Academic literature on the topic 'Model Vlasov-Poisson'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Model Vlasov-Poisson.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Model Vlasov-Poisson"
Abdallah, Naoufel Ben, and Florian Méhats. "On a Vlasov–Schrödinger–Poisson Model." Communications in Partial Differential Equations 29, no. 1-2 (January 2005): 173–206. http://dx.doi.org/10.1081/pde-120028849.
Full textGriffin-Pickering, Megan, and Mikaela Iacobelli. "Global strong solutions in $ {\mathbb{R}}^3 $ for ionic Vlasov-Poisson systems." Kinetic & Related Models 14, no. 4 (2021): 571. http://dx.doi.org/10.3934/krm.2021016.
Full textCaprino, S. "A Vlasov-Poisson plasma model with non-L1 data." Mathematical Methods in the Applied Sciences 27, no. 18 (2004): 2211–29. http://dx.doi.org/10.1002/mma.551.
Full textTeichmann, J. "Linear Vlasov stability in one-dimensional double layers." Laser and Particle Beams 5, no. 2 (May 1987): 287–93. http://dx.doi.org/10.1017/s0263034600002779.
Full textHagstrom, George I., and P. J. Morrison. "Caldeira–Leggett model, Landau damping, and the Vlasov–Poisson system." Physica D: Nonlinear Phenomena 240, no. 20 (October 2011): 1652–60. http://dx.doi.org/10.1016/j.physd.2011.02.007.
Full textTayeb, Mohamed Lazhar. "Homogenized Diffusion Limit of a Vlasov–Poisson–Fokker–Planck Model." Annales Henri Poincaré 17, no. 9 (April 26, 2016): 2529–53. http://dx.doi.org/10.1007/s00023-016-0484-7.
Full textDUAN, RENJUN, TONG YANG, and HUIJIANG ZHAO. "THE VLASOV–POISSON–BOLTZMANN SYSTEM FOR SOFT POTENTIALS." Mathematical Models and Methods in Applied Sciences 23, no. 06 (March 17, 2013): 979–1028. http://dx.doi.org/10.1142/s0218202513500012.
Full textCalifano, F., L. Galeotti, and A. Mangeney. "The Vlasov-Poisson model and the validity of a numerical approach." Physics of Plasmas 13, no. 8 (August 2006): 082102. http://dx.doi.org/10.1063/1.2215596.
Full textUhlemann, Cora, and Michael Kopp. "Beyond single-stream with the Schrödinger method." Proceedings of the International Astronomical Union 11, S308 (June 2014): 115–18. http://dx.doi.org/10.1017/s1743921316009716.
Full textDUAN, RENJUN, MEI ZHANG, and CHANGJIANG ZHU. "L1STABILITY FOR THE VLASOV–POISSON–BOLTZMANN SYSTEM AROUND VACUUM." Mathematical Models and Methods in Applied Sciences 16, no. 09 (September 2006): 1505–26. http://dx.doi.org/10.1142/s0218202506001613.
Full textDissertations / Theses on the topic "Model Vlasov-Poisson"
Pham, Thi Trang Nhung. "Méthodes numériques pour l'équation de Vlasov réduite." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAD051/document.
Full textMany numerical methods have been developed in order to selve the Vlasov equation, because computing precise simulations in a reasonable time is a real challenge. This equation describes the time evolution of the distribution function of charged particles (electrons/ions), which depends on 3 variables in space, 3 in velocity and time. The main idea of this thesis is to rewrite the Vlasov equation in the form of a hyperbolic system using a semi-discretization of the velocity. This semi-discretization is achieved using the finite element method. The resulting model is called the reduced Vlasov equation. We propose different numerical methods to salve this new model efficiently: finite volume methods, semi-Lagrangian methods and discontinuous Galerkin methods
Ejjaaouani, Ksander. "Conception du modèle de programmation INKS pour la séparation des préoccupations algorithmiques et d’optimisation dans les codes de simulation numérique : application à la résolution du système Vlasov/Poisson 6D." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAD037.
