Dissertations / Theses on the topic 'Model-based predictive control (MBPC)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Model-based predictive control (MBPC).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Muslim, Abrar. "Optimisation of chlorine dosing for water disribution system using model-based predictive control." Thesis, Curtin University, 2007. http://hdl.handle.net/20.500.11937/459.
Full textMuslim, Abrar. "Optimisation of chlorine dosing for water disribution system using model-based predictive control." Curtin University of Technology, Dept. of Chemical Engineering, 2007. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=21508.
Full textIn the MBCDD, the constraints must be met by designing distances between chlorine boosters and optimal value of the initial chlorine distribution in order to maintain the controlled variable (CV), i.e. FCR concentration with a certain degree of robustness to the variations of water flow rate. The MBCDD can cope with the simulated DWDS (SDWDS) with the conditions; the main pipe is 12 inch diameter size with the pipe length of 8.5 km, the first consumers taking the water from the point of 0.83 km, the assumed pipe wall chlorine decay rate constant of 0.45 m/day, and the value of chlorine overall decay rate constants follow Rosman's model (1994), by proposing a set of rules for selecting the locations for additional chlorine dosing boosters, and setting the optimal chlorine dosing concentrations for each booster in order to maintain a relatively even FCR distribution along the DWDS, which is robust against volumetric water supply velocity (VWS) variations. An example shows that by implementing this strategy, MBCDD can control the FCR along the 8.5 km main pipe of 12 inch diameter size with the VWS velocity from 0.2457 to 2.457 km/hr and with the assumed wall and bulk decay constants of 0.45 and 0.55 m/day, respectively. An adaptive chlorine dosing design (ACDD) as another CODP of chlorine dosing which has the same concept with the MBCDD without the rule of critical velocity is also proposed in this study. The ACDD objective is to obtain the optimum value of initial chlorine distribution for every single change in the VWS. Simulation of the ACDD on the SDWDS shows that the ACDD can maintain the FCR concentration within the required limit of 0.2-0.6 mg/1.
To enable water quality modelling for studying the effectiveness of chlorine dosing and injection in the form of mass flow rate of pure gaseous chlorine as manipulated variable (MV), a multiple-input multiple-output (MIMO) system is developed in Simulink for Matlab 7.0.1 software by considering the disturbances of temperature and circuiting flow. The MIMO system can be used to design booster locations and distribution along a main pipe of the DWDS, to monitor the FCR concentration at the point just before injection (mixing) and between two boosters, and to implement feedback and open-loop control. This study also proposed a decentralized model-based control (DMBC) based on the MBCDD-ACDD and centralized model predictive control (CMPC) in order to optimize MV to control the CV along the main pipe of the DWDS in the MIMO system from the FCR concentration at just after the chlorine injection (CVin) to the FCR concentration (CVo) before the next chlorine injection with the constraints of 0.2-0.6 ppm for both the CVin and CVo. A comparison of the performances of decentralized PI (DPI) control, DMBC and CMPC, shows that the performances of the DMBC and CMPC in controlling the MIMO system are almost the same, and they both are significantly better than the DPI control performance. In brief, model-based predictive control (MBPC), in this case a decentralized model-based control (DMBC) and a centralized predictive control (CMPC), enable optimization of chlorine dosing for the DWDS.
