org/10.1515/znc-1993-5-601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract From the temperature and concentration dependence of the 13C spin lattice relaxation times of the 12 carbon atoms of the sucrose molecule the rotational dynamics of the sugar molecules are determined. No indication for conformational mobility of the rings is found. The exocyclic hydroxymethyl groups possess extra mobility. The models used for the description are critically discussed. The temperature dependence of the rotational mobility is described by a VTF equation. The concentration dependence of the ideal glass transition temperature To for this mobility is derived.

Dissertations / Theses on the topic "Mobility of molecules":

1

Lapthorn, Cristian Lewis. "The application of ion mobility mass spectrometry to molecules of pharmaceutical significance." Thesis, University of Greenwich, 2016. http://gala.gre.ac.uk/18125/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Ion mobility-mass spectrometry experiments have been conducted to measure the drift-time and calculate collision cross-sections (CCSs) using travelling wave ion mobility spectrometry, and determine the CCS using drift-tube ion mobility spectrometry systems of analytes. The aim of the study was to identify if predictive approaches could facilitate rapid and definitive assignment of charge location sites and chemical structure. Molecular modelling was conducted to determine the energy minimised/geometry optimised structures and charge distribution of the protonated molecules studied. The geometry and charge distribution data were utilised in subsequent ion mobility calculations using two main methods 1) projection approximation and 2) trajectory method. Fluoroquinolone antibiotics were investigated as previous literature had postulated the ion mobility separation of charge location isomers differing only by their protonation site with little expected difference in their geometry (see Chapter 2). Projection approximation prediction of theoretical CCSs (tCCSs) for the singly protonated molecules of norfloxacin (with the proton assigned to all possible oxygen or nitrogen-containing protonation sites to generate candidates) revealed < 2 Å2 difference in tCCSs based on molecular modelling. In stark contrast the experimental CCS (eCCS) demonstrated > 10 Å2 difference between different components. The product ion spectra are consistent with the hypothesis of charge location isomer mobility separated components. Investigations with other fluoroquinolones, with both drift-tube ion mobility and travelling wave ion mobility, and using the trajectory method, remain consistent with the hypothesis of charge location isomers (see Chapter 3). A larger scale study sought to probe the accuracy of tCCSs over a large number of small molecule drug structures. If tCCSs accurately predict eCCSs, then tCCSs could be used to identify compounds and isomers based on their CCSs (see Chapter 4). Finally, software was developed to considerably accelerate the calculation of trajectory method tCCSs from 8-100 times faster than existing published approaches depending on available computing infrastructure (see Chapter 5). In summary this research project has explored whether eCCSs and tCCSs may be useful as a key structural tool alongside other traditional measurements including chromatographic retention time and m/z.
2

Chen, Yun Jacobson Ken. "Studying lateral mobility of surface molecules on the plasma membrane using biophysical approaches." Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2007. http://dc.lib.unc.edu/u?/etd,964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thesis (Ph. D.)--University of North Carolina at Chapel Hill, 2007.
Title from electronic title page (viewed Dec. 18, 2007). "... in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Biomedical Engineering." Discipline: Biomedical Engineering; Department/School: Medicine.
3

Khalifeh, Iman. "Determination of self association constant between bovine insulin molecules by capillary zone electrophoresis." Thesis, Uppsala University, Department of Medical Biochemistry and Microbiology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:

Capillary electrophoresis (CE) is an analytical technique that is very useful for investigating processes that modify the charge and mass of proteins and polypeptide pharmaceuticals. This report explores the ability of CE to determine the aggregation constant between insulin molecules. Bovine insulin is a polypeptide (Mw=5733, pI = 5.3) that has two α-amino groups (Gly and Phe) and one ε–amino group (Lys). Analysis of concentration dependence of electrophoretic mobility of insulin at different conditions yields the association constant for dimerization of insulin. The association constant estimates how tight the peptide molecules are associated. The association constant is a useful factor to evaluate the purity of a peptide or protein sample.

The association reaction of bovine insulin molecules was found to be favoured by temperature. The association constants were 7200 M -1, 8000 M -1, and 36000 M -1 at 15 oC, 25 oC and 35 oC, respectively. The interactions between the peptide molecules increase at higher temperature, resulting in stronger association. The association constant was estimated to be 3000 M -1in the presence of dioxane (5%, w/v %) at 25 oC. However, the interaction sites remain to be explored.

4

Bahra, Sukhvinder Singh. "Investigations into the mobility of cell-surface MHC molecules using an IgG-Oregon Green probe : a FRAP investigation." Thesis, University of Essex, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Platt, Sean P. "Interactions of the Naphthalene Radical Cation with Polar and Unsaturated Molecules in the Gas Phase." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Characterizing the interactions of solvent molecules with ions is fundamental in understanding the thermodynamics of solution chemistry. These interactions are difficult to observe directly in solution because the number of solvent molecules far exceed that of ions. This lend the gas phase to be the ideal medium in the study ion-solvent interactions on a molecular level. Ionized polycyclic aromatic hydrocarbon (PAH) molecules can readily form hydrogen bonds with neutral solvent molecules in aqueous and interstellar medium. Previous research has been done for stepwise solvation of small molecules such as benzene+, pyridine, and phenylacetylene. The similarity in these results show that these organic ions can be considered prototypical model systems for aromatic ion-neutral solvent interactions. The goal of this dissertation is to demonstrate that naphthalene can act as a prototypical model of PAH ions for ion-solvent interactions. Two types of experiments are considered throughout this dissertation using ion mobility mass spectrometry: (1) ion-neutral equilibrium thermochemistry and (2) mobility measurements. For thermochemistry experiments, the naphthalene radical cation was injected into the drift cell containing helium and/or neutral solvent vapor and the enthalpy and entropy changes were measured by varying the drift cell temperature and measuring the equilibrium constants. The results of these studies showed that small polar molecules bind to naphthalene with similar energy based on the measured by the enthalpy changes. Unsaturated aliphatic molecules behave similarly, but with much lower binding energy. Aromatic ions tend to bind to the naphthalene with lower binding energy than that observed with the benzene ion. The results for small polar molecules were compared to similar studies using the phenyl cation. The second series of experiments required the coexpansion of the naphthalene and benzene or pyridine. Injecting theses dimers into the drift cell allowed the measurement of reduced mobility on the dimers at a series of temperatures. These were used to calculate the average collision cross section and thus give insight in to the structure of these aromatic dimers. Structures were determined by comparing these results to those predicted by DFT calculations.
6