Full textThe InKS programming model aims to improve readability portability and maintainability of simulation codes as well as boosting developer productivity. To fulfill these objectives, InKS proposes two languages, each dedicated to a specific concern. First, InKS PIA provides concepts to express simulation algorithms with no concerns for optimization. Once this foundation is set, InKSPSO enables optimization specialists to reuse the algorithm in order to specify the optimization part. The model offers to write numerous versions of the optimizations, typically one per architecture, from a single algorithm. This strategy limits the rewriting of code for each new optimization specification, boosting developer productivity.We have evaluated the InKS programming model by using it to implement the 6D Vlasov-Poisson solver and compared our version with a Fortran one. This evaluation highlighted that, in addition to the separation of concerns, the InKS approach is not more complex that traditional ones while offering the same performance. Moreover, using the algorithm, it is able to generate valid code for non-critical parts of code, leaving optimization specialists more time to focus on optimizing the computation intensive parts
SABATIER, MICHEL. "Groupes de symetries : application a l'etude du modele de vlasov-poisson." Orléans, 1993. http://www.theses.fr/1993ORLE2034.
Full textLutz, Mathieu. "Etude mathématique et numérique d'un modèle gyrocinétique incluant des effets électromagnétiques pour la simulation d'un plasma de Tokamak." Thesis, Strasbourg, 2013. http://www.theses.fr/2013STRAD036/document.
Full textThis thesis is devoted to the study of charged particle beams under the action of strong magnetic fields. In addition to the external magnetic field, each particle is submitted to an electromagnetic field created by the particles themselves. In kinetic models, the particles are represented by a distribution function f(x,v,t) solution of the Vlasov equation. To determine the electromagnetic field, this equation is coupled with the Maxwell equations or with the Poisson equation. The strong magnetic field assumption is translated by a scaling wich introduces a singular perturbation parameter 1/ε
Fontaine, Marine. "Modèles mathématiques de type "Hamiltonian Mean-Field" ˸ stabilité et méthodes numériques autour d’états stationnaires." Thesis, Rennes, École normale supérieure, 2018. http://www.theses.fr/2018ENSR0013/document.
Full textIn this thesis, we study the nonlinear orbital stability of steady states of "Hamiltonian mean-field" models, called HMF models. First, this study is being done theoretically by using variational methods. It is then carried out numerically by building numerical schemes wich exactly preserve steady states. Chapter 2 presents a theoretical study of the orbital stability of steady states which are solutions to the HMF Poisson system. More specifically, the orbital stability of a large class of steady states which are solutions to the HMF system with Poisson potential is proved. These steady states are obtained as minimizers of an energy functional under one, two or infinitely many constraints. The proof relies on a variational approach. However the boundedness of the space domain prevents us from using usal technics based on scale invariance. Therefore, we introduce new methods which, although specific to our context, remain somehow in the same spirit of rearrangements tools introduced for the Vlasov-Poisson system. In particular, these methods allow for the incorporation of an arbitrary number of constraints, and yield a stability result for a large class of steady states. In Chapter 3, numerical schemes exactly preserving given steady states are built. These schemes model the orbital stability property better than the classic ones. Then, a more general scheme is introduced by building a scheme wich preserves all steady states of HMF models. Lastly, by means of these schemes, we conduct a numerical study of stability of steady states solutions to HMF Poisson system. This completes the theoretical study in Chapter 2
Vecil, Francesco. "A contribution to the simulation of Vlasov-based models." Doctoral thesis, Universitat Autònoma de Barcelona, 2007. http://hdl.handle.net/10803/3100.
