Academic literature on the topic 'Model-based predictive control (MBPC)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Model-based predictive control (MBPC).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Model-based predictive control (MBPC)"
Bot, Karol, Inoussa Laouali, António Ruano, and Maria da Graça Ruano. "Home Energy Management Systems with Branch-and-Bound Model-Based Predictive Control Techniques." Energies 14, no. 18 (September 16, 2021): 5852. http://dx.doi.org/10.3390/en14185852.
Full textSendoya, Diego Fernando. "¿Qué es el Control Predictivo y Hacia Dónde se Proyecta?" Publicaciones e Investigación 7 (June 2, 2013): 53. http://dx.doi.org/10.22490/25394088.1106.
Full textMerabti, Halim, and Khaled Belarbi. "Accelerated micro particle swarm optimization for the solution of nonlinear model predictive control." World Journal of Engineering 14, no. 6 (December 4, 2017): 509–21. http://dx.doi.org/10.1108/wje-01-2017-0004.
Full textMahmoudi, Abdelkader, Imed Jlassi, Antonio J. Marques Cardoso, and Khaled Yahia. "Model Free Predictive Current Control Based on a Grey Wolf Optimizer for Synchronous Reluctance Motors." Electronics 11, no. 24 (December 13, 2022): 4166. http://dx.doi.org/10.3390/electronics11244166.
Full textDonaisky, Emerson, Gustavo H. C. Oliveira, and Nathan Mendes. "Algoritmos PMV-MBPC para conforto térmico em edificações e aplicação em uma célula-teste." Sba: Controle & Automação Sociedade Brasileira de Automatica 21, no. 1 (February 2010): 01–13. http://dx.doi.org/10.1590/s0103-17592010000100001.
Full textWang, Yaqi, and Zhigang Liu. "Suppression Research Regarding Low-Frequency Oscillation in the Vehicle-Grid Coupling System Using Model-Based Predictive Current Control." Energies 11, no. 7 (July 10, 2018): 1803. http://dx.doi.org/10.3390/en11071803.
Full textAmiryousefi, Ali, Ville Kinnula, and Jing Tang. "Bayes in Wonderland! Predictive Supervised Classification Inference Hits Unpredictability." Mathematics 10, no. 5 (March 5, 2022): 828. http://dx.doi.org/10.3390/math10050828.
Full textRoset *, Bas, and Henk Nijmeijer. "Observer-based model predictive control." International Journal of Control 77, no. 17 (November 20, 2004): 1452–62. http://dx.doi.org/10.1080/00207170412331326855.
Full textVassileva, Svetla, and Štefan Kozák. "NN Model-Based Predictive Control." IFAC Proceedings Volumes 33, no. 13 (June 2000): 495–500. http://dx.doi.org/10.1016/s1474-6670(17)37239-7.
Full textRoset, Bas, and Henk Nijmeijer. "Observer based model predictive control." IFAC Proceedings Volumes 37, no. 13 (September 2004): 769–74. http://dx.doi.org/10.1016/s1474-6670(17)31318-6.
Full textDissertations / Theses on the topic "Model-based predictive control (MBPC)"
Muslim, Abrar. "Optimisation of chlorine dosing for water disribution system using model-based predictive control." Thesis, Curtin University, 2007. http://hdl.handle.net/20.500.11937/459.
Full textMuslim, Abrar. "Optimisation of chlorine dosing for water disribution system using model-based predictive control." Curtin University of Technology, Dept. of Chemical Engineering, 2007. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=21508.
Full textIn the MBCDD, the constraints must be met by designing distances between chlorine boosters and optimal value of the initial chlorine distribution in order to maintain the controlled variable (CV), i.e. FCR concentration with a certain degree of robustness to the variations of water flow rate. The MBCDD can cope with the simulated DWDS (SDWDS) with the conditions; the main pipe is 12 inch diameter size with the pipe length of 8.5 km, the first consumers taking the water from the point of 0.83 km, the assumed pipe wall chlorine decay rate constant of 0.45 m/day, and the value of chlorine overall decay rate constants follow Rosman's model (1994), by proposing a set of rules for selecting the locations for additional chlorine dosing boosters, and setting the optimal chlorine dosing concentrations for each booster in order to maintain a relatively even FCR distribution along the DWDS, which is robust against volumetric water supply velocity (VWS) variations. An example shows that by implementing this strategy, MBCDD can control the FCR along the 8.5 km main pipe of 12 inch diameter size with the VWS velocity from 0.2457 to 2.457 km/hr and with the assumed wall and bulk decay constants of 0.45 and 0.55 m/day, respectively. An adaptive chlorine dosing design (ACDD) as another CODP of chlorine dosing which has the same concept with the MBCDD without the rule of critical velocity is also proposed in this study. The ACDD objective is to obtain the optimum value of initial chlorine distribution for every single change in the VWS. Simulation of the ACDD on the SDWDS shows that the ACDD can maintain the FCR concentration within the required limit of 0.2-0.6 mg/1.