Pearcy, Adam C. "Non-covalent and covalent interactions between phenylacetylene and quinoline radical cations with polar and non-polar molecules in the gas phase." VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/5990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Gas phase molecular clusters present an ideal medium for observing factors that drive chemical reactions without outside interferences from excessive solvent molecules. Introducing an ion into the cluster promotes ion-molecule interactions that may manifest in a variety of non-covalent or even covalent binding motifs and are of significant importance in many fields including atmospheric and astronomical sciences. For instance, in outer space, molecules are subject to ionizing radiation where ion-molecule reactions become increasingly competitive to molecule-molecule interactions. To elucidate individual ion-molecule interaction information, mass spectrometry was used in conjunction with appropriate theoretical calculations. Three main categories of experiment were conducted in this dissertation. The first of which were thermochemical equilibrium measurements where an ion was introduced to an ion mobility drift cell wherein thermalizing collisions occur with helium buffer gas facilitating a reversible reaction with a neutral molecule allowing the standard changes in enthalpy and entropy to be determined. The second type of experiment was an ion mobility experiment where an ionized homo- or hetero-cluster was injected into the drift cell at specific conditions allowing the reduced mobility and collisional cross-section to be evaluated. Thirdly, kinetics measurements were taken following injection of an ion into the drift cell were an irreversible reaction ensued with the neutral species hindering equilibrium, but prompting rate constant assessment. Previous research has laid the groundwork for this dissertation as the results and discussion contained herein will build upon existing data while maintaining originality. For example, past work has given support for ion-molecule reactions involving precursor species such as acetylene and hydrogen cyanide to form more complex organics, perhaps leading to biologically relevant species. The chemical systems studied for this research are either ionized substituted benzenes like phenylacetylene and benzonitrile or polycyclic aromatic nitrogen-containing hydrocarbons like quinoline and quinoxaline interacting with a variety of neutral species. Hydrogen bonding and its many sub-sections are of the utmost importance to the kinds of reactions studied here. Past work has shown the tendency of organic radical cations to form conventional and unconventional ionic hydrogen bonds with gas phase solvents. Other non-covalent modes of interaction have also been detected in addition to the formation of covalently bound species. Gas phase reactions studied here will explore, via mass-selected ion mobility, reversible and irreversible reactions leading to binding enthalpy and entropy and rate constant determination, respectively, in addition to collisional cross-section determination.
7

Täuber, Daniela, Mario Heidernätsch, Michael Bauer, Günter Radons, Jörg Schuster, and Christian von Borczyskowski. "Single molecule tracking of the molecular mobility in thinning liquid films on thermally grown SiO 2." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-191721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Diffusion coefficients obtained from weighted mean square displacements along probe molecule trajectories within ultrathin liquid TEHOS films show a correlation with film thickness. By studying cumulative distributions obtained with a time resolution of 20 ms, we could show that the diffusion is heterogeneous within our liquid films which consist of a few molecular layers only. We detected two components of the diffusion process, a slower and a faster one. Thinning of the film due to evaporation caused a slowdown of the whole diffusion process. But this resulted not from a slowdown in the two contributing components itself. Instead their relative contributions changed in favor for the slow component. We conclude that there is no pronounced difference in the diffusion coefficients attributed to the molecular layers 3 to 5 vertically above the substrate, but with the loss of upper layers along with the thinning process the concentration of probe molecules in the near surface region containing only one or two molecular layers is increased.
8

Täuber, Daniela, Mario Heidernätsch, Michael Bauer, Günter Radons, Jörg Schuster, and Christian von Borczyskowski. "Single molecule tracking of the molecular mobility in thinning liquid films on thermally grown SiO 2." Diffusion fundamentals 11 (2009) 107, S. 1-11, 2009. https://ul.qucosa.de/id/qucosa%3A14081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Diffusion coefficients obtained from weighted mean square displacements along probe molecule trajectories within ultrathin liquid TEHOS films show a correlation with film thickness. By studying cumulative distributions obtained with a time resolution of 20 ms, we could show that the diffusion is heterogeneous within our liquid films which consist of a few molecular layers only. We detected two components of the diffusion process, a slower and a faster one. Thinning of the film due to evaporation caused a slowdown of the whole diffusion process. But this resulted not from a slowdown in the two contributing components itself. Instead their relative contributions changed in favor for the slow component. We conclude that there is no pronounced difference in the diffusion coefficients attributed to the molecular layers 3 to 5 vertically above the substrate, but with the loss of upper layers along with the thinning process the concentration of probe molecules in the near surface region containing only one or two molecular layers is increased.
9

