To see the other types of publications on this topic, follow the link: Model "integrate-and-fire".

Dissertations / Theses on the topic 'Model "integrate-and-fire"'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 21 dissertations / theses for your research on the topic 'Model "integrate-and-fire".'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Russo, Elena Tea. "Fluctuation properties in random walks on networks and simple integrate and fire models." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9565/.

Full text
Abstract:
In questa tesi si è studiato l’insorgere di eventi critici in un semplice modello neurale del tipo Integrate and Fire, basato su processi dinamici stocastici markoviani definiti su una rete. Il segnale neurale elettrico è stato modellato da un flusso di particelle. Si è concentrata l’attenzione sulla fase transiente del sistema, cercando di identificare fenomeni simili alla sincronizzazione neurale, la quale può essere considerata un evento critico. Sono state studiate reti particolarmente semplici, trovando che il modello proposto ha la capacità di produrre effetti "a cascata" nell’attività neurale, dovuti a Self Organized Criticality (auto organizzazione del sistema in stati instabili); questi effetti non vengono invece osservati in Random Walks sulle stesse reti. Si è visto che un piccolo stimolo random è capace di generare nell’attività della rete delle fluttuazioni notevoli, in particolar modo se il sistema si trova in una fase al limite dell’equilibrio. I picchi di attività così rilevati sono stati interpretati come valanghe di segnale neurale, fenomeno riconducibile alla sincronizzazione.
APA, Harvard, Vancouver, ISO, and other styles
2

Bernardi, Davide. "Detecting Single-Cell Stimulation in Recurrent Networks of Integrate-and-Fire Neurons." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20560.

Full text
Abstract:
Diese Arbeit ist ein erster Versuch, mit Modellbildung und mathematischer Analyse die Experimente zu verstehen, die zeigten, dass die Stimulation eines einzelnen Neurons im Cortex eine Verhaltensreaktion auslösen kann. Dieser Befund stellt die verbreitete Ansicht infrage, dass viele Neurone nötig sind, um Information zuverlässig kodieren zu können. Der Ausgangspunkt der vorliegenden Untersuchung ist die Stimulation einer zufällig ausgewählten Zelle in einem Zufallsnetzwerk exzitatorischer und inhibitorischer Neuronmodelle. Es wird dann nach einem plausiblen Ausleseverfahren gesucht, das die Einzelzellstimulation mit einer mit den Experimenten vergleichbaren Zuverlässigkeit detektieren kann. Das erste Ausleseschema reagiert auf Abweichungen vom spontanen Zustand in der Aktivität einer Auslesepopulation. Die Stimulation wird detektiert, wenn bei der Auswahl der Auslesepopulation denjenigen Neuronen ein Vorzug gegeben wird, die eine direkte Verbindung von der stimulierten Zelle bekommen. Im zweiten Teil der Arbeit wird das Ausleseschema erweitert, indem ein zweites Netzwerk als Ausleseschaltkreis dient. Interessanterweise erweist sich dieses Ausleseschema nicht nur als plausibler, sondern auch als effektiver. Diese Resultate basieren sowohl auf Simulationen als auch auf analytischen Rechnungen. Weitere Experimente zeigten, dass eine konstante Strominjektion einen Effekt auslöst, der kaum von Dauer und Intensität der Stimulation abhängt, der aber bei unregelmäßiger Stimulation zunimmt. Der letzte Teil der Arbeit befasst sich mit einer theoretischen Erklärung für diese Ergebnisse. Hierzu werden die biologischen Eigenschaften des Systems im Modell detaillierter beschrieben. Weiterhin wird die Funktionsweise des Ausleseschemas so modifiziert, dass es auf Veränderungen reagiert, anstatt den Input zu integrieren. Dieser Differenzierdetektor liefert Ergebnisse, die mit den Experimenten übereinstimmen, und könnte bei nichtstationärem Input vorteilhaft sein.
This thesis is a first attempt at developing a theoretical model of the experiments which show that the stimulation of a single cell in the cortex can trigger a behavioral reaction and that challenge the common belief that many neurons are needed to reliably encode information. As a starting point of the present work, one neuron selected at random within a random network of excitatory and inhibitory integrate-and-fire neurons is stimulated. One important goal of this thesis is to seek a readout scheme that can detect the single-cell stimulation in a plausible way with a reliability compatible with the experiments. The first readout scheme reacts to deviations from the spontaneous state in the activity of a readout population. When the choice of readout neurons is sufficiently biased towards those receiving direct links from the stimulated cell, the stimulation can be detected. In the second part of the thesis, the readout scheme is extended by employing a second network as a readout circuit. Interestingly, this new readout scheme is not only more plausible, but also more effective. These results are based both on numerical simulations of the network and on analytical approximations. Further experiments showed that the probability of the behavioral reaction is substantially independent of the length and intensity of the stimulation, but it increases when an irregular current is used. The last part of this thesis seeks a theoretical explanation for these findings. To this end, a recurrent network including more biological details of the system is considered. Furthermore, the functioning principle of the readout is modified to react to changes in the activity of the local network (a differentiator readout), instead of integrating the input. This differentiator readout yields results in accordance with the experiments and could be advantageous in the presence of nonstationarities.
APA, Harvard, Vancouver, ISO, and other styles
3