To enable water quality modelling for studying the effectiveness of chlorine dosing and injection in the form of mass flow rate of pure gaseous chlorine as manipulated variable (MV), a multiple-input multiple-output (MIMO) system is developed in Simulink for Matlab 7.0.1 software by considering the disturbances of temperature and circuiting flow. The MIMO system can be used to design booster locations and distribution along a main pipe of the DWDS, to monitor the FCR concentration at the point just before injection (mixing) and between two boosters, and to implement feedback and open-loop control. This study also proposed a decentralized model-based control (DMBC) based on the MBCDD-ACDD and centralized model predictive control (CMPC) in order to optimize MV to control the CV along the main pipe of the DWDS in the MIMO system from the FCR concentration at just after the chlorine injection (CVin) to the FCR concentration (CVo) before the next chlorine injection with the constraints of 0.2-0.6 ppm for both the CVin and CVo. A comparison of the performances of decentralized PI (DPI) control, DMBC and CMPC, shows that the performances of the DMBC and CMPC in controlling the MIMO system are almost the same, and they both are significantly better than the DPI control performance. In brief, model-based predictive control (MBPC), in this case a decentralized model-based control (DMBC) and a centralized predictive control (CMPC), enable optimization of chlorine dosing for the DWDS.
Santana, Eudemario Souza de. "Algoritmo preditivo baseado em modelo aplicado ao controle de velocidade do motor de indução." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260709.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-08-09T18:47:38Z (GMT). No. of bitstreams: 1 Santana_EudemarioSouzade_D.pdf: 2512813 bytes, checksum: 189069455159efa5f8327460e869f749 (MD5) Previous issue date: 2007
Resumo: Esta tese trata do emprego do controle preditivo baseado no modelo (MBPC-Model Based Predictive Control) no acionamento do motor de indução do trifásico, para controle de fluxo de rotor e velocidade. A estratégia MBPC baseia-se na minimização do erro entre as referências futuras e a predição do modelo, para gerar os sinais de controle. Nesta tese, o motor de indução é descrito por espaço de estados e, diferentemente, do MBPC não linear, que emprega algoritmos de busca para determinar os sinais de controle, a estratégia escolhida faz inearizações sucessivas. Assim sendo, a cada ciclo gera-se a lei de controle, sendo que esta é dada por uma equação algébrica. São necessários ao controlador preditivo o conhecimento das tensões de terminal do estator e das seguintes variáveis de estado: corrente de estator, fluxo de rotor e velocidade de eixo. Para a estimação dos estados é empregado o filtro de Kalman estendido. O torque de carga é tratato como uma perturbação e sua magnitude é obtida por duas abordagens: pela equação eletromecânica e pelo filtro de Kalman estendido. Resultados de simulação computacional e experimentais validam a proposta
Abstract: This thesis presents the results concerning the control of rotor flux and speed of the induction motor using MBPC strategy, which is based on the error minimization between the future set point and model prediction, resulting in control signals. In the case studied in this thesis the motor model is described in space-state. The non linear MBPC emploies search algorithms to find the control signals, whereas the technique used in this thesis made sucessives linearizations on model; therefore in every control cicle a new algebraic control lay is found. The predictive control needs to know the stator voltage and the following state variables: stator current, rotor flux and speed. In the order to estimate the states an extended Kalman filter is employed. The load torque is considered as a disturbance and its amplitude is obtained in two ways: by calculation via eletromechanical equation and by estimation via Kalman filter. The proposal has been validated by imulations and experiments
Doutorado
Energia Eletrica
Doutor em Engenharia Elétrica
Kandiah, Sivasothy. "Fuzzy model based predictive control of chemical processes." Thesis, University of Sheffield, 1996. http://etheses.whiterose.ac.uk/3029/.
Full textChoi, Il Seop. "Model-based predictive control for hot rolling mills." Thesis, University of Sheffield, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434493.