Carsí, Rosique Marta. "Molecular mobility. Structure-property relationship of polymeric materials." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/59460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
[EN] The present work examines the influence of the chemical structure of polymers on thermal, mechanical and dielectric behavior. The experimental techniques used for the purpose are differential scanning calorimetry, dynamo-mechanical analysis and dielectric spectroscopy. Additionally, in order to confirm the results obtained using the above methods, other techniques such as ray diffraction have also been employed. Chapters 1 and 2 contain the introduction and the objectives, respectively. Chapter 3 briefly describes the experimental techniques used. Chapter 4 contains the findings of the comparative analysis of the response to electrical noise fields for three poly(benzyl methacrylates) with different structures. The analysis was carried out under a wide range of frequencies and temperatures on three poly(benzyl methacrylates) containing two dimethoxy groups in positions 2,5-, 2,3- and 3,4-. The results show that the position of the dimethoxy groups on the aromatic ring has a significant effect on the molecular dynamics of poly(benzyl methacrylate). The spectra obtained were of high complexity and therefore, in order to perform a better analysis, numerical methods for time-frequency transformation including the use of parametric regularization techniques were used. We studied the effect of this structural change on the secondary relaxation processes and relaxation process , relating to the glass transition. We also analyzed the effect of the dimethoxy group position on the formation of nanodomains, in which the side chains are predominant, and on the conduction processes of the materials tested. In Chapter 5, the conductivity of rubbery liquids was studied by analyzing poly(2,3-dimethoxybenzyl methacrylate), which exhibits its own particular behavior. The chapter analyzes the principle of time-temperature superposition, employing different interrelated variables. Chapter 6 focuses on how the presence of crosslinking affects the molecular mobility of polymethacrylates containing aliphatic alcohol ether residues. In this case, the effect of crosslinking on the secondary and primary relaxation processes was analyzed. The creation of nanodomains in the side chains as a result of the presence of crosslinking was also studied.
[ES] En este trabajo se presenta un estudio de la influencia de la estructura química de los polímeros en su comportamiento térmico, mecánico y dieléctrico. Las técnicas experimentales empleadas para ello han sido la calorimetría diferencial de barrido, el análisis dinamo-mecánico y la espectroscopia dieléctrica. Adicionalmente, se han empleado otras técnicas como la difracción de rayos, con objeto de corroborar los resultados obtenidos por las primeras. En los Capítulos 1 y 2 se recoge la introducción y los objetivos, respectivamente. El Capítulo 3 presenta una breve descripción de las técnicas experimentales empleadas. En el Capítulo 4 se recogen los resultados obtenidos en el análisis comparativo de la respuesta a campos de perturbación eléctrica en un amplio rango de frecuencias y temperaturas para tres polimetacrilatos de bencilo con dos grupos dimetoxi en posiciones 2,5-, 2,3- y 3,4-. Los resultados obtenidos señalan el importante efecto de la posición de los grupos dimetoxi en el anillo aromático, sobre la dinámica molecular del polimetacrilato de bencilo. Los espectros obtenidos fueron muy complejos, por ello en orden a llevar a cabo un mejor análisis se emplearon métodos numéricos para la transformación tiempo-frecuencia que incluyeron el uso de técnicas de regularización paramétrica. Se ha estudiado el efecto que dicho cambio estructural ejerce tanto sobre los procesos de relajación secundaria como sobre el proceso de relajación α, relacionado con la transición vítrea. Así mismo, se ha analizado el efecto de la posición de los grupos dimetoxi en la formación de iii nanodominios en los que predominan las cadenas laterales, y su efecto en los procesos de conducción de los materiales analizados. En el Capítulo 5 se recoge el estudio de la conductividad de líquidos gomosos tomando como modelo el poli (metacrilato de 2,3-dimetoxibencilo), por su peculiar comportamiento. En este capítulo se ha realizado un análisis del principio de superposición tiempo-temperatura, empleando para ello diferentes variables relacionadas entre sí. En el Capítulo 6 se recoge el efecto de la presencia de entrecruzante en la movilidad molecular de polimetacrilatos que contienen residuos de éteres de alcoholes alifáticos. En este caso, se ha analizado el efecto de la presencia de entrecruzante tanto en los procesos de relajación secundarios, como en el proceso de relajación principal. También se llevó a cabo un análisis del efecto que la presencia de entrecruzante tiene sobre la creación de nanodominios gobernados por las cadenas laterales.
[CAT] En aquest treball es presenta un estudi de la influència de l'estructura química dels polímers en el seu comportament tèrmic, mecànic i dielèctric. Les tècniques experimentals utilitzades han sigut la calorimetria diferencial de rastreig, l'anàlisi dinamo-mecànic i l'espectroscòpia dielèctrica. Addicionalment, s'han empleat altres tècniques com la difracció de rajos X a fi de corroborar els resultats obtinguts per les primeres. En els Capítols 1 i 2 s'arreplega la introducció i els objectius, respectivament. Al Capítol 3 es presenta una breu descripció de les tècniques experimentals emprades. En el Capítol 4 es recull els resultats obtinguts en l'anàlisi comparativa de la resposta a camps de pertorbació elèctrica en un ampli rang de freqüències i temperatures de tres polimetacrilats de benzil amb dos grups metoxi en posicions 2,5-, 2,3- i 3,4-. Els resultats obtinguts assenyalen l'important efecte de la posició dels grups metoxi en l'anell aromàtic, sobre la dinàmica molecular del polimetacrilat de benzil. Els espectres obtinguts van ser molt complexos, per aquesta raó per a dur a terme un millor anàlisi es van emprar mètodes numèrics per a la transformació temps-freqüència que van incloure l'ús de tècniques de regularització paramètrica. S'ha estudiat l'efecte que el dit canvi estructural exerceix tant sobre els processos de relaxació secundària com sobre el procés de relaxació , relacionat amb la transició vítria. Així mateix, s'ha analitzat l'efecte de la posició dels grups metoxi en la formació de nanodominis en els que predominen les cadenes laterals, i el seu efecte en els processos de conducció dels materials analitzats. En el Capítol 5 s'arreplega l'estudi de la conductivitat de líquids gomosos prenent com a model el poli-(metacrilat de 2,3-dimetoxibencilo), pel seu peculiar comportament. En aquest capítol s'ha realitzat un anàlisi del principi de superposició temps-temperatura, emprant per a això diferents variables relacionades entre sí. En el Capítol 6 s'arreplega l'efecte de la presència d'entrecreuat en la mobilitat molecular de polimetacrilats que contenen residus d'èters d'alcohols alifàtics. En aquest cas, s'ha analitzat l'efecte de la presència d'entrecreuat tant en els processos de relaxació secundaris, com en el procés de relaxació principal. També es va dur a terme un anàlisi de l'efecte que la presència d'entrecreuat químic té sobre la creació de nanodominis governats per les cadenes laterals.
Carsí Rosique, M. (2015). Molecular mobility. Structure-property relationship of polymeric materials [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/59460
TESIS
Premiado
10