Santana, Eudemario Souza de. "Algoritmo preditivo baseado em modelo aplicado ao controle de velocidade do motor de indução." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260709.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-08-09T18:47:38Z (GMT). No. of bitstreams: 1 Santana_EudemarioSouzade_D.pdf: 2512813 bytes, checksum: 189069455159efa5f8327460e869f749 (MD5) Previous issue date: 2007
Resumo: Esta tese trata do emprego do controle preditivo baseado no modelo (MBPC-Model Based Predictive Control) no acionamento do motor de indução do trifásico, para controle de fluxo de rotor e velocidade. A estratégia MBPC baseia-se na minimização do erro entre as referências futuras e a predição do modelo, para gerar os sinais de controle. Nesta tese, o motor de indução é descrito por espaço de estados e, diferentemente, do MBPC não linear, que emprega algoritmos de busca para determinar os sinais de controle, a estratégia escolhida faz inearizações sucessivas. Assim sendo, a cada ciclo gera-se a lei de controle, sendo que esta é dada por uma equação algébrica. São necessários ao controlador preditivo o conhecimento das tensões de terminal do estator e das seguintes variáveis de estado: corrente de estator, fluxo de rotor e velocidade de eixo. Para a estimação dos estados é empregado o filtro de Kalman estendido. O torque de carga é tratato como uma perturbação e sua magnitude é obtida por duas abordagens: pela equação eletromecânica e pelo filtro de Kalman estendido. Resultados de simulação computacional e experimentais validam a proposta
Abstract: This thesis presents the results concerning the control of rotor flux and speed of the induction motor using MBPC strategy, which is based on the error minimization between the future set point and model prediction, resulting in control signals. In the case studied in this thesis the motor model is described in space-state. The non linear MBPC emploies search algorithms to find the control signals, whereas the technique used in this thesis made sucessives linearizations on model; therefore in every control cicle a new algebraic control lay is found. The predictive control needs to know the stator voltage and the following state variables: stator current, rotor flux and speed. In the order to estimate the states an extended Kalman filter is employed. The load torque is considered as a disturbance and its amplitude is obtained in two ways: by calculation via eletromechanical equation and by estimation via Kalman filter. The proposal has been validated by imulations and experiments
Doutorado
Energia Eletrica
Doutor em Engenharia Elétrica
Kandiah, Sivasothy. "Fuzzy model based predictive control of chemical processes." Thesis, University of Sheffield, 1996. http://etheses.whiterose.ac.uk/3029/.
Full textChoi, Il Seop. "Model-based predictive control for hot rolling mills." Thesis, University of Sheffield, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434493.
Full textPaulus, Amanda. "A Model-Predictive-Control Based Smart-Grid Aggregator." Thesis, KTH, Optimeringslära och systemteori, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230958.
Full textAnvändningen av intermittenta energikällor, såsom sol och vindkraft, ökar ständigt. Intermittenta energikällor är starkt beroende av rådande väderförhållanden, vilket resulterar i stokastisk elproduktion. Den förväntade stokasticiteten i elproduktion kommer att orsaka problem för det nuvarande elnätet. Dessutom förväntas högre toppbelastningar för det svenska elnätet. Således finns ett växande behov av nya och smarta kraftsystem som kan reducera toppbelastningar i det framtida elnätet. Model Predictive Control (MPC) är en sofistikerad styrningsmetod som är lämplig för smart-näts aggregatorer. Därav kan MPC användas för att optimalt styra effektivitet av energianvändning i ett smart nät och minska toppbelastningar. Syftet med detta examensarbete är att undersöka optimal reducering av toppbelastningar och drift-effektivitet av transformatorstationen i ett smart nät i Ramsjöåsen, Sverige, med hjälp av en MPC baserad smart-näts aggregator. Dessutom är syftet att bidra till den teoretiska grunden för framtida topplastskapning i smarta nät. Inom examensarbetsprojektet utvecklas en matematisk modell för smart nätet i Ramsjöåsen, som sedan används för att simulera olika scenarier. De simulerade resultaten indikerar att en MPC baserad smart-näts aggregator förbättrar smart nätets prestanda i Ramsjöåsen, vad gäller både topplastsreducering och drifteffektivitet av transformatorstationen.
Hozumi, Yuya, Shinji Doki, and Shigeru Okuma. "Fast torque control system of PMSM based on model predictive control." IEEE, 2009. http://hdl.handle.net/2237/13963.
Full textMacKay, Maria Ellen. "Model based predictive control of nonlinear and multivariable systems." Thesis, Manchester Metropolitan University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337269.
Full textDroge, Greg Nathanael. "Behavior-based model predictive control for networked multi-agent systems." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51864.
Full textHuzmezan, Mihai. "Theory and aerospace applications of constrained model based predictive control." Thesis, University of Cambridge, 1998. https://www.repository.cam.ac.uk/handle/1810/272419.
Full textBuqueras, Carbonell Carles. "Model-based predictive control using Modelica and open source components." Thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9120.
Full textThis thesis is about Model Predictive Control (MPC) method for process control. It describes how this method could be implemented using some different open source software components, describing functionalities of each one and showing how the implementation has been done. Finally the code is tested to demonstrate effectiveness of this software in front of this kind of problems and to demonstrate MPC main characteristics. The main goals of this thesis are these last ones, code development and tests, so all mathematical and theoretical background are described but not as in detail as development and tests. Globally describing, MPC is a process control method where a previous knowledge of the plant is needed, so the controller have a model to simulate and predict the behavior of the system to calculate the best command signal. It has an optimization algorithm determining the optimal trajectory to bring system from initial state to desired state. Optimization is done by iterative simulation and solved online periodically at each sample time, initializing values at each time with measured feedback.