Full textLa BTE ha de ser acoplada con una ecuación o sistema de ecuaciones para calcular el campo de fuerza: para estructuras simples se usa la ecuación de Poisson; para plasmas, donde los efectos magnéticos no se pueden despreciar debido a las altas velocidades de las partículas, se usa la fuerza de Lorentz, por lo cual se han de resolver las ecuaciones de Maxwell; en nanoestructuras, por ejemplo transistores con dimensiones confinadas, la ecuación de Poisson necesita ser acoplada con la ecuación de Schrödinger para la descripción de las dimensiones cuánticas y para la descomposición en sub-bandas, o niveles de energía.
Las colisiones son el scattering que las cargas padecen debido a las interacciones con otras cargas o con el retículo cristalino fijo, representado en forma de fonones. En la tesis se emplean diversos operadores de scattering: los más simples son operadores lineales de relajación; se estudia un modelo para la simulación de semiconductores donde se tienen en cuenta colisiones con fonones acústicos, en aproximación elástica, y fonones ópticos.
Tras la introducción, en el primer capítulo se desarrollan los métodos numéricos más importantes: primero un método de interpolación no oscilante (PWENO), necesario para evitar las oscilaciones producidas por la reconstrucción por polinomios de Lagrange, que incrementa la variación total cuando aparecen choques: las oscilaciones en el espacio de fases son características del problema, pero si el método añade oscilaciones espúreas (es decir, debidas al método en sí), entonces el resultado numérico no tiene sentido, o simplemente explota. El segundo método numérico fundamental es la técnica de splitting: cuando se resuelve un problema complicado, si se puede dividir en sub-problemas y resolverlos por separado, entonces se puede reconstruir una aproximación para el problema completo; esta técnica se usa para el time splitting (separación de la parte de transporte y de colisión) y el splitting dimensional (dividir el espacio de fases en posición y velocidad). La tercera herramienta fundamental es un sólver para advección lineal: se usan dos métodos, uno basado en trazar hacia atrás las características a nivel puntual y otro basado en reconstruir valores integrales en segmentos en lugar de puntos; el primero controla mejor las oscilaciones, el segundo fuerza la conservación de masa.
En el capítulo 2 estos métodos se aplican a algunos tests conocidos para averiguar su solidez.
En el capítulo 3 estos métodos se aplican a la simulación de un diodo, y los resultados se comparan con resultados anteriores obtenidos por esquemas Runge-Kutta basados en diferencias finitas para aproximar las derivadas parciales.
El capítulo 4 está dedicado a la construcción y simulación de modelos intermedios entre una ecuación cinética, con operador de colisión de tipo relajación, y su aproximación más grosera, ésta última siendo la ecuación del calor. Para obtener modelos intermedios, se busca un cierre de las ecuaciones de los momentos de orden cero y uno. Se proponen esquemas "asymptotic-preserving" para la ecuación cinética, que evitan la stiffness de la parte de advección a través de una descomposición de la función de distribución en su media más fluctuaciones. En cuanto a las clausuras de las ecuaciones de los momentos, se proponen esquemas de relajación para aislar las no-linealidades. Estos métodos son aplicados a un test conocido, el Su-Olson test.
El último capítulo está dedicado a la simulación de un MOSFET (Metal Oxide Semiconductor Field Effect Transistor) 2D de dimensión nanométrica en el que los electrones se comportan como partículas en una dimensión y como ondas en las dimensiones confinadas. La descomposición en sub-bandas se realiza a través de una ecuación de Schrödinger 1D en estado estacionario. Las dimensiones, así como las sub-bandas, están acopladas por la ecuación de Poisson en la expresión de la densidad, y por el operador de colisión. Se propone un sólver microscópico para estados transitorios, basado en técnicas de splitting para las BTEs (una para cada nivel de energía), métodos de características para el transporte y una iteración de tipo Newton para resolver el problema acoplado Schrödinger-Poisson para el cálculo del campo de fuerza.
This thesis is dedicated to the development, application and test of numerical methods for the numerical simulation of problems arising from physics and electronic engineering. The main tool which is used all along the work is the Vlasov (transport) equation in the form of the Boltzmann Transport Equation (BTE) for the description of the transport and collisions of charged particles in plasmas and electronic devices: charge carriers are driven by a force field and scattered by other carriers or phonons (pseudo-particles giving an effective representation of the oscillating field produced by the vibrating ions).