Le, Quang Hien 1972. "Diversity and mobility of transposons in Arabidopsis thaliana." Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=38497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Transposons are a diverse collection of mobile genetic elements and are important components of nearly every genome. Because of their mobile and repetitive nature, transposons can have considerable effects on host gene expression, genome organization and evolution. The recent availability of genomic sequence information has expedited the discovery and study of transposons, as exemplified in this thesis by the complete genome analysis of the model plant system Arabidopsis thaliana. Data mining in Arabidopsis has revealed a rich diversity of transposons, of which Basho and Terminal-repeat Retrotransposons In Miniature (TRIM) elements were previously unknown types. The identification of Related to Empty Sites (RESites) provide evidence for past transposition events. Examples of elements contributing to coding regions, acquiring cellular sequences, along with in-depth analysis of the insertions, their target sites and their distribution illustrate the impact of transposons on gene and genome structures. Computer-based searches of genomic sequences has also improved our understanding of previously identified transposon families, such as the origin, classification and mobilization of Tourist elements. In addition, information on transposons gathered from in silico analysis of genomic sequences has served to design in vivo experiments. In a whole genome strategy, Transposon Display was used to investigate transposition and regulation of mobility of Tourist-like elements in A. thaliana and in the nematode Caenorhabditis elegans.

Books on the topic "Mobility of molecules":

1

Padhye, Nikhil. Molecular Mobility in Deforming Polymer Glasses. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82559-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tokyo, Japan) JST-CREST International Symposium "Nanobio-Interfaces in Relation to Molecular Mobility" (2009. Nanobio-interfaces in relation to molecular mobility. Nomi, Ishikawa, Japan: JAIST Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

H, Kausch H., ed. Intrinsic molecular mobility and toughness of polymers. Berlin: Springer, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kausch, Hans-Henning, ed. Intrinsic Molecular Mobility and Toughness of Polymers I. Berlin/Heidelberg: Springer-Verlag, 2005. http://dx.doi.org/10.1007/b136948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kausch, Hans-Henning, ed. Intrinsic Molecular Mobility and Toughness of Polymers II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b136969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

International Symposium on Molecular Order and Mobility in Polymer Systems (2nd 1996 St. Petersburg, Russia). Plenary and invited lectures presented at the 2nd International Symposium on Molecular Order and Mobility in Polymer Systems: Held in St. Petersburg, Russia 21-24 May 1996. Edited by Frenkel S. Ya and Russian Academy of Sciences. Institute of Macromolecular Compounds. Zug: Huthig & Wepf, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schütte, Christof. Metastability and Markov state models in molecular dynamics: Modeling, analysis, algorithmic approaches. Providence, Rhode Island: American Mathematical Society, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Intrinsic molecular mobility and toughness of polymers. Berlin: Springer, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gotlib, Yu Ya. Molecular Mobility and Order in Polymer Systems. John Wiley & Sons, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Padhye, Nikhil. Molecular Mobility in Deforming Glasses: Theories and Applications. Springer International Publishing AG, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Mobility of molecules":

1

Viehland, Larry A. "Kinetic Theory for Molecules." In Gaseous Ion Mobility, Diffusion, and Reaction, 233–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04494-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Viehland, Larry A. "Model Calculations for Molecules." In Gaseous Ion Mobility, Diffusion, and Reaction, 255–68. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04494-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Xuanbin. "High Mobility Group Box B1." In Encyclopedia of Signaling Molecules, 2365–69. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_101643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Xuanbin. "High Mobility Group Box B1." In Encyclopedia of Signaling Molecules, 1–5. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-6438-9_101643-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prummer, Michael, and Horst Vogel. "Mobility and Signaling of Single Receptor Proteins." In Single Molecules and Nanotechnology, 131–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-73924-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Simard, Jean, and Mehdi Ammi. "Haptic Communication Tools for Collaborative Deformation of Molecules." In Haptics: Perception, Devices, Mobility, and Communication, 517–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31401-8_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kärger, Jörg, Christine M. Papadakis, and Frank Stallmach. "Structure–Mobility Relations of Molecular Diffusion in Interface Systems." In Molecules in Interaction with Surfaces and Interfaces, 127–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-40024-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