Groß, Dominic [Verfasser]. "Distributed Model Predictive Control with Event-Based Communication / Dominic Groß." Kassel : Kassel University Press, 2015. http://d-nb.info/107453123X/34.
Full textRobb, David MacKenzie. "Model based predictive control with application to renewable energy systems." Thesis, University of Strathclyde, 2000. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=20379.
Full textAbdelghafar, Osman Haitham Mohamed Osman. "Tuning model based predictive control using multi-objective evolution algorithms." Thesis, University of Newcastle Upon Tyne, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.420026.
Full textYang, Xiaoke. "Fault-tolerant predictive control : a Gaussian process model based approach." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708784.
Full textMunoz, Carpintero Diego Alejandro. "Strategies in robust and stochastic model predictive control." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:2f6bce71-f91f-4d5a-998f-295eff5b089a.
Full textLe, Ankang. "Sensor based training optimization in professional cycling by model predictive control." Aachen Shaker, 2009. http://d-nb.info/1002144957/04.
Full textOKUMA, Shigeru, Tatsuya SUZUKI, YoungWoo KIM, and Tatsuya KATO. "Model Predictive Control of Traffic Flow Based on Hybrid System Modeling." Institute of Electronics, Information and Communication Engineers, 2005. http://hdl.handle.net/2237/14988.
Full textEjegi, Eyefujirin Evans. "Model predictive based load frequency control studies in a deregulated environment." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/17112/.
Full textXu, Shuqi. "Learning Model Predictive Control for Autonomous Racing : Improvements and Model Variation in Model Based Controller." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-247881.
Full textI detta arbete, presenteras en förbättrad inlärning baserad modell prediktivkontroll (LMPC) för autonom racing, styralgoritm är referens fritt och har visatsig att kunna förbättra varvtid genom att lära sig ifrån historiska data från tidigarevarv. En terminal kostnad och en samplad säker mängd är lärde ifrån historiskdata för att garantera rekursiv genomförbarhet och icke-avtagande prestanda vidvarje varv.förbättringar har presenterats för implementering av LMPC på autonom racingpå ett mer effektivt och pålitligt sätt. Förbättringar har gjorts på tre aspekter.Först, för system identifiering, föreslår vi att samlar feature data i delrummet,så att storlek på samlade datamängd reduceras och tiden som krävs för attköra sorteringsalgoritm minskas. För det andra, föreslår vi olika strategierför förbättrade modellnoggrannheten, såsom LMS med/utan lyft och Gaussianprocess regression. För det tredje, För att reducerar komplexitet för algoritm,metoder som kombinerar olika modellbygg strategier föreslogs. Att körastyrenhet på ett multi-rate sätt har också föreslagits till för att reduceraalgoritmkomplexitet då inkrementet av styrfrekvensen är nödvändigt.Prestanda av olika systemidentifiering har jämförts, bland annat, Newtonslag, klassisk systemidentifierings metoder och strategier från maskininlärning.Faktorer som eventuellt kan påverka konvergens av LMPC resultat har ocksåundersökts. Såsom, prediktions horisont, styrfrekvensen.Experimentresultat på en 1:10 skalad RC-bilen visar effektiviteten hos föreslagnaförbättringarna och skillnaderna i olika systemidentifierings strategier.
Wredh, Simon. "Neural Network Based Model Predictive Control of Turbulent Gas-Solid Corner Flow." Thesis, Uppsala universitet, Signaler och system, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-420056.
Full textJing, Junbo. "Vehicle Fuel Consumption Optimization using Model Predictive Control based on V2V communication." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1406201257.
Full textBenner, Peter, and Sabine Hein. "Model predictive control based on an LQG design for time-varying linearizations." Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201000221.
Full textHernandez, German Ardul Munoz. "Application of model based predictive control to a pumped storage hydroelectric plant." Thesis, Bangor University, 2005. https://research.bangor.ac.uk/portal/en/theses/application-of-model-based-predictive-control-to-a-pumped-storage-hydroelectric-plant(297cbcf2-0fdb-4f9a-9f84-5f43a1052606).html.
Full textAL_Sheakh, Ameen Nael [Verfasser]. "Programming and Industrial Control, Model-Based Predictive Control of 3-Level Inverters / Nael AL_Sheakh Ameen." Wuppertal : Universitätsbibliothek Wuppertal, 2012. http://d-nb.info/1022901303/34.