Full textPaulus, Amanda. "A Model-Predictive-Control Based Smart-Grid Aggregator." Thesis, KTH, Optimeringslära och systemteori, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230958.
Full textAnvändningen av intermittenta energikällor, såsom sol och vindkraft, ökar ständigt. Intermittenta energikällor är starkt beroende av rådande väderförhållanden, vilket resulterar i stokastisk elproduktion. Den förväntade stokasticiteten i elproduktion kommer att orsaka problem för det nuvarande elnätet. Dessutom förväntas högre toppbelastningar för det svenska elnätet. Således finns ett växande behov av nya och smarta kraftsystem som kan reducera toppbelastningar i det framtida elnätet. Model Predictive Control (MPC) är en sofistikerad styrningsmetod som är lämplig för smart-näts aggregatorer. Därav kan MPC användas för att optimalt styra effektivitet av energianvändning i ett smart nät och minska toppbelastningar. Syftet med detta examensarbete är att undersöka optimal reducering av toppbelastningar och drift-effektivitet av transformatorstationen i ett smart nät i Ramsjöåsen, Sverige, med hjälp av en MPC baserad smart-näts aggregator. Dessutom är syftet att bidra till den teoretiska grunden för framtida topplastskapning i smarta nät. Inom examensarbetsprojektet utvecklas en matematisk modell för smart nätet i Ramsjöåsen, som sedan används för att simulera olika scenarier. De simulerade resultaten indikerar att en MPC baserad smart-näts aggregator förbättrar smart nätets prestanda i Ramsjöåsen, vad gäller både topplastsreducering och drifteffektivitet av transformatorstationen.
Hozumi, Yuya, Shinji Doki, and Shigeru Okuma. "Fast torque control system of PMSM based on model predictive control." IEEE, 2009. http://hdl.handle.net/2237/13963.
Full textMacKay, Maria Ellen. "Model based predictive control of nonlinear and multivariable systems." Thesis, Manchester Metropolitan University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337269.
Full textDroge, Greg Nathanael. "Behavior-based model predictive control for networked multi-agent systems." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51864.
Full textHuzmezan, Mihai. "Theory and aerospace applications of constrained model based predictive control." Thesis, University of Cambridge, 1998. https://www.repository.cam.ac.uk/handle/1810/272419.
Full textBooks on the topic "Model-based predictive control (MBPC)"
1936-, Clarke D., ed. Advances in model-based predictive control. Oxford: Oxford University Press, 1994.
Find full textTahirovic, Adnan, and Gianantonio Magnani. Passivity-Based Model Predictive Control for Mobile Vehicle Motion Planning. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5049-7.
Full textTahirovic, Adnan. Passivity-Based Model Predictive Control for Mobile Vehicle Motion Planning. London: Springer London, 2013.
Find full textRossiter, J. A. Model-Based Predictive Control. Edited by J. A. Rossiter. CRC Press, 2017. http://dx.doi.org/10.1201/9781315272610.
Full textRossiter, J. A. Model-Based Predictive Control a Practical Approach. Taylor & Francis Group, 2003.
Find full textRossiter, J. A. Model-Based Predictive Control: A Practical Approach. Taylor & Francis Group, 2003.
Find full textRossiter, J. A. Model-Based Predictive Control: A Practical Approach. Taylor & Francis Group, 2017.
Find full textRossiter, J. A. Model-Based Predictive Control: A Practical Approach. Taylor & Francis Group, 2013.
Find full textModel-Based Predictive Control: A Practical Approach (Crc Press Control Series,). CRC, 2003.
Find full textBook chapters on the topic "Model-based predictive control (MBPC)"
Klaučo, Martin, and Michal Kvasnica. "Model Predictive Control." In MPC-Based Reference Governors, 15–34. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17405-7_3.
Full textCamacho, Eduardo F., and Carlos Bordons. "Model Based Predictive Controllers." In Model Predictive Control, 13–31. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-3398-8_2.
Full textCamacho, Eduardo F., and Carlos Bordons. "Introduction to Model Based Predictive Control." In Model Predictive Control, 1–11. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-3398-8_1.
Full textZhang, Ridong, Anke Xue, and Furong Gao. "Model Predictive Control Based on Extended State Space Model." In Model Predictive Control, 17–27. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0083-7_2.
