Dissertations / Theses on the topic 'Model "integrate-and-fire"'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 21 dissertations / theses for your research on the topic 'Model "integrate-and-fire".'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Russo, Elena Tea. "Fluctuation properties in random walks on networks and simple integrate and fire models." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9565/.
Full textBernardi, Davide. "Detecting Single-Cell Stimulation in Recurrent Networks of Integrate-and-Fire Neurons." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20560.
Full textThis thesis is a first attempt at developing a theoretical model of the experiments which show that the stimulation of a single cell in the cortex can trigger a behavioral reaction and that challenge the common belief that many neurons are needed to reliably encode information. As a starting point of the present work, one neuron selected at random within a random network of excitatory and inhibitory integrate-and-fire neurons is stimulated. One important goal of this thesis is to seek a readout scheme that can detect the single-cell stimulation in a plausible way with a reliability compatible with the experiments. The first readout scheme reacts to deviations from the spontaneous state in the activity of a readout population. When the choice of readout neurons is sufficiently biased towards those receiving direct links from the stimulated cell, the stimulation can be detected. In the second part of the thesis, the readout scheme is extended by employing a second network as a readout circuit. Interestingly, this new readout scheme is not only more plausible, but also more effective. These results are based both on numerical simulations of the network and on analytical approximations. Further experiments showed that the probability of the behavioral reaction is substantially independent of the length and intensity of the stimulation, but it increases when an irregular current is used. The last part of this thesis seeks a theoretical explanation for these findings. To this end, a recurrent network including more biological details of the system is considered. Furthermore, the functioning principle of the readout is modified to react to changes in the activity of the local network (a differentiator readout), instead of integrating the input. This differentiator readout yields results in accordance with the experiments and could be advantageous in the presence of nonstationarities.
Mahat, Aarati. "Dynamic features of neural activity in primary auditory cortex captured by an integrate-and-fire network model for auditory streaming." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6609.
Full textIolov, Alexandre V. "Parameter Estimation, Optimal Control and Optimal Design in Stochastic Neural Models." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34866.
Full textBahrami, Abdorrahim. "Modelling and Verifying Dynamic Properties of Neuronal Networks in Coq." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42643.
Full textCieniak, Jakub. "Stimulus Coding and Synchrony in Stochastic Neuron Models." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20004.
Full textSchwalger, Tilo. "The interspike-interval statistics of non-renewal neuron models." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://dx.doi.org/10.18452/16824.
Full textTo understand the complex dynamics of neurons and its ability to process information using a sequence of spikes, it is vital to characterize its stationary spontaneous spiking activity. The statistical properties of spike trains can be explained by reduced stochastic neuron models that account for various sources of noise. A well-developed theory exists for the class of renewal models, in which the interspike intervals (ISIs) are statistically independent. However, experimental studies show that many neurons are not well described by a renewal process because of correlations between ISIs. Such correlations can be captured by generalized, non-renewal models, which are, however, poorly understood theoretically. This thesis represents an analytical study of non-renewal models, focusing on two prominent correlation mechanisms: colored-noise driving representing temporally correlated inputs, and negative feedback currents realizing spike-frequency adaptation. For the perfect integrate-and-fire (PIF) model driven by a general Gaussian colored noise input, the higher-order statistics of the output spike train is derived using a weak-noise analysis of the Fokker-Planck equation. This includes formulas for the coefficient of variation, the serial correlation coefficient (SCC), the ISI density and the Fano factor. Then, the dynamics of a PIF model with a spike-triggered adaptation and a white-noise current is analyzed in detail. The theory yields an expression for the SCC valid for weak noise but arbitrary adaptation strengths and time scale, and also provides the linear response to time-dependent stimuli and the spike train power spectrum. Furthermore, it is shown that a stochastic adaptation current acts like a slow colored noise, which permits to determine the source of spiking variability observed in an auditory receptor neuron. Finally, the SCC is calculated for the fluctuation-driven spiking regime by assuming discrete states of colored noise or adaptation current.
Devalle, Federico. "Collective phenomena in networks of spiking neurons with synaptic delays." Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/666912.