Full textWalker, Jens. "A motion cueing model for mining and forestry simulator platforms based on Model Predictive Control." Thesis, Umeå universitet, Institutionen för fysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-98685.
Full textOryx Simulations tillverkar simulatorer i huvudsak för gruv- och skogsindustrinvilket används i utbildnings- och marknadsföringssyfte. Simulatorerna använder en röorelseplattform för att spegla hur fordonet i simulatormiljön rör sig. Denna plattform lutar och accelererar föraren för att förstarka upplevelsen. Tidigare har ett så kallat klassiskt washout-filter använts för att kontrollera plattformen som lämnar en del i övrigt att onska vad gäller hur väl fordonets rörelser speglas, hur lätt det ar att justera samt hur det hanterar plattformens begränsningar. Detta projekt ämnar producera en modell som väl speglar vinklar,hastigheter och accelerationer samtidigt som den respekterar plattformens gränser. I tillägg till detta bör modellen vara enkel att modifiera och justera. Detta uppnås genom så kallad Model Predictive Control som förutsager hur plattformen kommer röra sig utifrån dess aktuella tillstånd samtidigt som den respekterar de tvång som finns på plattformen direkt i modellen. Då alla parametrar i modellen är faktiska fysiska kvantiteter blir modellen märkbart lättare att justera. En viktig komponent i denna lösning är så kallad tilt coordination vilket består i att substituera lateral/longtudinell acceleration med en komposant av tyngdaccelerationen genom att luta föraren. Denna modell konstrueras och implementeras i Matlab och verifieras genom att använda extraherat data från den simulerade miljön. Vi kan se att parametrarna som består av vinklar, rotationella hastigheter och linjära accelerationer speglas väldigt väl, samtidigt som tvången på plattformen respekteras. Dessa tvång kan enkelt modieras for att passa den aktuella simulatorn. Vi ser även att modellen framgångsrikt implementerar tilt coordination i plattformens beteende. I teorin har denna modell väldigt bra prestanda; vad som kvarstår är att implementera den på en rörelseplattform och finjustera modellen.
Varutti, Paolo [Verfasser]. "Model Predictive Control for Nonlinear Networked Control Systems : A Model-based Compensation Approach for Nondeterministic Communication Networks / Paolo Varutti." Aachen : Shaker, 2014. http://d-nb.info/1053361688/34.
Full textChen, Xiao. "Fuel optimal powertrain control of heavy-duty vehicle based on model predictive control and quadratic programming." Thesis, KTH, Reglerteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217527.
Full textTransport av gods har en grundläggande roll i världens ekonomiska utveckling.På grund av flexibiliteten hos tunga fordon, utförs en stor del av allgodstransport med hjälp av dem. Trots att användning av tunga fordon bidrartill ekonomisk tillväxt, utgör bränsleförbrukning tillsammans med den ökadeutsläpp av växthusgas en utmaning för transportföretag att anpassa och utvecklamer bränslesnål och miljövänligare transportteknologi för tunga fordon.I detta examensarbete fokuserar man på körningen av lastbil på motorvägar.En bränsle optimal förutsägande styralgoritm är utvecklad och utvärderad.Algoritmen utnyttjar framför allt topografi information om vägen framför fordonetså att den kan planera körningen på ett bränslesparande sätt samtidigtsom den uppfyller ett visst tidskrav. Med antagande om konstant växel underkörningen, formuleras ett optimal styrningsproblem baserat på ett MPC ramverkmed kvadratisk målfunktion och linjära bivillkor. Den slutliga kvadratiskoptimeringsproblemet för varje styrhorisont är löst med hjälp av en för ändamåletframtagen QP-algoritm.Möjligheten att implementera en sådan algoritm på en inbyggd styrenhetär undersökt och veriferad. Både krav på låg beräkningskomplexitet och lågminnes användning är uppfylls av den MPC-anpassade QP-lösare som utvecklatsi detta examensarbete.Den slutliga styralgoritmen testades i verkligheten med en Scania lastbilpå motorväg. Resultat från både provkörning och simulering visar att metodenger en bränsleeffektiv körstrategi, som kan spara bränsle jämfört med en regelbaseradprediktiv farthållaren.
Karimi, Pour Fatemeh. "Health-aware predictive control schemes based on industrial processes." Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2020. http://hdl.handle.net/10803/673045.