Full textZhang, Ridong, Anke Xue, and Furong Gao. "Predictive Functional Control Based on Extended State Space Model." In Model Predictive Control, 29–35. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0083-7_3.
Full textLann, M. V., M. Cabassud, and G. Casamatta. "Adaptive Model Predictive Control." In Methods of Model Based Process Control, 427–57. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0135-6_17.
Full textZhang, Ridong, Anke Xue, and Furong Gao. "Model Predictive Control Based on Extended Non-minimal State Space Model." In Model Predictive Control, 37–50. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0083-7_4.
Full textZhang, Ridong, Anke Xue, and Furong Gao. "Predictive Functional Control Based on Extended Non-minimal State Space Model." In Model Predictive Control, 51–57. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0083-7_5.
Full textFernandez-Camacho, Eduardo, and Carlos Bordons-Alba. "Model Based Predictive Controllers." In Model Predictive Control in the Process Industry, 9–37. London: Springer London, 1995. http://dx.doi.org/10.1007/978-1-4471-3008-6_2.
Full textChristofides, Panagiotis D., Jinfeng Liu, and David Muñoz de la Peña. "Lyapunov-Based Model Predictive Control." In Networked and Distributed Predictive Control, 13–45. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-582-8_2.
Full textConference papers on the topic "Model-based predictive control (MBPC)"
Zhu, K. Y. "Model-based predictive controller." In International Conference on Control '94. IEE, 1994. http://dx.doi.org/10.1049/cp:19940273.
Full textJohnstone, A. "MPC model based predictive control." In UKACC Control 2006 Mini Symposia. IEE, 2006. http://dx.doi.org/10.1049/ic:20060262.
Full textKocijan, J., R. Murray-Smith, C. E. Rasmussen, and A. Girard. "Gaussian process model based predictive control." In Proceedings of the 2004 American Control Conference. IEEE, 2004. http://dx.doi.org/10.23919/acc.2004.1383790.
Full textDhar, Abhishek, and Shubhendu Bhasin. "Tube based Adaptive Model Predictive Control." In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9029450.
Full textZhong-Hua Pang and Guo-Ping Liu. "Model-based recursive networked predictive control." In 2010 IEEE International Conference on Systems, Man and Cybernetics - SMC. IEEE, 2010. http://dx.doi.org/10.1109/icsmc.2010.5642322.
Full textCapponi, Lino. "Direct Model Predictive Control Using Model Based Design." In 2021 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE). IEEE, 2021. http://dx.doi.org/10.1109/precede51386.2021.9681020.
Full textGu, Ruirui, Shuvra S. Bhattacharyya, and Williams S. Levine. "Dataflow-based implementation of model predictive control." In 2009 American Control Conference. IEEE, 2009. http://dx.doi.org/10.1109/acc.2009.5160255.
Full textLu, Weiping, and D. Grant Fisher. "Nonminimal Model based Long Range Predictive Control." In 1990 American Control Conference. IEEE, 1990. http://dx.doi.org/10.23919/acc.1990.4791006.
Full textRiehl, James R., Gaemus E. Collins, and Joao P. Hespanha. "Cooperative graph-based model predictive search." In 2007 46th IEEE Conference on Decision and Control. IEEE, 2007. http://dx.doi.org/10.1109/cdc.2007.4435025.
Full textNguyen, Tam W., Syed Aseem Ul Islam, Adam L. Bruce, Ankit Goel, Dennis S. Bernstein, and Ilya V. Kolmanovsky. "Output-Feedback RLS-Based Model Predictive Control*." In 2020 American Control Conference (ACC). IEEE, 2020. http://dx.doi.org/10.23919/acc45564.2020.9148011.
Full textReports on the topic "Model-based predictive control (MBPC)"
Li, Dinggen, and Yang Ye. The Control of Air-Fuel Ratio of the Engine Based on Model Predictive Control. Warrendale, PA: SAE International, October 2012. http://dx.doi.org/10.4271/2012-32-0050.
Full textAswani, Anil, Humberto Gonzalez, S. S. Sastry, and Claire Tomlin. Statistical Results on Filtering and Epi-convergence for Learning-Based Model Predictive Control. Fort Belvoir, VA: Defense Technical Information Center, December 2011. http://dx.doi.org/10.21236/ada558989.
Full textAn Input Linearized Powertrain Model for the Optimal Control of Hybrid Electric Vehicles. SAE International, March 2022. http://dx.doi.org/10.4271/2022-01-0741.
Full text