Full textUna característica fonamental de la dinàmica d'una xarxa neuronal és l'emergència d'oscil·lacions degudes a sincronització. L'origen d'aquestes oscil·lacions és molt sovint degut les interaccions sinàptiques i als seus retards temporals inherents. Aquesta tesi analitza la emergència d'oscil·lacions produïdes per retards sinàptics en xarxes neuronals heterogènies. A partir de troballes recents en teories de camp mig per xarxes neuronals, aquest treball explora la dinàmica i les bifurcacions d'un model de {\it rate} amb diferents tipus de retards sinàptics. En paral·lel els resultats obtinguts mitjançant el nou model de rate són comparats amb simulacions numèriques de grans xarxes neuronals. Aquestes simulacions confirmen l'existència de nombrosos estats oscil·latoris produïts per sincronització. Alguns d'aquests estats són nous I mostren formes complexes de sincronització parcial i de caos col·lectiu. Gran part d'aquestes oscil·lacions han estat àmpliament ignorades a la literatura, degut a la limitació dels models tradicionals de rate per descriure estats amb un alt nivell de sincronització. Així doncs aquesta tesi ofereix una exploració única dels possibles escenaris oscil·latoris en xarxes neuronals amb retards sinàptics, i amplia significativament les eines matemàtiques disponibles per a la modelització de la gran diversitat d'oscil·lacions neuronals presents en les mesures elèctriques de l'activitat cerebral.
Esnaola, Acebes Jose M. "Patterns of spike synchrony in neural field models." Doctoral thesis, Universitat Pompeu Fabra, 2018. http://hdl.handle.net/10803/663871.
Full textNeural field models are phenomenological descriptions of the activity of spatially organized, recurrently coupled neuronal networks. Due to their mathematical simplicity, such models are extremely useful for the analysis of spatiotemporal phenomena in networks of spiking neurons, and are largely used in computational neuroscience. Nevertheless, it is well known that traditional neural field descriptions fail to describe the collective dynamics of networks of synchronously spiking neurons. Yet, numerical simulations of networks of spiking neurons show that, even in the case of highly asynchronous activity, fast fluctuations in the common external inputs drive transient episodes of spike synchrony. Moreover, synchronization may also be generated by the network itself, resulting in the appearance of robust large-scale, self-sustained oscillations. In this thesis, we investigate the emergence of synchrony-induced spatiotemporal patterns in spatially distributed networks of heterogeneous spiking neurons. These patterns are not observed in traditional neural field theories and have been largely overlooked in the literature. To investigate synchrony-induced phenomena in neuronal networks, we use a novel neural field model which is exactly derived from a large population of quadratic integrate-and-fire model neurons. The simplicity of the neural field model allows us to analyze the stability of the network in terms of the spatial profile of the synaptic connectivity, and to obtain exact formulas for the stability boundaries characterizing the dynamics of the original spiking neuronal network. Remarkably, the analysis also reveals the existence of a collection of oscillation modes, which are exclusively due to spike-synchronization. We believe that the results presented in this thesis will foster theoretical advances on the collective dynamics of neuronal networks, upgrading the mathematical basis of computational neuroscience.
Pressley, Joanna. "Response dynamics of integrate-and-fire neuron models." College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8521.
Full textThesis research directed by: Applied Mathematics and Scientific Computation Program. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Laudanski, Jonathan. "Integrate-and-fire models in the auditory system : Dynamics of single neurons and neural populations." Thesis, University of Nottingham, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.523713.
Full textMaus, Rickard, and Mattias Arvidsson. "Predicting Parameters of Adaptive Integrate-and-Fire Models through Machine Learning with Gramian Angular Fields." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301737.
Full textInom området av neurovetenskap är simulering av neuroner och neuronala nätverk ofta av stort intresse. Innan neuronmodellerna kan användas krävs det justering av flera parametrar för att korrekt replikera egenskaper hos en given neurontyp. Det finns flera metoder för att göra denna justering av parametrar men de har ett vanligt problem, de är beräkningstunga. I ett försök att minska den beräkningskostnad föreslår vi i denna studie en tillämpning av ’Convolutional Neural Networks’ med ’Gramian Angular Fields’ av spännings ’traces’ för att optimera parametrar med regression. Efter att ha tränat och evaluerat nätverket på data genererad från AdEx modellen i NEST fann vi att ’Convolutional Neural Networks’ i samband med ’Gramian Angular Fields’ fungerar exceptionellt bra på syntetisk data. Modellen kunde förutsäga alla utom en parameter med nästan alla återskapade ’traces’ inom acceptabla felintervall. Resultaten är lovande, men studien baserades enbart på syntetisk data. Framtida arbete med experimentella data är därför nödvändigt för att examinera metodens fulla förmåga.