Full textEsta tesis pretende proporcionar contribuciones teóricas y prácticas sobre seguridad y control de sistemas industriales, especialmente en la forma maten ática de sistemas inciertos. La investigación está motivada por aplicaciones reales, como la planta de pasteurización, las redes de agua y el sistema autónomo, cada uno de los cuales requiere un sistema de control específico para proporcionar una gestión adecuada capaz de tener en cuenta sus características particulares y limites o de operación en presencia de incertidumbres relacionadas con su operación y fallas de averías de componentes. De acuerdo con que la mayoría de los sistemas reales tienen comportamientos no lineales, puede aproximarse a ellos mediante modelos inciertos lineales politopicos como los modelos de Lineal Variación de Parámetros (LPV) y Takagi-Sugeno (TS). Por lo tanto, se propone un nuevo enfoque de Control Predictivo del Modelo (MPC) económico basado en modelos LPV/TS y la estabilidad del enfoque propuesto se certifica mediante el uso de una restricción de región en el estado terminal. Además, la estrategia MPC-LPV se extiende en función del sistema con diferentes demoras que afectan los estados y las entradas. El enfoque de control permite al controlador acomodar los parámetros de programación y retrasar el cambio. Al calcular la predicción de las variables de estado y el retraso a lo largo de un horizonte de tiempo de predicción, el modelo del sistema se puede modificar de acuerdo con la evaluación del estado estimado y el retraso en cada instante de tiempo. Para aumentar la confiabilidad del sistema, anticipar la aparición de fallas y reducir los costos operativos, se debe considerar el monitoreo del estado del actuador. Con respecto a varios tipos de fallas del sistema, se estudian diferentes estrategias para obtener fallas del sistema. Primero, el daño se evalúa con el algoritmo de conteo de flujo de lluvia que permite estimar la fatiga del componente y el objetivo de control se modifica agregando un criterio adicional que tiene en cuenta el daño acumulado. Además, se presentan dos estrategias diferentes de control predictivo económico que tienen en cuenta la salud y tienen como objetivo minimizar el daño de los componentes. Luego, se desarrolla un controlador MPC económico con conciencia de salud para calcular los componentes y la confiabilidad del sistema en el modelo MPC utilizando un enfoque de modelado LPV y maximiza la disponibilidad del sistema mediante la estimación de la confiabilidad del sistema. Además, otra mejora considera la programación de restricción de posibilidades para calcular una política ´optima de reposición de listas basada en un nivel de aceptabilidad de riesgo deseado, logrando designar dinámicamente existencias de seguridad en redes basadas en flujo para satisfacer demandas de flujo no estacionarias. Finalmente, un enfoque innovador de control consciente de la salud para vehículos de carreras autónomos para controlarlo simultáneamente hasta los límites de conducción y seguir el camino deseado basado en la maximización de la bacteria RUL. El diseño del control se divide en dos capas con diferentes escalas de tiempo, planificador de ruta y controlador. El enfoque propuesto está formulado como un MPC robusto en línea optimo basado en LMI impulsado por la estabilidad de Lyapunov y la síntesis de ganancia del controlador resuelta por el problema LPV-LQR en la formulación de LMI con acción integral para el seguimiento de la trayectoria.
McNeilly, Gordon. "Coordinated control of hot strip tandem rolling mill." Thesis, University of Strathclyde, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366772.
Full textGrosso, Pérez Juan Manuel. "On model predictive control for economic and robust operation of generalised flow-based networks." Doctoral thesis, Universitat Politècnica de Catalunya, 2015. http://hdl.handle.net/10803/288218.