De Lara, E. Cohen, and R. Kahn. "Temperature Dependence of the Mobility of Molecules Sorbed in Type A Zeolites." In Guidelines for Mastering the Properties of Molecular Sieves, 169–82. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5787-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alberola-Ila, Jose, Lourdes Places, Jordi Vives, and Francisco Lozano. "Changes on the Electrophoretic Mobility of CD5 Molecules Induced by PKC-Mediated Phosphorylation." In Cellular Regulation by Protein Phosphorylation, 209–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75142-4_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Le Meste, M., A. Voilley, and B. Colas. "Influence of Water on the Mobility of Small Molecules Dispersed in a Polymeric System." In Advances in Experimental Medicine and Biology, 123–38. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-0664-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Mobility of molecules":

1

Shahbazi, Zahra, Horea T. Ilies¸, and Kazem Kazerounian. "Protein Molecules as Natural Nano Bio Devices: Mobility Analysis." In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Proteins are nature’s nano-robots in the form of functional molecular components of living cells. The function of these natural nano-robots often requires conformational transitions between two or more native conformations that are made possible by the intrinsic mobility of the proteins. Understanding these transitions is essential to the understanding of how proteins function, as well as to the ability to design and manipulate protein-based nano-mechanical systems [1]. Modeling protein molecules as kinematic chains provides the foundation for developing powerful approaches to the design, manipulation and fabrication of peptide based molecules and devices. Nevertheless, these models possess a high number of degrees of freedom (DOF) with considerable computational implications. On the other hand, real protein molecules appear to exhibits a much lower mobility during the folding process than what is suggested by existing kinematic models. The key contributor to the lower mobility of real proteins is the formation of Hydrogen bonds during the folding process.
2

Shahbazi, Zahra, Horea T. Ilies¸, and Kazem Kazerounian. "On Hydrogen Bonds and Mobility of Protein Molecules." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Modeling protein molecules as kinematic chains provides the foundation for developing powerful approaches to the design, manipulation and fabrication of peptide based molecules and devices. Nevertheless, these models possess a high number of degrees of freedom (DOF) with considerable computational implications. On the other hand, real protein molecules appear to exhibits a much lower mobility during the folding process than what is suggested by existing kinematic models. The key contributor to the lower mobility of real proteins is the formation of Hydrogen bonds during the folding process. In this paper we explore the pivotal role of Hydrogen bonds in determining the structure and function of the proteins from the point of view of mechanical mobility. The existing geometric criteria on the formation of Hydrogen bonds are reviewed and a new set of geometric criteria are proposed. We show that the new criteria better correlate the number of predicted Hydrogen bonds with those established by biological principles than other existing criteria. Furthermore, we employ established tools in kinematics mobility analysis to evaluate the internal mobility of protein molecules, and to identify the rigid and flexible segments of the proteins. Our results show that the developed procedure significantly reduces the DOF of the protein models, with an average reduction of 94%. Such a dramatic reduction in the number of DOF can have has enormous computational implications in protein folding simulations.
3

Demirtas, Ahmet, and Zahra Shahbazi. "An Optimized Kinematic Mobility Analysis of Protein Molecules." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Understanding the 3D structure and consequently the motion of protein molecules contributes to simulate their function. Modeling protein molecules as kinematic chains has been used to predict protein molecules flexible and rigid regions as well as their degrees of freedom to predict their mobility. However, high computational cost for relatively large molecules is one of the major challenges in this field. In this paper we have combined our previously developed rigidity analysis (ProtoFold) with pebble game thus improving computational cost of our simulation. Here, we have determined the required time for all steps of ProtoFold and subsequently the most time consuming step. Results have shown that finding rigid loops inside the protein structure using graph theory and Grübler-Kutzbach criterion is the slowest part of the procedure, taking an average of 75% of the time required for the rigidity analysis. Therefore we have replaced this step with pebble game. The modified method has been applied to a random group of protein molecules and its efficiency in significantly improving the simulation speed has been verified.
4

Chen, Peng-Yu, Wei-Hui Chen, and Che-Wun Hong. "Nanofludic Analysis on Methanol Crossover of Direct Methanol Fuel Cells." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Direct methanol fuel cells (DMFCs) are considered as a competitive power source candidate for portable electronic devices. Nafion® has been widely used for the electrolyte of DMFCs because of its good proton conductivity and high chemical and mechanical stability. However, the major problem that must be solved before commercialization is the high methanol crossover through the membrane. There are a number of studies on experiments about the methanol crossover rate through the membrane but only few theoretical investigations have been presented [1–3]. In this paper, an atomistic model [4] is presented to analyze the molecular structure of the electrolyte and dynamic properties of nanofluids at different methanol concentration. In the same time, the nano-scopic phenomenon of methanol crossover through the membrane is observed. The simulation system consists of the Nafion fragments, hydronium ions, water clusters and methanol molecules. Fig. 1 shows the simplified Nafion fragment in our simulation. Both intra- and inter-molecular interactions were involved in this study. Intermolecular interactions include the van der Waals and the electrostatic potentials. Intramolecular interactions consist of bond, angle and dihedral potentials. The force constants used above were determined from the DREIDING force field. The SPC/E model was employed for water molecules. The three-site OPLS potential model was utilized for the intermolecular potential in methanol. Each proton which migrates inside the electrolyte is assumed to combine with one water molecule to form the hydronium (H3O+). The force parameters for the hydronium were taken from Burykin et al [5]. The atomistic simulation was carried out on the software DLPOLY. First, a 500 ps NPT ensemble was performed to make the system reach a proper configuration. This step was followed by another 500 ps NVT simulation. All molecular simulations were performed at a temperature of 323K with three-dimensional periodic boundary conditions. The intermolecular interactions were truncated at 10 Å and the equations of motion were solved using the Verlet scheme with a time step of 1 fs. Fig. 2 shows the calculated density of the simulation system for different methanol concentrations at 323K. It can be seen that the density decreases with the methanol uptakes. The volume of the system increases as the methanol concentration increases, which means that the membrane swelling with methanol uptakes. The radial distribution functions (RDFs) of the ether-like oxygen (O2) toward water and methanol molecules for different methanol concentrations at 323K are shown in Fig. 3. From this figure, we find that methanol molecules can reside in the vicinity of the hydrophobic part of the side chain while water can not. Fig. 4 shows the RDFs between the oxygen atom of the sulfonic acid groups (O3) and solvents for different methanol concentrations at 323K. As shown in Fig. 4, both water and methanol have a tendency to cluster near the sulfonic acid groups, but water molecules prefer to associate with the sulfonic acid groups in comparison with methanol molecules. The mean square displacements (MSDs) of water and methanol molecules for different methanol concentrations at 323K are displayed in Fig. 5. It is shown that MSD curves have a linear tendency, which means both water and methanol molecules are diffusing in the system during the simulation. As the methanol concentration increases, the slope of MSD curve increases for methanol and decreases for water. This indicates higher methanol content constrains the mobility of water molecules but enhances the mobility of methanol molecules that cross the electrolyte. In summary, molecular simulations of the Nafion membrane swollen in different methanol concentrations (0, 11.23, 21.40, 46.92 wt%) at 323K have been carried out. Both methanol migration mechanism and hydronium diffusion phenomenon have been visualized by monitoring the trajectories of the specific species in the system. MSDs are used to evaluate the mobility and shows that the higher the methanol concentration, the greater the tendency of methanol crossover.
5