Mahat, Aarati. "Dynamic features of neural activity in primary auditory cortex captured by an integrate-and-fire network model for auditory streaming." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6609.

Full text
Abstract:
Past decades of auditory research have identified several acoustic features that influence perceptual organization of sound, in particular, the frequency of tones and the rate of presentation. One class of stimuli that have been intensively studied are sequences of tones that alternate in frequency. They are typically presented in patterns of repeating doublets ABAB… or repeating triplets ABA-ABA-... where the symbol “-” stands for a gap of silence between triplets repeats. The duration of each tone or silence is typically tens to hundreds of milliseconds, and listeners hearing the sequence perceive either one auditory object ("stream integration") or two separate auditory objects (“stream segregation”). Animal studies have characterized single- and multi- unit neural activity and event-related local field potentials while systematically varying frequency separation between tones (ΔF) or the presentation rate (PR). They found that the B tone responses in doublets were differentially suppressed with increasing PR and that the B tones responses in triplets decreased with larger ΔF. However, the neural mechanisms underlying these animal data have yet to be explained. In this study, we built an integrate-and-fire network model of the primary auditory cortex (AC) that accurately reproduced the experimental results. Then, we extended the model to account for basic spectro-temporal features of electrocorticography (ECoG) recordings from the posteriomedial part of the Heschl's gyrus (HGPM; cortical area equivalent to the AC of monkeys), obtained from humans listening to sequences of triplets ABA-. Finally, we constructed a firing rate reduced model of the proposed integrate-and-fire network and analyzed its dynamics as function of parameters. A large network of voltage-dependent leaky integrate-and-fire neurons (3600 excitatory, 900 inhibitory) was constructed to simulate neural activity from layers 3/4 of AC during streaming of tone triplets. Parameters describing synaptic and membrane properties were based on experimental data from early studies of AC. Network structure assumed spatially-dependent probability of connections and tonotopic organization. Subpopulations of neurons were tuned to different frequencies along the tonotopic map. In-silico recordings were performed during the presentation of long sequences of triplets and/or doublets. The network’s output was derived with two types of measurements in mind: spiking activity of individual neurons and/or local populations of neurons, and local field potentials. The network spiking neural activity reproduced reliably data reports, including dependence of responses to the B tone in triplets ABA- on stimulus parameter ΔF. Approximations of average evoked potentials (AEPs) from ECoG signals recorded at four depth contacts placed over human HGPM during auditory streaming of triplets were also obtained.
APA, Harvard, Vancouver, ISO, and other styles
4

Iolov, Alexandre V. "Parameter Estimation, Optimal Control and Optimal Design in Stochastic Neural Models." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34866.

Full text
Abstract:
This thesis solves estimation and control problems in computational neuroscience, mathematically dealing with the first-passage times of diffusion stochastic processes. We first derive estimation algorithms for model parameters from first-passage time observations, and then we derive algorithms for the control of first-passage times. Finally, we solve an optimal design problem which combines elements of the first two: we ask how to elicit first-passage times such as to facilitate model estimation based on said first-passage observations. The main mathematical tools used are the Fokker-Planck partial differential equation for evolution of probability densities, the Hamilton-Jacobi-Bellman equation of optimal control and the adjoint optimization principle from optimal control theory. The focus is on developing computational schemes for the solution of the problems. The schemes are implemented and are tested for a wide range of parameters.
APA, Harvard, Vancouver, ISO, and other styles
5

Bahrami, Abdorrahim. "Modelling and Verifying Dynamic Properties of Neuronal Networks in Coq." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42643.

