Academic literature on the topic 'Model of coupled harmonic oscillators'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Model of coupled harmonic oscillators.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Model of coupled harmonic oscillators"
Wang, Shijiao, Xiao San Ma, and Mu-Tian Cheng. "Multipartite Entanglement Generation in a Structured Environment." Entropy 22, no. 2 (February 7, 2020): 191. http://dx.doi.org/10.3390/e22020191.
Full textLaszuk, Dawid, Jose O. Cadenas, and Slawomir J. Nasuto. "KurSL: Model of Anharmonic Coupled Oscillations Based on Kuramoto Coupling and Sturm–Liouville Problem." Advances in Data Science and Adaptive Analysis 10, no. 02 (April 2018): 1840002. http://dx.doi.org/10.1142/s2424922x18400028.
Full textVelichko, Andrey, Maksim Belyaev, Vadim Putrolaynen, Alexander Pergament, and Valentin Perminov. "Switching dynamics of single and coupled VO2-based oscillators as elements of neural networks." International Journal of Modern Physics B 31, no. 02 (January 18, 2017): 1650261. http://dx.doi.org/10.1142/s0217979216502611.
Full textHAUPTMANN, C., F. KAISER, and C. EICHWALD. "SIGNAL TRANSFER AND STOCHASTIC RESONANCE IN COUPLED NONLINEAR SYSTEMS." International Journal of Bifurcation and Chaos 09, no. 06 (June 1999): 1159–67. http://dx.doi.org/10.1142/s0218127499000808.
Full textLi, Wei, and Gen-Xiang Chen. "Classical coupled oscillators model of the rational harmonic mode locked laser." Journal of Applied Physics 100, no. 4 (August 15, 2006): 043115. http://dx.doi.org/10.1063/1.2335598.
Full textGallo, James Mendoza, and Bienvenido Masirin Butanas Jr. "Quantum Propagator Derivation for the Ring of Four Harmonically Coupled Oscillators." Jurnal Penelitian Fisika dan Aplikasinya (JPFA) 9, no. 2 (December 31, 2019): 92. http://dx.doi.org/10.26740/jpfa.v9n2.p92-104.
Full textKomarov, M., and A. Pikovsky. "The Kuramoto model of coupled oscillators with a bi-harmonic coupling function." Physica D: Nonlinear Phenomena 289 (December 2014): 18–31. http://dx.doi.org/10.1016/j.physd.2014.09.002.
Full textGolovinski, P. A., A. V. Yakovets, and E. S. Khramov. "Application of the coupled classical oscillators model to the Fano resonance build-up in a plasmonic nanosystem." Computer Optics 43, no. 5 (October 2019): 747–55. http://dx.doi.org/10.18287/2412-6179-2019-43-5-747-755.
Full textROMEO, FRANCESCO, and GIUSEPPE REGA. "PROPAGATION PROPERTIES OF BI-COUPLED NONLINEAR OSCILLATORY CHAINS: ANALYTICAL PREDICTION AND NUMERICAL VALIDATION." International Journal of Bifurcation and Chaos 18, no. 07 (July 2008): 1983–98. http://dx.doi.org/10.1142/s021812740802149x.
Full textGiraldi, F., and F. Petruccione. "Anomalies in Strongly Coupled Harmonic Quantum Brownian Motion II." Open Systems & Information Dynamics 20, no. 04 (November 25, 2013): 1350015. http://dx.doi.org/10.1142/s1230161213500157.
Full textDissertations / Theses on the topic "Model of coupled harmonic oscillators"
Gryga, Michal. "Silná vazba v plazmonických strukturách." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-382251.
Full textPenbegul, Ali Yetkin. "Synchronization Of Linearly And Nonlinearly Coupled Harmonic Oscillators." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613258/index.pdf.
Full textVenkataraman, Vignesh. "Understanding open quantum systems with coupled harmonic oscillators." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/30715.