Bol, Kieran G. "Redundant Input Cancellation by a Bursting Neural Network." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20061.
Full textDroste, Felix. "Signal transmission in stochastic neuron models with non-white or non-Gaussian noise." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17294.
Full textThis thesis is concerned with the effect of non-white or non-Gaussian synaptic noise on the information transmission properties of single neurons. Synaptic noise subsumes the massive input that a cell receives from thousands of other neurons. In the framework of stochastic neuron models, this input is described by a stochastic process with suitably chosen statistics. If the overall arrival rate of presynaptic action potentials is high and constant in time and if each individual incoming spike has only a small effect on the dynamics of the cell, the massive synaptic input can be modeled as a Gaussian process. For mathematical tractability, one often assumes that furthermore, the input is devoid of temporal structure, i.e. that it is well described by a Gaussian white noise. This is the so-called diffusion approximation (DA). The present thesis explores neuronal signal transmission when the conditions that underlie the DA are no longer met, i.e. when one must describe the synaptic background activity by a stochastic process that is not white, not Gaussian, or neither. We explore three distinct scenarios by means of simulations and analytical calculations: First, we study a cell that receives not one but two signals, additionally filtered by synaptic short-term plasticity (STP), so that the background has to be described by a colored noise. The second scenario deals with synaptic weights that cannot be considered small; here, the effective noise is no longer Gaussian and the shot-noise nature of the input has to be taken into account. Finally, we study the effect of a presynaptic population that does not fire at a rate which is constant in time but instead undergoes transitions between states of high and low activity, so-called up and down states.
Lin, Hsiangyi, and 林香儀. "Exponential integrate-and-fire model." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/84413580045030252925.
Full text國立中正大學
應用數學研究所
100
We study a two-dimensional integrate-and-fire model proposed by Izhikevich [1]. Such a model combines an exponential spike mechanism with an adaptation variable. With the suitable choice of parameter values, we numerically show that this model can generate various firing patterns, and depict a phase diagram describing the transition from one firing type to another.
Tseng, Wen, and 曾雯. "Algebraic integrate-and-fire model." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/05229773657700822633.
Full text國立中正大學
應用數學研究所
100
In this paper, we study a model proposed by Eugene M.Izhikevich[1, Chapter 8]. We numerically show that this model can generate various firing patterns as observed in the simple quadratical model.
Chen, Fu-Chi, and 陳福基. "Synchronization of A New Model of Pulse-Coupled Integrate-and-Fire Oscillators." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/16360205157163125029.
Full text國立成功大學
物理學系碩博士班
96
Synchronization is a natural phenomenon which is an active research topic. Many models were published to approximate these phenomena. In one of these models, all basic entities are considered as identical oscillators with pulse-coupled interaction among them. We use a model to approximate these synchronous phenomena. And we discuss the conditions of two, three and N oscillators. Finally, we find some compatible domains of parameters to make all oscillators be synchronous for all initial conditions.
Šanda, Pavel. "Informační procesy v neuronech." Doctoral thesis, 2012. http://www.nusl.cz/ntk/nusl-326946.
Full textAugust, David Adam. "Sequence learning by an integrate-and-fire neural network model of hippocampal area CA3 /." 1997. http://wwwlib.umi.com/dissertations/fullcit/9738815.
Full textZhang, Jie. "Analysis of traveling wave propagation in one-dimensional integrate-and-fire neural networks." 2016. http://scholarworks.gsu.edu/math_diss/36.
Full textVan, Bussel Frank. "Topological Optimization in Network Dynamical Systems." Thesis, 2010. http://hdl.handle.net/11858/00-1735-0000-0006-B5BF-1.
Full text