Full text
Abstract:
Since the mid-1990s, formal verification has become increasingly important because it can provide guarantees that a software system is free of bugs and working correctly based on a provided model. Verification of biological and medical systems is a promising application of formal verification. Human neural networks have recently been emulated and studied as a biological system. Some recent research has been done on modelling some crucial neuronal circuits and using model checking techniques to verify their temporal properties. In large case studies, model checkers often cannot prove the given property at the desired level of generality. In this thesis, we provide a model using the Coq proof assistant and prove some properties concerning the dynamic behavior of some basic neuronal structures. Understanding the behavior of these modules is crucial because they constitute the elementary building blocks of bigger neuronal circuits. By using a proof assistant, we guarantee that the properties are true in the general case, that is, true for any input values, any length of input, and any amount of time. In this thesis, we define a model of human neural networks. We verify some properties of this model starting with properties of neurons. Neurons are the smallest unit in a human neuronal network. In the next step, we prove properties about functional structures of human neural networks which are called archetypes. Archetypes consist of two or more neurons connected in a suitable way. They are known for displaying some particular classes of behaviours, and their compositions govern several important functions such as walking, breathing, etc. The next step is verifying properties about structures that couple different archetypes to perform more complicated actions. We prove a property about one of these kinds of compositions. With such a model, there is the potential to detect inactive regions of the human brain and to treat mental disorders. Furthermore, our approach can be generalized to the verification of other kinds of networks, such as regulatory, metabolic, or environmental networks.
APA, Harvard, Vancouver, ISO, and other styles
6

Cieniak, Jakub. "Stimulus Coding and Synchrony in Stochastic Neuron Models." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20004.

Full text
Abstract:
A stochastic leaky integrate-and-fire neuron model was implemented in this study to simulate the spiking activity of the electrosensory "P-unit" receptor neurons of the weakly electric fish Apteronotus leptorhynchus. In the context of sensory coding, these cells have been previously shown to respond in experiment to natural random narrowband signals with either a linear or nonlinear coding scheme, depending on the intrinsic firing rate of the cell in the absence of external stimulation. It was hypothesised in this study that this duality is due to the relation of the stimulus to the neuron's excitation threshold. This hypothesis was validated with the model by lowering the threshold of the neuron or increasing its intrinsic noise, or randomness, either of which made the relation between firing rate and input strength more linear. Furthermore, synchronous P-unit firing to a common input also plays a role in decoding the stimulus at deeper levels of the neural pathways. Synchronisation and desynchronisation between multiple model responses for different types of natural communication signals were shown to agree with experimental observations. A novel result of resonance-induced synchrony enhancement of P-units to certain communication frequencies was also found.
APA, Harvard, Vancouver, ISO, and other styles
7

Schwalger, Tilo. "The interspike-interval statistics of non-renewal neuron models." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://dx.doi.org/10.18452/16824.