Full textChen, Bolun. "Dimensional Reduction for Identical Kuramoto Oscillators: A Geometric Perspective." Thesis, Boston College, 2017. http://hdl.handle.net/2345/bc-ir:107589.
Full textThesis advisor: Renato E. Mirollo
Many phenomena in nature that involve ordering in time can be understood as collective behavior of coupled oscillators. One paradigm for studying a population of self-sustained oscillators is the Kuramoto model, where each oscillator is described by a phase variable, and interacts with other oscillators through trigonometric functions of phase differences. This dissertation studies $N$ identical Kuramoto oscillators in a general form \[ \dot{\theta}_{j}=A+B\cos\theta_{j}+C\sin\theta_{j}\qquad j=1,\dots,N, \] where coefficients $A$, $B$, and $C$ are symmetric functions of all oscillators $(\theta_{1},\dots,\theta_{N})$. Dynamics of this model live in group orbits of M\"obius transformations, which are low-dimensional manifolds in the full state space. When the system is a phase model (invariant under a global phase shift), trajectories in a group orbit can be identified as flows in the unit disk with an intrinsic hyperbolic metric. A simple criterion for such system to be a gradient flow is found, which leads to new classes of models that can be described by potential or Hamiltonian functions while exhibiting a large number of constants of motions. A generalization to extended phase models with non-identical couplings gives rise to richer structures of fixed points and bifurcations. When the coupling weights sum to zero, the system is simultaneously gradient and Hamiltonian. The flows mimic field lines of a two-dimensional electrostatic system consisting of equal amounts of positive and negative charges. Bifurcations on a partially synchronized subspace are discussed as well
Thesis (PhD) — Boston College, 2017
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
Devalle, Federico. "Collective phenomena in networks of spiking neurons with synaptic delays." Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/666912.
Full textUna característica fonamental de la dinàmica d'una xarxa neuronal és l'emergència d'oscil·lacions degudes a sincronització. L'origen d'aquestes oscil·lacions és molt sovint degut les interaccions sinàptiques i als seus retards temporals inherents. Aquesta tesi analitza la emergència d'oscil·lacions produïdes per retards sinàptics en xarxes neuronals heterogènies. A partir de troballes recents en teories de camp mig per xarxes neuronals, aquest treball explora la dinàmica i les bifurcacions d'un model de {\it rate} amb diferents tipus de retards sinàptics. En paral·lel els resultats obtinguts mitjançant el nou model de rate són comparats amb simulacions numèriques de grans xarxes neuronals. Aquestes simulacions confirmen l'existència de nombrosos estats oscil·latoris produïts per sincronització. Alguns d'aquests estats són nous I mostren formes complexes de sincronització parcial i de caos col·lectiu. Gran part d'aquestes oscil·lacions han estat àmpliament ignorades a la literatura, degut a la limitació dels models tradicionals de rate per descriure estats amb un alt nivell de sincronització. Així doncs aquesta tesi ofereix una exploració única dels possibles escenaris oscil·latoris en xarxes neuronals amb retards sinàptics, i amplia significativament les eines matemàtiques disponibles per a la modelització de la gran diversitat d'oscil·lacions neuronals presents en les mesures elèctriques de l'activitat cerebral.
Oukil, Walid. "Systèmes couplés et morphogénèse auto-organisation de systèmes biologiques." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0459/document.
Full textWe study in this thesis a class of a perturbed interconnected mean-field system, also known as a coupled systems. Under some assumptions we prove the existence of an invariant open set by the flow of the perturbed system ; in other word, we prove that the distance between the components of an orbit is uniformly bounded, this property is also called synchronization. We use the perturbation method to obtain the result. However the result is not trivial for the not perturbed system. We use the fixed point theorem to prove the existence of a periodic orbit in the torus. We study in addition the stability and the exponential stability of such systems by studying the stability of a linear systems
Figueiredo, Almeida Sofia José. "Synchronisation d'oscillateurs biologiques : modélisation, analyse et couplage du cycle cellulaire et de l’horloge circadienne." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4239/document.