Tagaya, Yoichi, Yasunaga Mitsuya, Susumu Ogata, Hedong Zhang, and Kenji Fukuzawa. "Effects of Molecular Conformations and Functional Endgroups on Nanoscale Mobility of Lubricant Molecules on Magnetic Disks." In 2006 IEEE International Symposium on MicroNanoMechanical and Human Science. IEEE, 2006. http://dx.doi.org/10.1109/mhs.2006.320267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ohara, T., and A. Majumdar. "Ratcheting Electrophoresis Microchip (REM) for Programmable Transport and Separation of Macromolecules." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/mems-23888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract This paper introduces the concept of a ratcheting electrophoresis microchip (REM), a microfluidic device for electrophoretic separation of macromolecules such as DNA and proteins in aqueous solution using low applied voltages (∼ 1 V). The device consists of several thousands of parallel linear electrodes with a constant pitch of about 10 μm. A spatial saw-tooth like potential distribution generated by the electrode array causes local electrophoretic migration of charged molecules between adjacent electrodes. By cycling the potential distribution in a certain pattern, the spatio-temporal electrophoretic ratchet can be used to separate and manipulate macromolecules at speeds much faster than thermal ratchets or more traditional techniques such as capillary or gel electrophoresis. This paper describes results of two simulations: First, using a simple one-dimensional potential distribution for the ratchet, the basic device function is examined using a probabilistic approach that simulates the interplay between electrophoretic mobility and molecular diffusion. The results suggest that the REM can function as a molecular filter through which only molecules having mobility larger than a threshold can pass. The REM can also be programmed to separate molecules to create a molecular profile, much like conventional electrophoresis. Second, two-dimensional stochastic simulations based on molecular diffusion and transient Debye screening by mobile ions are used to demonstrate the feasibility of the REM. The results suggest that biomolecular separation can indeed be achieved within time and length scales much shorter than capillary and gel electrophoresis.
7

Shahbazi, Zahra, Horea T. Ilies¸, and Kazem Kazerounian. "Kinematic Motion Constraints of the Protein Molecule Chains." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The function of protein molecules is defined by their 3-D geometry, as well as their internal mobility, which is heavily influenced by the internal hydrogen bonds. The correct identification of these hydrogen bonds and the prediction of their effect on the mobility of protein molecules can provide an invaluable mechanism to understand protein behavior. Applications of this study ranges from nano-engineering to new drug design. We are extending our recent approach from identifying main-chain main-chain hydrogen bonds to all types of hydrogen bonds that occur in protein structures, such as α-helices and β-sheets. We use the Gru¨bler-Kutzbach kinematic mobility criterion to determine the degrees of freedom of all closed loops (rigid loops as well as closed loops of one or more degrees of freedom) formed by Hydrogen bonds. Furthermore, we systematically develop constraint equations for non-rigid closed loops. Several examples of protein molecules from PDB are used to show that these additions both improve the accuracy of mobility analysis and enable us to study a broader range of the motion of protein molecules. This approach offers theoretical insight as well as extensive numerical efficiencies in protein simulations.
8

Babkov, Lev M., E. S. Vedyaeva, I. I. Gnatyuk, Galina A. Puchkovska, S. V. Truhachev, and J. I. Kukielski. "Investigation of conformational mobility of 4-pentyl-4'-cyanobiphenyl by IR spectroscopy methods." In XV International School on Spectroscopy of Molecules and Crystals, edited by Galina A. Puchkovska and Sergey A. Kostyukevych. SPIE, 2002. http://dx.doi.org/10.1117/12.486660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hayakari, Kohei, Yuki Kanamori, and Yoshimichi Hagiwara. "Molecular Dynamics Analysis on the Interaction Among Water, Cations, Anions and Antifreeze Protein." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We have carried out molecular dynamics simulation on aqueous solution of winter flounder antifreeze protein with ions or a thin ice layer. It is found that the models of the antifreeze protein and the ions do not affect the motion of water molecules in the case without the ice layer. In the case with the ice layer, the water molecules become less mobile due to the cooling caused by the ice, while the protein becomes more mobile. The protein mobility is consistent with the antifreeze activity of the protein. On the other hand, in the case with the ice layer and the ions, the water molecules become more mobile, and the protein gradually becomes so. This fact is consistent with the cooperative effect of the antifreeze protein and the ions on the lowering of the freezing point.
10