Full text
Abstract:
Um die komplexe Dynamik von Neuronen und deren Informationsverarbeitung mittels Pulssequenzen zu verstehen, ist es wichtig, die stationäre Puls-Aktivität zu charakterisieren. Die statistischen Eigenschaften von Pulssequenzen können durch vereinfachte stochastische Neuronenmodelle verstanden werden. Eine gut ausgearbeitete Theorie existiert für die Klasse der Erneuerungsmodelle, welche die statistische Unabhängigkeit der Interspike-Intervalle (ISI) annimmt. Experimente haben jedoch gezeigt, dass viele Neuronen Korrelationen zwischen ISIs aufweisen und daher nicht gut durch einen Erneuerungsprozess beschrieben werden. Solche Korrelationen können durch Nichterneuerungs-Modelle erfasst werden, welche jedoch theoretisch schlecht verstanden sind. Diese Arbeit ist eine analytische Studie von Nichterneuerungs-Modellen, die zwei bedeutende Korrelationsmechanismen untersucht: farbiges Rauschen, welches zeitlich-korrelierten Input darstellt, und negative Puls-Rückkopplung, welche Feuerraten-Adaption realisiert. Für das "Perfect-Integrate-and-Fire" (PIF) Modell, welchen durch ein allgemeines Gauss''sches farbiges Rauschen getrieben ist, werden die Statistiken höherer Ordnung der Output-Pulssequenz hergeleitet, insbesondere der Koeffizient der Variation, der serielle Korrelationskoeffizient (SCC), die ISI-Dichte und der Fano-Faktor. Weiterhin wird die Dynamik des PIF Modells mit Puls-getriggertem Adaptionsstrom und weissem Stromrauschen im Detail analysiert. Die Theorie liefert einen Ausdruck für den SCC, der für schwaches Rauschen aber beliebige Adaptions-Stärke und Zeitskale gültig ist, sowie die lineare Antwortfunktion und das Leistungsspektrum der Pulssequenz. Ausserdem wird gezeigt, dass ein stochastischer Adaptionsstrom wie ein langsames farbiges Rauschen wirkt, was ermöglicht, die dominierende Quellen des Rauschen in einer auditorischen Rezeptorzelle zu bestimmen. Schliesslich wird der SCC für das fluktuations-getriebene Feuerregime berechnet.
To understand the complex dynamics of neurons and its ability to process information using a sequence of spikes, it is vital to characterize its stationary spontaneous spiking activity. The statistical properties of spike trains can be explained by reduced stochastic neuron models that account for various sources of noise. A well-developed theory exists for the class of renewal models, in which the interspike intervals (ISIs) are statistically independent. However, experimental studies show that many neurons are not well described by a renewal process because of correlations between ISIs. Such correlations can be captured by generalized, non-renewal models, which are, however, poorly understood theoretically. This thesis represents an analytical study of non-renewal models, focusing on two prominent correlation mechanisms: colored-noise driving representing temporally correlated inputs, and negative feedback currents realizing spike-frequency adaptation. For the perfect integrate-and-fire (PIF) model driven by a general Gaussian colored noise input, the higher-order statistics of the output spike train is derived using a weak-noise analysis of the Fokker-Planck equation. This includes formulas for the coefficient of variation, the serial correlation coefficient (SCC), the ISI density and the Fano factor. Then, the dynamics of a PIF model with a spike-triggered adaptation and a white-noise current is analyzed in detail. The theory yields an expression for the SCC valid for weak noise but arbitrary adaptation strengths and time scale, and also provides the linear response to time-dependent stimuli and the spike train power spectrum. Furthermore, it is shown that a stochastic adaptation current acts like a slow colored noise, which permits to determine the source of spiking variability observed in an auditory receptor neuron. Finally, the SCC is calculated for the fluctuation-driven spiking regime by assuming discrete states of colored noise or adaptation current.
APA, Harvard, Vancouver, ISO, and other styles
8

Devalle, Federico. "Collective phenomena in networks of spiking neurons with synaptic delays." Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/666912.

Full text
Abstract:
A prominent feature of the dynamics of large neuronal networks are the synchrony-driven collective oscillations generated by the interplay between synaptic coupling and synaptic delays. This thesis investigates the emergence of delay-induced oscillations in networks of heterogeneous spiking neurons. Building on recent theoretical advances in exact mean field reductions for neuronal networks, this work explores the dynamics and bifurcations of an exact firing rate model with various forms of synaptic delays. In parallel, the results obtained using the novel firing rate model are compared with extensive numerical simulations of large networks of spiking neurons, which confirm the existence of numerous synchrony-based oscillatory states. Some of these states are novel and display complex forms of partial synchronization and collective chaos. Given the well-known limitation of traditional firing rate models to describe synchrony-based oscillations, previous studies greatly overlooked many of the oscillatory states found here. Therefore, this thesis provides a unique exploration of the oscillatory scenarios found in neuronal networks due to the presence of delays, and may substantially extend the mathematical tools available for modeling the plethora of oscillations detected in electrical recordings of brain activity.
Una característica fonamental de la dinàmica d'una xarxa neuronal és l'emergència d'oscil·lacions degudes a sincronització. L'origen d'aquestes oscil·lacions és molt sovint degut les interaccions sinàptiques i als seus retards temporals inherents. Aquesta tesi analitza la emergència d'oscil·lacions produïdes per retards sinàptics en xarxes neuronals heterogènies. A partir de troballes recents en teories de camp mig per xarxes neuronals, aquest treball explora la dinàmica i les bifurcacions d'un model de {\it rate} amb diferents tipus de retards sinàptics. En paral·lel els resultats obtinguts mitjançant el nou model de rate són comparats amb simulacions numèriques de grans xarxes neuronals. Aquestes simulacions confirmen l'existència de nombrosos estats oscil·latoris produïts per sincronització. Alguns d'aquests estats són nous I mostren formes complexes de sincronització parcial i de caos col·lectiu. Gran part d'aquestes oscil·lacions han estat àmpliament ignorades a la literatura, degut a la limitació dels models tradicionals de rate per descriure estats amb un alt nivell de sincronització. Així doncs aquesta tesi ofereix una exploració única dels possibles escenaris oscil·latoris en xarxes neuronals amb retards sinàptics, i amplia significativament les eines matemàtiques disponibles per a la modelització de la gran diversitat d'oscil·lacions neuronals presents en les mesures elèctriques de l'activitat cerebral.
APA, Harvard, Vancouver, ISO, and other styles
9