Full textEsta tesis se enfoca en el diseño de estrategias de control predictivo basado en modelos (MPC, por sus siglas en inglés) con la meta de mejorar la gestión de sistemas que pueden ser descritos por redes generalizadas de flujo y que están sujetos a restricciones, enfatizando especialmente en la optimización económica y el desempeño robusto de tales sistemas. De esta manera, varios esquemas de control se desarrollan en esta tesis para explotar tanto la información económica disponible de la operación del sistema como la información de perturbaciones obtenida de datos medibles y de modelos de predicción. La teoría de redes dinámicas de flujo es utilizada en esta tesis para desarrollar modelos orientados a control que sirven para diseñar controladores MPC especializados para la gestión de redes de flujo que presentan tanto perturbaciones aditivas como dinámicas y costos periódicamente variables en el tiempo. Las estrategias de control propuestas en esta tesis se pueden clasificar en dos categorías: estrategias de control MPC centralizado y estrategias de control MPC no-centralizado. Dichas estrategias son evaluadas mediante simulaciones de un caso de estudio real: la red de transporte de agua potable de Barcelona en España. En cuanto a las estrategias de control MPC centralizado, diferentes formulaciones de controladores MPC económicos son primero estudiadas para garantizar factibilidad recursiva y estabilidad del sistema cuya operación responde a demandas nominales de flujo periódico, a parámetros económicos posiblemente variantes en el tiempo y a funciones de costo multi-objetivo. Adicionalmente, estrategias de control MPC basado en fiabilidad, MPC con restricciones probabilísticas y MPC basado en árboles de escenarios son propuestas para garantizar la fiabilidad tanto de tareas de almacenamiento como de transporte de flujo en la red. Tales estrategias permiten satisfacer un nivel de servicio al cliente bajo incertidumbre en la demanda futura, así como distribuir eficientemente el esfuerzo global de control bajo la presencia de degradación en los actuadores del sistema. Por otra parte, técnicas de computación suave como redes neuronales artificiales y lógica difusa se utilizan para incorporar capacidades de auto-sintonía en un controlador MPC económico de certeza-equivalente. Dado que hay objeciones al uso de control centralizado en redes de gran escala, dos estrategias de control no-centralizado son propuestas en esta tesis. Primero, un controlador MPC económico distribuido de baja complejidad computacional es diseñado con una topología estructurada en dos capas. En una capa inferior, un conjunto de controladores MPC locales se encargan de controlar particiones de la red mediante el intercambio de información limitada de los recursos físicos compartidos y resolviendo sus problemas locales de optimización de forma similar a una secuencia jerárquica de solución. Para contrarrestar la pérdida de información económica global que ocurra tras la descomposición de la tarea de control global, una capa de coordinación es diseñada para influenciar no-iterativamente la decisión de los controles locales con el fin de lograr una mejora global del desempeño económico. La segunda estrategia no-centralizada propuesta en esta tesis es una formulación de control MPC económico distribuido cooperativo basado en una restricción terminal periódica. Tal estrategia garantiza convergencia a un equilibrio de Nash sin la necesidad de una capa de coordinación pero requiere una comunicación iterativa de información global entre todos los controladores locales, los cuales optimizan en paralelo sus acciones de control utilizando un modelo centralizado de la red.
Choi, Rejina Ling Wei. "Modelling and Model Based Control Design For Rotorcraft Unmanned Aerial Vehicle." Thesis, University of Canterbury. Mechanical Engineering, 2014. http://hdl.handle.net/10092/9933.
Full textFlood, Cecilia. "Real-time Trajectory Optimization for Terrain Following Based on Non-linear Model Predictive Control." Thesis, Linköping University, Department of Electrical Engineering, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1136.
Full textThere are occasions when it is preferable that an aircraft flies asclose to the ground as possible. It is difficult for a pilot to predict the topography when he cannot see beyond the next hill, and this makes it hard for him to find the optimal flight trajectory. With the help of a terrain database in the aircraft, the forthcoming topography can be found in advance and a flight trajectory can be calculated in real-time. The main goal is to find an optimal control sequence to be used by the autopilot. The optimization algorithm, which is created for finding the optimal control sequence, has to be run often and therefore, it has to be fast.
This thesis presents a terrain following algorithm based on Model Predictive Control which is a promising and robust way of solving the optimization problem. By using trajectory optimization, a trajectory which follows the terrain very good is found for the non-linear model of the aircraft.
Mechelli, Luca [Verfasser]. "POD-based State-Constrained Economic Model Predictive Control for Convection-Diffusion Phenomena / Luca Mechelli." Konstanz : KOPS Universität Konstanz, 2019. http://d-nb.info/1200355075/34.
Full textHuman, Gerhardus. "Model based predictive control for load following of a pressurised water reactor / Gerhardus Human." Thesis, North-West University, 2009. http://hdl.handle.net/10394/4017.
Full textThesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2010.
Rogers, Andrew Charles. "Optimization-Based Guidance for Satellite Relative Motion." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/79455.
Full textPh. D.
Yu, Mingzhao. "Model Reduction and Nonlinear Model Predictive Control of Large-Scale Distributed Parameter Systems with Applications in Solid Sorbent-Based CO2 Capture." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/887.