Full textThe cell division cycle and the circadian clock are two fundamental processes of cellular control that generate cyclic patterns of gene activation and protein expression, which tend to be synchronous in healthy cells. In mammalian cells, the mechanisms that govern the interactions between cell cycle and clock are still not well identified. In this thesis we analyze these two biological oscillators, both separately and as a coupled system, to understand and reproduce their main dynamical properties, uncover essential cell cycle and clock components, and identify coupling mechanisms. Each biological oscillator is first modeled by a system of non-linear ordinary differential equations and its parameters calibrated against experimental data: the cell cycle model is based on post-translational modifications of the mitosis promoting factor and results in a relaxation oscillator whose dynamics and period are controlled by growth factor; the circadian clock model is transcription-based, recovers antiphasic BMAL1/PER:CRY oscillation and relates clock phases to metabolic states. This model shows how the relative duration of activating and repressing molecular clock states is adjusted in response to two out-of-phase hormonal inputs. Finally, we explore the interactions between the two oscillators by investigating the control of synchronization under uni- or bi-directional coupling schemes. Simulations of experimental protocols replicate the oscillators’ period-lock response and recover observed clock to cell cycle period ratios such as 1:1, 3:2 and 5:4. Our analysis suggests mechanisms for slowing down the cell cycle with implications for the design of new chronotherapies
Jhih-YuanGao and 高至遠. "A Study of Coupled Harmonic Oscillator Models toward Quantum Entanglement Dynamics in Macroscopic Quantum Phenomena." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/96826573450199014221.
Full text國立成功大學
物理學系
102
Peres-Horodecki-Simon criterion and logarithmic negativity are very powerful tools to determine the separability and to measure the entanglement of Gaussian states. In this thesis, we set up several models, all of which comprise a number of coupled oscillators, and by facilitating the separability criterion and measure we're able to calculate the entanglement between each pair of oscillators at any time analytically, which reveals several interesting phenomena, including entanglement sudden death and revival of entanglement. Also, we compare the entanglement between center of mass coordinates and that of their member oscillators, and thereby understand the role of it in a composite system. Lastly, we'll make an attempt at appreciating the effects of particle numbers on entanglement. We hope these analytically solvable models can help us understand more about the entanglement of interacting systems and of large systems.
Abdul-Latif, Mohammed. "Frequency Synthesizers and Oscillator Architectures Based on Multi-Order Harmonic Generation." Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-12-10281.
Full textChen, Fu-Chi, and 陳福基. "Synchronization of A New Model of Pulse-Coupled Integrate-and-Fire Oscillators." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/16360205157163125029.
Full text國立成功大學
物理學系碩博士班
96
Synchronization is a natural phenomenon which is an active research topic. Many models were published to approximate these phenomena. In one of these models, all basic entities are considered as identical oscillators with pulse-coupled interaction among them. We use a model to approximate these synchronous phenomena. And we discuss the conditions of two, three and N oscillators. Finally, we find some compatible domains of parameters to make all oscillators be synchronous for all initial conditions.
Book chapters on the topic "Model of coupled harmonic oscillators"
Garrett, Steven L. "The Simple Harmonic Oscillator." In Understanding Acoustics, 59–131. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44787-8_2.
Full textBrandt, Siegmund, and Hans Dieter Dahmen. "Coupled Harmonic Oscillators: Distinguishable Particles." In The Picture Book of Quantum Mechanics, 129–41. New York, NY: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4684-0233-9_7.
Full textBrandt, Siegmund, and Hans Dieter Dahmen. "Coupled Harmonic Oscillators: Indistinguishable Particles." In The Picture Book of Quantum Mechanics, 142–56. New York, NY: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4684-0233-9_8.
Full textBrandt, Siegmund, and Hans Dieter Dahmen. "Coupled Harmonic Oscillators: Distinguishable Particles." In The Picture Book of Quantum Mechanics, 145–57. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0167-7_8.