Esnaola, Acebes Jose M. "Patterns of spike synchrony in neural field models." Doctoral thesis, Universitat Pompeu Fabra, 2018. http://hdl.handle.net/10803/663871.

Full text
Abstract:
Els models neuronals de camp mig són descripcions fenomenològiques de l'activitat de xarxes de neurones espacialment organitzades. Gràcies a la seva simplicitat, aquests models són unes eines extremadament útils per a l'anàlisi dels patrons espai-temporals que apareixen a les xarxes neuronals, i s'utilitzen àmpliament en neurociència computacional. És ben sabut que els models de camp mig tradicionals no descriuen adequadament la dinàmica de les xarxes de neurones si aquestes actuen de manera síncrona. No obstant això, les simulacions computacionals de xarxes neuronals demostren que, fins i tot en estats d'alta asincronia, fluctuacions ràpides dels inputs comuns que arriben a les neurones poden provocar períodes transitoris en els quals les neurones de la xarxa es comporten de manera síncrona. A més a més, la sincronització també pot ser generada per la mateixa xarxa, donant lloc a oscil·lacions auto-sostingudes. En aquesta tesi investiguem la presència de patrons espai-temporals deguts a la sincronització en xarxes de neurones heterogènies i espacialment distribuïdes. Aquests patrons no s'observen en els models tradicionals de camp mig, i per aquest motiu han estat àmpliament ignorats en la literatura. Per poder investigar la dinàmica induïda per l'activitat sincronitzada de les neurones, fem servir un nou model de camp mig que es deriva exactament d'una població de neurones de tipus quadratic integrate-and-fire. La simplicitat del model ens permet analitzar l'estabilitat de la xarxa en termes del perfil espacial de la connectivitat sinàptica, i obtenir fórmules exactes per les fronteres d'estabilitat que caracteritzen la dinàmica de la xarxa neuronal original. Aquest mateix anàlisi també revela l'existència d'un conjunt de modes d'oscil·lació que es deuen exclusivament a l'activitat sincronitzada de les neurones. Creiem que els resultats presentats en aquesta tesi inspiraran nous avenços teòrics relacionats amb la dinàmica col·lectiva de les xarxes neuronals, contribuïnt així en el desenvolupament de la neurociència computacional.
Neural field models are phenomenological descriptions of the activity of spatially organized, recurrently coupled neuronal networks. Due to their mathematical simplicity, such models are extremely useful for the analysis of spatiotemporal phenomena in networks of spiking neurons, and are largely used in computational neuroscience. Nevertheless, it is well known that traditional neural field descriptions fail to describe the collective dynamics of networks of synchronously spiking neurons. Yet, numerical simulations of networks of spiking neurons show that, even in the case of highly asynchronous activity, fast fluctuations in the common external inputs drive transient episodes of spike synchrony. Moreover, synchronization may also be generated by the network itself, resulting in the appearance of robust large-scale, self-sustained oscillations. In this thesis, we investigate the emergence of synchrony-induced spatiotemporal patterns in spatially distributed networks of heterogeneous spiking neurons. These patterns are not observed in traditional neural field theories and have been largely overlooked in the literature. To investigate synchrony-induced phenomena in neuronal networks, we use a novel neural field model which is exactly derived from a large population of quadratic integrate-and-fire model neurons. The simplicity of the neural field model allows us to analyze the stability of the network in terms of the spatial profile of the synaptic connectivity, and to obtain exact formulas for the stability boundaries characterizing the dynamics of the original spiking neuronal network. Remarkably, the analysis also reveals the existence of a collection of oscillation modes, which are exclusively due to spike-synchronization. We believe that the results presented in this thesis will foster theoretical advances on the collective dynamics of neuronal networks, upgrading the mathematical basis of computational neuroscience.
APA, Harvard, Vancouver, ISO, and other styles
10

Pressley, Joanna. "Response dynamics of integrate-and-fire neuron models." College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8521.