Kishore, Vipuil, Mousa Younesi, Stefi Panit, and Ozan Akkus. "Electrochemical Compaction of the Collagen: Effects on Matrix Mechanics and MSC Response." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The molecules of the extracellular matrix in connective tissues are densely packed. Biofabrication methods to attain such molecular packing density are limited and electrochemical processing (EP) of monomeric collagen solutions is one of few means to attain molecular packing. During EP, the pH gradient between electrodes drives the electrophoretic mobility of collagen molecules toward the isoelectric point where molecules are compacted. Our earlier work used linear electrodes to fabricate highly aligned crosslinked collagen fibers for tendon tissue engineering [1–4]. Prior work compared electrocompacted-aligned matrices with uncompacted randomly oriented ones. Therefore, the effects of alignment and compaction were compounded in terms of assessing cell response. So as to take the matrix alignment variable out of the picture to investigate matrix compaction effects only, we employed disc shaped electrodes to obtain electrocompacted sheets which lack matrix alignment. The current study investigated: a) the degree of compaction, b) effect of compaction on the mechanical properties of the sheets, and, c) mesenchymal stem cell (MSC) proliferation and morphology on compacted sheets relative to uncompacted collagen gels.

Reports on the topic "Mobility of molecules":

1

Gao, H. Crosslinked, flexible, low-molecular-weight polyacrylamide gels for mobility control. Office of Scientific and Technical Information (OSTI), December 1989. http://dx.doi.org/10.2172/5405561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kline, R. The Dependence of Regioregular Poly(3-Hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight. Office of Scientific and Technical Information (OSTI), December 2004. http://dx.doi.org/10.2172/839719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Enick, Robert M. Final Research Performance Report - Small Molecular Associative Carbon Dioxide (CO2) Thickeners for Improved Mobility Control. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1414575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Russell, David H. Developing Ion Mobility-Mass Spectrometry for Structural Characterization of Complex Molecular Systems, Final Report/Product Number: DOE_ER-15520-3. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1430105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chefetz, Benny, and Jon Chorover. Sorption and Mobility of Pharmaceutical Compounds in Soils Irrigated with Treated Wastewater. United States Department of Agriculture, 2006. http://dx.doi.org/10.32747/2006.7592117.bard.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Research into the fate of pharmaceutical compounds (PCs) in the environment has focused on aspects of removal efficiency during sewage treatment, degradation in surface water and accumulation in soils and sediments. However, very little information is available on the binding interactions of pharmaceuticals with dissolved organic matter (DOM) originating from wastewater treatment. Such interactions can significantly affect the transport potential of PCs in soils by altering compound affinity for soil particle surfaces. Our primary hypothesis is that the transport potential of PCs in soils is strongly impacted by the type and strength of interaction with DOM and the stability of resulting DOM-PC complexes. The overarching goal of the proposed work is to develop a better understanding of the risk associated with introduction of PCs into the environment with treated wastewater. This goal has been achieved by elucidating the mechanisms of the interaction of selected pharmaceuticals (that have shown to be widespread wastewater contaminants) with DOM constituents; by determining the stability and fate of DOM-PC complexes introduced to soils and soil constituents; and by evaluating the potential uptake of these compounds by plants. Based on the results obtained in this study (column and batch sorption-desorption experiments), we suggest that PCs can be classified as slow-mobile compounds in SOM-rich soil layers. When these compounds pass this layer and/or are introduced into SOM-poor soils, their mobility increases significantly. Our data suggest that in semiarid soils (consisting of low SOM), PCs can potentially be transported to the groundwater in fields irrigated with reclaimed wastewater. Moreover, the higher mobility of the acid PCs (i.e., naproxen and diclofenac) in freshwater column systems suggests that their residues in soils irrigated with reclaimed wastewater can leach from the root zone and be transported to the groundwater after rain events. Our data obtained from the binding experiments of PCs with DOM demonstrate that the hydrophobic DOM fractions were more efficient at sorbing PCs than the more polar hydrophilic fractions at a pH near the pKa of the analytes. At the pH of natural semiarid water and soil systems, including that of reclaimed wastewater and biosolids, the role of the hydrophobic fractions as sorption domains is less important than the contribution of the hydrophilic fractions. We also hypothesize that the DOM fractions interact with each other at the molecular level and do not act as independent sorption domains. In summary, our data collected in the BARD project demonstrate that the sorption abilities of the DOM fractions can also significantly affect the mobility of pharmaceutical compounds in soils influenced by intensive irrigation with treated wastewater or amended with biosolids.
6