Full textHayakawa, Yoshikazu, and Tomohiko Jimbo. "Model Predictive Control for Automotive Engine Torque Considering Internal Exhaust Gas Recirculation." International Federation of Automatic Control (IFAC), 2011. http://hdl.handle.net/2237/20769.
Full textHitzemann, U. "Extensions in non-minimal state-space and state-dependent parameter model based control with application to a DC-DC boost converter." Thesis, Coventry University, 2013. http://curve.coventry.ac.uk/open/items/ca983ce5-bec4-4598-8ac2-48e7302489f5/1.
Full textArif, Bilal. "Real-time grid parameter estimation methods using model based predictive control for grid-connected converters." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/31963/.
Full textHoffmann, Kai [Verfasser]. "Non-linear model-based predictive control of a low-temperature gasoline combustion engine / Kai Hoffmann." Düsseldorf : VDI-Verl, 2010. http://d-nb.info/1005312478/34.
Full textBöck, Martin [Verfasser]. "Model Predictive and Flatness-based Path Following Control and Manifold Stabilization with Applications / Martin Böck." Aachen : Shaker, 2016. http://d-nb.info/1118258584/34.
Full textKäpernick, Bartosz [Verfasser]. "Gradient-based nonlinear model predictive control with constraint transformation for fast dynamical systems / Bartosz Käpernick." Ulm : Universität Ulm, 2016. http://d-nb.info/1166756491/34.
Full textCarneiro, Gustavo Lima. "Model based predictive control applied to the aircraft longitudinal mode for a terrain following task." Instituto Tecnológico de Aeronáutica, 2009. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1228.
Full textKäpernick, Bartosz Maciej [Verfasser]. "Gradient-based nonlinear model predictive control with constraint transformation for fast dynamical systems / Bartosz Käpernick." Ulm : Universität Ulm, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-8522-4.
Full textLi, Xiawen. "Power System Stability Improvement with Decommissioned Synchronous Machine Using Koopman Operator Based Model Predictive Control." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/102503.
Full textDoctor of Philosophy
Bahremand, Saeid. "Blood Glucose Management Streptozotocin-Induced Diabetic Rats by Artificial Neural Network Based Model Predictive Control." Thesis, Southern Illinois University at Edwardsville, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10249804.
Full textDiabetes is a group of metabolic diseases where the body’s pancreas does not produce enough insulin or does not properly respond to insulin produced, resulting in high blood sugar levels over a prolonged period. There are several different types of diabetes, but the most common forms are type 1 and type 2 diabetes. Type 1 diabetes Mellitus (T1DM) can occur at any age, but is most commonly diagnosed from infancy to late 30s. If a person is diagnosed with type 1 diabetes, their pancreas produces little to no insulin, and the body’s immune system destroys the insulin-producing cells in the pancreas. Those diagnosed with type 1 diabetes must inject insulin several times every day or continually infuse insulin through a pump, as well as manage their diet and exercise habits. If not treated appropriately, it can cause serious complications such as cardiovascular disease, stroke, kidney failure, foot ulcers, and damage to eyes.
During the past decade, researchers have developed artificial pancreas (AP) to ease management of diabetes. AP has three components: continuous glucose monitor (CGM), insulin pump, and closed-loop control algorithm. Researchers have developed algorithms based on control techniques such as Proportional Integral Derivative (PID) and Model Predictive Control (MPC) for blood glucose level (BGL) control; however, variability in metabolism between or within individuals hinders reliable control.
This study aims to develop an adaptive algorithm using Artificial Neural Networks (ANN) based Model Predictive Control (NN-MPC) to perform proper insulin injections according to BGL predictions in diabetic rats. This study is a ground work to implement NN-MPC algorithm on real subjects. BGL data collected from diabetic rats using CGM are used with other inputs such as insulin injection and meal information to develop a virtual plant model based on a mathematical model of glucose–insulin homeostasis proposed by Lombarte et al. Since this model is proposed for healthy rats; a revised version on this model with three additional equations representing diabetic rats is used to generate data for training ANN which is applicable for the identi?cation of dynamics and the glycemic regulation of rats. The trained ANN is coupled with MPC algorithm to control BGL of the plant model within the normal range of 100 to 130 mg/dl by injecting appropriate amount of insulin. The ANN performed well with less than 5 mg/dl error (2%) for 5-minute prediction and about 15 mg/dl error (7%) for 30-minute prediction. In ¬¬addition, the NN-MPC algorithm kept BGL of diabetic rats more than 90 percent of the time within the normal range without hyper/hypo-glycaemia.