Full text
Abstract:
Thesis (Ph. D.) -- University of Maryland, College Park, 2008.
Thesis research directed by: Applied Mathematics and Scientific Computation Program. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO, and other styles
11

Laudanski, Jonathan. "Integrate-and-fire models in the auditory system : Dynamics of single neurons and neural populations." Thesis, University of Nottingham, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.523713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Maus, Rickard, and Mattias Arvidsson. "Predicting Parameters of Adaptive Integrate-and-Fire Models through Machine Learning with Gramian Angular Fields." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301737.

Full text
Abstract:
In the field of neuroscience, simulation of neurons and neuronal networks are often of great interest. Before neuron models can be used they require tuning of several parameters to properly replicate characteristics of a given neuron type. There are several methods to do this tuning of parameters but they have one common issue, they are computationally expensive. In an effort to reduce the computational cost we propose in this study the application of Convolutional Neural Networks with Gramian Angular Fields of voltage trace data to the task of parameter optimization through regression. Training and evaluating the network on simulated data from the AdEx model in NEST we found that Convolutional Neural Networks in conjunction with Gramian Angular Fields work exceptionally well on synthetic data; being able to predict all but one parameter with almost all reproduced traces within acceptable error ranges. The method shows great promise. However, this study was based purely on synthetic data. Future work on experimental data is therefore necessary to examine the method’s full capability.
Inom området av neurovetenskap är simulering av neuroner och neuronala nätverk ofta av stort intresse. Innan neuronmodellerna kan användas krävs det justering av flera parametrar för att korrekt replikera egenskaper hos en given neurontyp. Det finns flera metoder för att göra denna justering av parametrar men de har ett vanligt problem, de är beräkningstunga. I ett försök att minska den beräkningskostnad föreslår vi i denna studie en tillämpning av ’Convolutional Neural Networks’ med ’Gramian Angular Fields’ av spännings ’traces’ för att optimera parametrar med regression. Efter att ha tränat och evaluerat nätverket på data genererad från AdEx modellen i NEST fann vi att ’Convolutional Neural Networks’ i samband med ’Gramian Angular Fields’ fungerar exceptionellt bra på syntetisk data. Modellen kunde förutsäga alla utom en parameter med nästan alla återskapade ’traces’ inom acceptabla felintervall. Resultaten är lovande, men studien baserades enbart på syntetisk data. Framtida arbete med experimentella data är därför nödvändigt för att examinera metodens fulla förmåga.
APA, Harvard, Vancouver, ISO, and other styles
13

Bol, Kieran G. "Redundant Input Cancellation by a Bursting Neural Network." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20061.

Full text
Abstract:
One of the most powerful and important applications that the brain accomplishes is solving the sensory "cocktail party problem:" to adaptively suppress extraneous signals in an environment. Theoretical studies suggest that the solution to the problem involves an adaptive filter, which learns to remove the redundant noise. However, neural learning is also in its infancy and there are still many questions about the stability and application of synaptic learning rules for neural computation. In this thesis, the implementation of an adaptive filter in the brain of a weakly electric fish, A. Leptorhynchus, was studied. It was found to require a cerebellar architecture that could supply independent frequency channels of delayed feedback and multiple burst learning rules that could shape this feedback. This unifies two ideas about the function of the cerebellum that were previously separate: the cerebellum as an adaptive filter and as a generator of precise temporal inputs.
APA, Harvard, Vancouver, ISO, and other styles
14

Droste, Felix. "Signal transmission in stochastic neuron models with non-white or non-Gaussian noise." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17294.