The BTE must be coupled to an equation or a system of equations for the computation of the force field: for simple structures the Poisson equation is used; for plasmas, where the magnetic phenomena cannot be neglected due to the high velocities of the particles, the Lorentz force is used, so the Maxwell equations have to be solved; for nanostructures, e.g. transistors with confined dimensions, the Poisson equation needs coupling with Schrödinger equation for the description of the quantum dimensions and the decomposition into subbands, or energy levels.
Collisions mean the scattering the carriers suffer due to the interactions with other carriers or the fixed lattice, in form of phonons. All along the thesis several scattering operator are used: the simplest ones are linear relaxation-time operators; a model for the simulation of a semiconductor is studied in which collisions are taken into account with acoustic phonons, in the elastic approximation, and optical phonons.
After the introduction, in the first chapter the most important numerical methods are developed: first of all a pointwise non-oscillatory interpolation method (PWENO) needed to avoid the simple Lagrange polynomial reconstruction, which increases the total variation when shocks appear: oscillations are part of the physics of the problem, but if the method adds spurious, non-physical oscillations, then the numerical result is meaningless, or it simply blows up. The second fundamental numerical method is the splitting technique: when solving a complicated problem, if we are able to subdivide it into sub-problem and solve them for separate, then we can reconstruct an approximation for the complete problem; this technique is used for both time splitting (separate transport from collisions) and dimensional splitting (split the phase space into either dimensions). The third fundamental instrument is the solver for linear advections: two methods are used, one based on pointwise following backwards the characteristics and another one based on reconstructing integral values along segments instead of point values; the first one controls better oscillations, the second one forces mass conservation.
These methods are applied in chapter 2 to some well-known benchmark tests to control their robustness.
In chapter 3 these methods are applied to the simulation of a diode, and the results compared to previous results obtained by Runge-Kutta schemes based on finite differences schemes for the approximation of the partial derivatives.
Chapter 4 is dedicated to the construction and simulation of intermediate models between a kinetic equation, with relaxation-time collision operator, and its coarsest approximation, this one being the heat equations. In order to obtain intermediate models, the moment equations are closed at zeroth and first order. Asymptotic-preserving schemes are proposed for the kinetic equation, which avoid the stiffness of the advection part by decomposing the distribution function into its average plus fluctuations. As for the moment closures, relaxation schemes are proposed in order to confine the non-linearities in the right hand side. These methods are then applied to a known benchmark, the Su-Olson test.
The last chapter is dedicated to the simulation of a nanoscaled 2D MOSFET (Metal Oxide Field Effect Transistor) in which electrons behave as particles in one dimension and as waves in the confined dimensions. The subband decomposition is realized through a stationary-state 1D Schrödinger equation. The dimensions as well as the subbands are coupled by the Poisson equation in the expression of the density and by the collision operator. A transient-state microscopic solver is proposed, based on splitting techniques for the BTE's (one for each energy level), characteristics methods for the transport and a Newton iteration for the solution of the coupled Schrödinger-Poisson system for computing the force field.
Campos, Serrano Juan. "Modèles attractifs en astrophysique et biologie : points critiques et comportement en temps grand des solutions." Phd thesis, Université Paris Dauphine - Paris IX, 2012. http://tel.archives-ouvertes.fr/tel-00861568.
Full textHagstrom, George Isaac. "Infinite-dimensional Hamiltonian systems with continuous spectra : perturbation theory, normal forms, and Landau damping." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-08-3753.
Full texttext
Book chapters on the topic "Model Vlasov-Poisson"
Glassey, Robert T., and Jack Schaeffer. "Global Solution of the Cauchy Problem for the Relativistic Vlasov-Poisson Equation with Cylindrically Symmetric Data." In Dispersive Transport Equations and Multiscale Models, 121–32. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4419-8935-2_8.
Full text