Chefetz, Benny, and Jon Chorover. Sorption and Mobility of Pharmaceutical Compounds in Soils Irrigated with Treated Wastewater. United States Department of Agriculture, 2006. http://dx.doi.org/10.32747/2006.7709883.bard.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Research into the fate of pharmaceutical compounds (PCs) in the environment has focused on aspects of removal efficiency during sewage treatment, degradation in surface water and accumulation in soils and sediments. However, very little information is available on the binding interactions of pharmaceuticals with dissolved organic matter (DOM) originating from wastewater treatment. Such interactions can significantly affect the transport potential of PCs in soils by altering compound affinity for soil particle surfaces. Our primary hypothesis is that the transport potential of PCs in soils is strongly impacted by the type and strength of interaction with DOM and the stability of resulting DOM-PC complexes. The overarching goal of the proposed work is to develop a better understanding of the risk associated with introduction of PCs into the environment with treated wastewater. This goal has been achieved by elucidating the mechanisms of the interaction of selected pharmaceuticals (that have shown to be widespread wastewater contaminants) with DOM constituents; by determining the stability and fate of DOM-PC complexes introduced to soils and soil constituents; and by evaluating the potential uptake of these compounds by plants. Based on the results obtained in this study (column and batch sorption-desorption experiments), we suggest that PCs can be classified as slow-mobile compounds in SOM-rich soil layers. When these compounds pass this layer and/or are introduced into SOM-poor soils, their mobility increases significantly. Our data suggest that in semiarid soils (consisting of low SOM), PCs can potentially be transported to the groundwater in fields irrigated with reclaimed wastewater. Moreover, the higher mobility of the acid PCs (i.e., naproxen and diclofenac) in freshwater column systems suggests that their residues in soils irrigated with reclaimed wastewater can leach from the root zone and be transported to the groundwater after rain events. Our data obtained from the binding experiments of PCs with DOM demonstrate that the hydrophobic DOM fractions were more efficient at sorbing PCs than the more polar hydrophilic fractions at a pH near the pKa of the analytes. At the pH of natural semiarid water and soil systems, including that of reclaimed wastewater and biosolids, the role of the hydrophobic fractions as sorption domains is less important than the contribution of the hydrophilic fractions. We also hypothesize that the DOM fractions interact with each other at the molecular level and do not act as independent sorption domains. In summary, our data collected in the BARD project demonstrate that the sorption abilities of the DOM fractions can also significantly affect the mobility of pharmaceutical compounds in soils influenced by intensive irrigation with treated wastewater or amended with biosolids.
7

Cantwell, K. Molecular Environmental Science: Speciation, Reactivity, and Mobility of Environmental Contaminants: An Assessment of Research Opportunities and the Need fo Synchrotron Radiation Facilities. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1454148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Christopher, David A., and Avihai Danon. Plant Adaptation to Light Stress: Genetic Regulatory Mechanisms. United States Department of Agriculture, May 2004. http://dx.doi.org/10.32747/2004.7586534.bard.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Original Objectives: 1. Purify and biochemically characterize RB60 orthologs in higher plant chloroplasts; 2. Clone the gene(s) encoding plant RB60 orthologs and determine their structure and expression; 3. Manipulate the expression of RB60; 4. Assay the effects of altered RB60 expression on thylakoid biogenesis and photosynthetic function in plants exposed to different light conditions. In addition, we also examined the gene structure and expression of RB60 orthologs in the non-vascular plant, Physcomitrella patens and cloned the poly(A)-binding protein orthologue (43 kDa RB47-like protein). This protein is believed to a partner that interacts with RB60 to bind to the psbA5' UTR. Thus, to obtain a comprehensive view of RB60 function requires analysis of its biochemical partners such as RB43. Background & Achievements: High levels of sunlight reduce photosynthesis in plants by damaging the photo system II reaction center (PSII) subunits, such as D1 (encoded by the chloroplast tpsbAgene). When the rate of D1 synthesis is less than the rate of photo damage, photo inhibition occurs and plant growth is decreased. Plants use light-activated translation and enhanced psbAmRNA stability to maintain D1 synthesis and replace the photo damaged 01. Despite the importance to photosynthetic capacity, these mechanisms are poorly understood in plants. One intriguing model derived from the algal chloroplast system, Chlamydomonas, implicates the role of three proteins (RB60, RB47, RB38) that bind to the psbAmRNA 5' untranslated leader (5' UTR) in the light to activate translation or enhance mRNA stability. RB60 is the key enzyme, protein D1sulfide isomerase (Pill), that regulates the psbA-RN :Binding proteins (RB's) by way of light-mediated redox potentials generated by the photosystems. However, proteins with these functions have not been described from higher plants. We provided compelling evidence for the existence of RB60, RB47 and RB38 orthologs in the vascular plant, Arabidopsis. Using gel mobility shift, Rnase protection and UV-crosslinking assays, we have shown that a dithiol redox mechanism which resembles a Pill (RB60) activity regulates the interaction of 43- and 30-kDa proteins with a thermolabile stem-loop in the 5' UTR of the psbAmRNA from Arabidopsis. We discovered, in Arabidopsis, the PD1 gene family consists of II members that differ in polypeptide length from 361 to 566 amino acids, presence of signal peptides, KDEL motifs, and the number and positions of thioredoxin domains. PD1's catalyze the reversible formation an disomerization of disulfide bonds necessary for the proper folding, assembly, activity, and secretion of numerous enzymes and structural proteins. PD1's have also evolved novel cellular redox functions, as single enzymes and as subunits of protein complexes in organelles. We provide evidence that at least one Pill is localized to the chloroplast. We have used PDI-specific polyclonal and monoclonal antisera to characterize the PD1 (55 kDa) in the chloroplast that is unevenly distributed between the stroma and pellet (containing membranes, DNA, polysomes, starch), being three-fold more abundant in the pellet phase. PD1-55 levels increase with light intensity and it assembles into a high molecular weight complex of ~230 kDa as determined on native blue gels. In vitro translation of all 11 different Pill's followed by microsomal membrane processing reactions were used to differentiate among PD1's localized in the endoplasmic reticulum or other organelles. These results will provide.1e insights into redox regulatory mechanisms involved in adaptation of the photosynthetic apparatus to light stress. Elucidating the genetic mechanisms and factors regulating chloroplast photosynthetic genes is important for developing strategies to improve photosynthetic efficiency, crop productivity and adaptation to high light environments.

To the bibliography