Full text
Abstract:
Die vorliegende Arbeit befasst sich mit dem Einfluss von nicht-weißem oder nicht-Gauß’schem synaptischen Rauschen auf die Informationsübertragung in stochastischen Neuronenmodellen. Ziel ist es, zu verstehen, wie eine Nervenzelle ein Signal in ihrer Pulsaktivität kodiert. Synaptisches Rauschen beschreibt hier den Einfluss anderer Nervenzellen, die nicht das interessierende Signal tragen, aber seine Übertragung durch ihre synaptische Wirkung auf die betrachtete Zelle beeinflussen. In stochastischen Neuronenmodellen wird diese Hintergrundaktivität durch einen stochastischen Prozess mit geeigneter Statistik beschrieben. Ist die Rate, mit der präsynaptische Pulse auftreten, hoch und zeitlich konstant, die Wirkung einzelner Pulse aber verschwindend gering, so wird das synaptische Rauschen durch einen Gauß’schen Prozess beschrieben. Oft wird zudem angenommen, dass das Rauschen unkorreliert (weiß) ist. In dieser Arbeit wird neuronale Signalübertragung in dem Fall untersucht, dass eine solche Näherung nicht mehr gerechtfertigt ist, d.h. wenn der synaptische Hintergrund durch einen stochastischen Prozess beschrieben werden muss, der nicht weiß, nicht Gauß’sch, oder weder weiß noch Gauß’sch ist. Mittels Simulationen und analytischer Rechnungen werden drei Szenarien behandelt: Zunächst betrachten wir eine Zelle, die nicht ein, sondern zwei Signale empfängt, welche zusätzlich durch synaptische Kurzzeitplastizität gefiltert werden. In diesem Fall muss der Hintergrund durch ein farbiges Rauschen beschrieben werden. Im zweiten Szenario betrachten wir den Fall, dass der Effekt einzelner Pulse nicht mehr als schwach angenommen werden kann. Das Rauschen ist dann nicht mehr Gauß’sch, sondern ein Schrotrauschen. Schließlich untersuchen wir den Einfluss einer präsynaptischen Population, deren Feuerrate nicht zeitlich konstant ist, sondern zwischen Phasen hoher und niedriger Aktivität, sogenannten up und down states, springt. In diesem Fall ist das Rauschen weder weiß noch Gauß’sch.
This thesis is concerned with the effect of non-white or non-Gaussian synaptic noise on the information transmission properties of single neurons. Synaptic noise subsumes the massive input that a cell receives from thousands of other neurons. In the framework of stochastic neuron models, this input is described by a stochastic process with suitably chosen statistics. If the overall arrival rate of presynaptic action potentials is high and constant in time and if each individual incoming spike has only a small effect on the dynamics of the cell, the massive synaptic input can be modeled as a Gaussian process. For mathematical tractability, one often assumes that furthermore, the input is devoid of temporal structure, i.e. that it is well described by a Gaussian white noise. This is the so-called diffusion approximation (DA). The present thesis explores neuronal signal transmission when the conditions that underlie the DA are no longer met, i.e. when one must describe the synaptic background activity by a stochastic process that is not white, not Gaussian, or neither. We explore three distinct scenarios by means of simulations and analytical calculations: First, we study a cell that receives not one but two signals, additionally filtered by synaptic short-term plasticity (STP), so that the background has to be described by a colored noise. The second scenario deals with synaptic weights that cannot be considered small; here, the effective noise is no longer Gaussian and the shot-noise nature of the input has to be taken into account. Finally, we study the effect of a presynaptic population that does not fire at a rate which is constant in time but instead undergoes transitions between states of high and low activity, so-called up and down states.
APA, Harvard, Vancouver, ISO, and other styles
15

Lin, Hsiangyi, and 林香儀. "Exponential integrate-and-fire model." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/84413580045030252925.

Full text
Abstract:
碩士
國立中正大學
應用數學研究所
100
We study a two-dimensional integrate-and-fire model proposed by Izhikevich [1]. Such a model combines an exponential spike mechanism with an adaptation variable. With the suitable choice of parameter values, we numerically show that this model can generate various firing patterns, and depict a phase diagram describing the transition from one firing type to another.
APA, Harvard, Vancouver, ISO, and other styles
16

Tseng, Wen, and 曾雯. "Algebraic integrate-and-fire model." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/05229773657700822633.