Full textBrandt, Siegmund, and Hans Dieter Dahmen. "Coupled Harmonic Oscillators: Indistinguishable Particles." In The Picture Book of Quantum Mechanics, 158–72. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0167-7_9.
Full textBrandt, Siegmund, and Hans Dieter Dahmen. "Coupled Harmonic Oscillators: Distinguishable Particles." In The Picture Book of Quantum Mechanics, 157–69. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3951-6_8.
Full textBrandt, Siegmund, and Hans Dieter Dahmen. "Coupled Harmonic Oscillators: Indistinguishable Particles." In The Picture Book of Quantum Mechanics, 170–84. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3951-6_9.
Full textBrandt, Siegmund, Hans Dieter Dahmen, and Tilo Stroh. "A Two-Particle System: Coupled Harmonic Oscillators." In Interactive Quantum Mechanics, 122–37. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7424-2_5.
Full textBrandt, Siegmund, Hans Dieter Dahmen, and Tilo Stroh. "A Two-Particle System: Coupled Harmonic Oscillators." In Interactive Quantum Mechanics, 91–106. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-0-387-21653-9_5.
Full textBrandt, Siegmund, and Hans Dieter Dahmen. "A Two-Particle System: Coupled Harmonic Oscillators." In Quantum Mechanics on the Personal Computer, 82–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-97199-0_5.
Full textConference papers on the topic "Model of coupled harmonic oscillators"
Go, Clark Kendrick C., Joel T. Maquiling, Boonchoat Paosawatyanyong, and Pornrat Wattanakasiwich. "Using Coupled Harmonic Oscillators to Model Some Greenhouse Gas Molecules." In INTERNATIONAL CONFERENCE ON PHYSICS EDUCATION: ICPE-2009. AIP, 2010. http://dx.doi.org/10.1063/1.3479873.
Full textHaaker, T. I. "Analysis of a Class of Coupled Nonlinear Oscillators With an Application to Flow Induced Vibrations." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21416.
Full textAchar, B. N. Narahari, Tanya Prozny, and John W. Hanneken. "Linear Chain of Coupled Fractional Oscillators: Response Dynamics and Its Continuum Limit." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35403.
Full textHarata, Yuji, and Takashi Ikeda. "Modal Analysis to Interpret Localization Phenomena of Harmonic Oscillations in Nonlinear Oscillator Arrays." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97780.
Full textGourc, Etienne, Guilhem Michon, Se´bastien Seguy, and Alain Berlioz. "Experimental Investigation and Theoretical Analysis of a Nonlinear Energy Sink Under Harmonic Forcing." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48090.
Full textXiros, Nikolaos I., and Ioannis T. Georgiou. "Analysis of Coupled Electromechanical Oscillators by a Band-Pass, Reduced Complexity, Volterra Method." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81487.
Full textMuraki, Yasushi. "Application of a Coupled Harmonic Oscillator Model to Solar Activity and El Niño Phenomena." In 35th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.301.0084.
Full textLee, Young S., and Heng Chen. "Bifurcation of Nonlinear Normal Modes by Means of Synge’s Stability." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48690.
Full textRomeo, Francesco, and Ioannis T. Georgiou. "Multiphysics Chaotic Interaction in a Coupled Electro-Magneto-Mechanical System." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38714.
Full textNico, Valeria, Declan O’Donoghue, Ronan Frizzell, Gerard Kelly, and Jeff Punch. "A Multiple Degree-of-Freedom Velocity-Amplified Vibrational Energy Harvester: Part B — Modelling." In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7511.
Full textReports on the topic "Model of coupled harmonic oscillators"
Yeon, Kyu-Hwang, Chung-In Um, Woo-Hyung Kahng, and Thomas F. George. Propagators for Driven Coupled Harmonic Oscillators. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada199418.
Full textMaidanik, G. Loss Factors of a Complex Composed of a Number of Coupled Harmonic Oscillators. Fort Belvoir, VA: Defense Technical Information Center, February 1997. http://dx.doi.org/10.21236/ada325092.
Full text