Lefort, Antoine. "A smart grid ready building energy management system based on a hierarchical model predictive control." Thesis, Supélec, 2014. http://www.theses.fr/2014SUPL0010/document.
Full textElectrical system is under a hard constraint: production and consumption must be equal. The production has to integrate non-controllable energy resources and to consider variability of local productions. While buildings are one of the most important energy consumers, the emergence of information and communication technologies (ICT) in the building integrates them in smart-grid as important consumer-actor players. Indeed, they have at their disposal various storage capacities: thermal storage, hot-water tank and also electrical battery. In our work we develop an hierarchical and distributed Building Energy Management Systems based on model predictive control in order to enable to shift, to reduce or even to store energy according to grid informations. The anticipation enables to plan the energy consumption in order to optimize the operating cost values, while the hierarchical architecture enables to treat the high resolution problem complexity and the distributed aspect enables to ensure the control modularity bringing adaptability to the controller
GUIDOLINI, R. "A NEURAL-BASED MODEL PREDICTIVE CONTROL TO TACKLE STEERING DELAY OF THE IARA AUTONOMOUS CAR." Universidade Federal do Espírito Santo, 2017. http://repositorio.ufes.br/handle/10/9852.
Full textNeste trabalho, propomos uma abordagem de Controle Preditivo Baseado em Modelo Neural (Neural Based Model Predictive Control - N-MPC) para lidar com atrasos na planta de direção de carros autônomos. Examinamos a abordagem N-MPC como uma alternativa para a implementação do subsistema de controle de direção da Intelligent and Autonomous Robotic Automobile (IARA). Para isso, comparamos a solução padrão, baseada na abordagem de controle Proporcional Integral Derivativo (PID), com a abordagem N-MPC. O subsistema de controle de direção PID funciona bem na IARA para velocidades de até 25 km/h. No entanto, acima desta velocidade, atrasos na Planta de Direção da IARA são muito elevados para permitir uma operação adequada usando uma abordagem PID. Modelamos a Planta de Direção da IARA usando uma rede neural e empregamos esse modelo neural na abordagem N-MPC. A abordagem N-MPC superou a abordagem PID reduzindo o impacto de atrasos na Planta de Direção de IARA e permitindo a operação autônoma da IARA em velocidades de até 37 km/h um aumento de 48% na velocidade máxima estável
Karlsson, Axel, and Bohan Zhou. "Model-Based versus Data-Driven Control Design for LEACH-based WSN." Thesis, KTH, Maskinkonstruktion (Inst.), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-272197.
Full textI samband med det ökande intresset för att implementera så kallade smart cities, har användningen av utbredda trådlösa sensor nätverk (WSN) blivit ett intresseområde. Bland applikationens största utmaningar, finns det fortfarande förbättringar med avseende på energiförbrukning och servicekvalité. Därmed så inriktar sig detta projekt på att utforska en mängd möjliga lösningar för att förbättra energieffektiviteten för dataaggregation inom WSN. Detta gjordes genom att strategiskt justera positionen av den mottagande basstationen samt paketfrekvensen för varje nod. Dessutom påbyggdes low-energy adaptive clustering hierarchy (LEACH) protokollet med WSN:ets laddningstillstånd. För detta examensarbete definierades ett WSN som ett två dimensionellt plan som innehåller sensor noder och en mobil basstation, d.v.s. en basstation som går att flytta. Efter rigorös analys av klustringsmetoder samt dynamiken av ett WSN, utvecklades två kontrollmetoder som bygger på olika kontrollstrategier. Dessa var en modelbaserad MPC kontroller och en datadriven reinforcement learning kontroller som implementerades för att förbättra energieffektiviteten i WSN. För att testa prestandan på dom två kontrollmetoderna, utvecklades en simulations platform baserat på Python, tillsamans med påbyggnaden av LEACH protokollet. Mängden data skickat per energienhet användes som index för att approximera kontrollprestandan. Simuleringsresultaten visar att den modellbaserade kontrollern kunde öka antalet skickade datapacket med 22% jämfört med när LEACH protokollet användes. Medans den datadrivna kontrollern hade en sämre prestanda jämfört med när enbart LEACH protokollet användes men den visade potential för WSN med en mindre storlek. Påbyggnaden av LEACH protokollet gav ingen tydlig ökning med avseende på energieffektiviteten p.g.a. en mängd avvikande resultat.