Full text
Abstract:
碩士
國立中正大學
應用數學研究所
100
In this paper, we study a model proposed by Eugene M.Izhikevich[1, Chapter 8]. We numerically show that this model can generate various firing patterns as observed in the simple quadratical model.
APA, Harvard, Vancouver, ISO, and other styles
17

Chen, Fu-Chi, and 陳福基. "Synchronization of A New Model of Pulse-Coupled Integrate-and-Fire Oscillators." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/16360205157163125029.

Full text
Abstract:
碩士
國立成功大學
物理學系碩博士班
96
Synchronization is a natural phenomenon which is an active research topic. Many models were published to approximate these phenomena. In one of these models, all basic entities are considered as identical oscillators with pulse-coupled interaction among them. We use a model to approximate these synchronous phenomena. And we discuss the conditions of two, three and N oscillators. Finally, we find some compatible domains of parameters to make all oscillators be synchronous for all initial conditions.
APA, Harvard, Vancouver, ISO, and other styles
18

Šanda, Pavel. "Informační procesy v neuronech." Doctoral thesis, 2012. http://www.nusl.cz/ntk/nusl-326946.

Full text
Abstract:
Neurons communicate by action potentials. This process can be described by very detailed biochemical models of neuronal membrane and its channels, or by simpler phenomenological models of membrane potential (integrate-and- fire models) or even by very abstract models when only time of spikes are considered. We took one particular description - stochastic leaky integrate-and-fire model - and compared it with recorded in-vivo intracellular activity of the neuron. We estimated parameters of this model, compared how the model simulation corresponds with a real neuron. It can be concluded that the data are generally consistent with the model. At a more abstract level of description, the spike trains are analyzed without considering exact membrane voltage and one asks how the external stimulus is encoded in the spike train emitted by neurons. There are many neuronal codes described in literature and we focused on the open problem of neural code responsible for spatial hearing in mammals. Several theories explaining the experimental findings have been proposed and we suggest a specific variant of so called slope-encoding model. Neuronal circuit mimick- ing auditory pathway up to the first binaural neuron was constructed and experimental results were reproduced. Finally, we estimated the minimal number of such...
APA, Harvard, Vancouver, ISO, and other styles
19

August, David Adam. "Sequence learning by an integrate-and-fire neural network model of hippocampal area CA3 /." 1997. http://wwwlib.umi.com/dissertations/fullcit/9738815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zhang, Jie. "Analysis of traveling wave propagation in one-dimensional integrate-and-fire neural networks." 2016. http://scholarworks.gsu.edu/math_diss/36.

Full text
Abstract:
One-dimensional neural networks comprised of large numbers of Integrate-and-Fire neurons have been widely used to model electrical activity propagation in neural slices. Despite these efforts, the vast majority of these computational models have no analytical solutions. Consequently, my Ph.D. research focuses on a specific class of homogeneous Integrate-and-Fire neural network, for which analytical solutions of network dynamics can be derived. One crucial analytical finding is that the traveling wave acceleration quadratically depends on the instantaneous speed of the activity propagation, which means that two speed solutions exist in the activities of wave propagation: one is fast-stable and the other is slow-unstable. Furthermore, via this property, we analytically compute temporal-spatial spiking dynamics to help gain insights into the stability mechanisms of traveling wave propagation. Indeed, the analytical solutions are in perfect agreement with the numerical solutions. This analytical method also can be applied to determine the effects induced by a non-conductive gap of brain tissue and extended to more general synaptic connectivity functions, by converting the evolution equations for network dynamics into a low-dimensional system of ordinary differential equations. Building upon these results, we investigate how periodic inhomogeneities affect the dynamics of activity propagation. In particular, two types of periodic inhomogeneities are studied: alternating regions of additional fixed excitation and inhibition, and cosine form inhomogeneity. Of special interest are the conditions leading to propagation failure. With similar analytical procedures, explicit expressions for critical speeds of activity propagation are obtained under the influence of additional inhibition and excitation. However, an explicit formula for speed modulations is difficult to determine in the case of cosine form inhomogeneity. Instead of exact solutions from the system of equations, a series of speed approximations are constructed, rendering a higher accuracy with a higher order approximation of speed.
APA, Harvard, Vancouver, ISO, and other styles
21

Van, Bussel Frank. "Topological Optimization in Network Dynamical Systems." Thesis, 2010. http://hdl.handle.net/11858/00-1735-0000-0006-B5BF-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography