Dissertations / Theses on the topic 'Modèle à gradient'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Modèle à gradient.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Le, Duc Trung. "Modèle d'endommagement à gradient : approche par homogénéisation." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066662/document.
Full textThe aim of this work is to propose a general framework to obtain a gradient damage model from the micro-structural level. It is based, firstly, on the homogenization method to derive an effective medium from the microstructure, and secondly, on the variational formulation of a damage evolution law from the homogenized medium. We propose, as a first step, an approach based on asymptotic expansion and the variational method for homogenizing a periodic elastic medium. To model the localization of damage, this approach has been extended to a quasi-periodic heterogeneous medium. From an example of quasi periodically micro-cracked solid, we obtain an elastic energy that not only depends on the gradient of the damage but also the strain gradients. Based on the principle of energy minimization, we propose the construction of a gradient damage model from the elastic energy homogenized in the second part. By adding some hypothesis to simplify the model, we can construct localized damage and strain solutions in closed form. Finally, a numerical resolution scheme, which is based on an alternate minimization algorithm, is proposed for the one-dimensional traction bar test. From the numerical results, the advantages and disadvantages of the model are discussed
Sellami, Sami. "Comportements hydrodynamiques d'un modèle non gradient : l'exclusion simple généralisée." Rouen, 1998. http://www.theses.fr/1998ROUES083.
Full textThis thesis is constituted by two parts. In the first one, we study the equilibrium density fluctuation field of a one-dimensional reversible nongradient model. We prove, for the generalized exclusion process, the Boltzmann-Gibbs principle. This principle, first introduced by Brox and Rost, is the basic stage which enables us to show afterwards that our process converges in law to a generalized Ornstein-Uhlenbeck process, by applying Holley and Stroock's theory. In the second part, made in collaboration with C. Landim and M. Mourragui, we consider a nonlinear parabolic equation on a square with boundary conditions. Assuming that the diffusion coefficient is Lipschitz, we prove that the rescaled density field converges to the unique weak solution of the parabolic equation
Hernandez, Freddy. "Fluctuations à l'équilibre d'un modèle stochastique non gradient qui conserve l'énergie." Paris 9, 2010. https://bu.dauphine.psl.eu/fileviewer/index.php?doc=2010PA090029.
Full textIn this thesis we study the equilibrium energy fluctuation field of a one-dimensional reversible non gradient model. We prove that the limit fluctuation process is governed by a generalized Ornstein-Uhlenbeck process. By adapting the non gradient method introduced by S. R. S Varadhan, we identify the correct diffusion term, which allows us to derive the Boltzmann-Gibbs principle. This is the key point to show that the energy fluctuation field converges in the sense of finite dimensional distributions to a generalized Ornstein-Uhlenbeck process. Moreover, using again the Boltzmann-Gibbs principle we also prove tightness for the energy fluctuation field in a specified Sobolev space, which together with the finite dimensional convergence implies the convergence in distribution to the generalized Ornstein-Uhlenbeck process mentioned above. The fact that the conserved quantity is not a linear functional of the coordinates of the system, introduces new difficulties of geometric nature in applying Varadhan's non gradient method
Perrut, Anne. "Systèmes de particules : un processus de réaction-diffusion à deux espèces et un modèle non gradient." Rouen, 1998. http://www.theses.fr/1998ROUES074.
Full textBaroud, Rawad. "Development and implementation of numerical models for the study of multilayered plates." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1084/document.
Full textThe use of multilayer is becoming increasingly important in the field of engineering, first in the industry, and more recently more and more in Civil Engineering. Whether complex blend of polymers, wood or concrete, significant efforts are required for accurate modeling of such materials. Indeed, phenomena induced anisotropy and heterogeneity are associated with these multi-material: edge effects, differential thermal expansion, delamination/detachment or nonlinearities viscosity type damage, plasticity in layers or interfaces. Among the models proposed in the literature, we found for example equivalent monolayer model or of "LayerWise" type (a kinematic per layer). Belonging to the second category, models have been developed in recent years in Navier allow a sufficiently detailed description to address specific issues mentioned above while maintaining a surgical nature. By introducing interface forces as generalized forces of the model, these approaches have demonstrated their effectiveness vis-à-vis the representation of details at inter- and intra-layers. It is then easy to offer behaviors and interfaces criteria and to be effective for modeling delamination or detachment, phenomenom very present in multilayered composites assembled and glued together. Therefore, a finite element program MPFEAP was developed in Navier laboratory. The model was also introduced as a User Element in ABAQUS, in its simplest form (perfect interfaces).A new layerwise model for multilayered plates is proposed in this dissertation, named Statically Compatible Layerwise Stresses with first-order membrane stress approximations per layer in thickness direction SCLS1. The model complies exactly with the 3D equilibrium equations and the free-edge boundary conditions. Also, a refined version of the new model is obtained by introducing several mathematical layers per physical layer. The new model has been implemented in a new version of the in-house finite element code MPFEAP.In parallel, a finite element program based on the Bending-Gradient theory which was developed in Navier laboratory, is proposed here. The model is a new plate theory for out-of-plane loaded thick plates where the static unknowns are those of the Love-Kirchhoff theory, to which six components are added representing the gradient of the bending moment. The Bending-Gradient theory is obtained from the Generalized-Reissner theory: the Generalized-Reissner theory involves fifteen kinematic degrees of freedom, eight of them being related only to out-of-plane Poisson’s distortion and thus, the main idea of the Bending-Gradient plate theory is to simplify the Generalized-Reissner theory by setting these eight d.o.f. to zero and to neglect the contribution of the normal stress σ33 in the plate model constitutive equation. A finite element program called BGFEAP has been developed for the implementation of the Bending-Gradient element. A User Element in Abaqus was also developed for the Bending-Gradient theory
Antonio, Tamarasselvame Nirmal. "Modèle de second gradient adapté aux milieux faiblement continus et mécanique d'Eshelby appliquée à l'indentation du verre." Phd thesis, Université Rennes 1, 2010. http://tel.archives-ouvertes.fr/tel-00557871.
Full textAntonio, Tamarasselvame Nirmal. "Modèle de second gradient adapté aux milieux faiblement continus et mécanique d’Eshelby appliquée à l’indentation du verre." Rennes 1, 2010. https://tel.archives-ouvertes.fr/tel-00557871.
Full textIn a first part, we deal with the so-called weakly continuous media according to an approach based on Riemann-Cartan geometry. We consider a solid body, modelled by a Riemannian manifold, and an Euclidean affine connection, which derives from the metric tensor. The mass density per volume unit may be assumed non constant and some defects, described by discontinuity fields of scalar fields or vectorial fields defined on the manifold, may appear in the body. The inevstigations do not concern the evolution of these fields but take into account their effects on the analysis of the deformation of the body. A possible generalization of this model is to consider an affine connection which deos not derive from the metric induced by the ambiant space. In a such case the torsion tensor and the curvature tensor associated with the affine connection are not necessary null, this corresponds to a second gradient continuum. Both tensors are used to describe the dislocation fields and disclination fields of Volterra. In a second part, we deal with the modelling of the Vickers indentation of glass. We consider a model which uses the schema of inclusion of Eshelby into a semi-infinite matrix, to analyse the stress and displacement fields during the loading process of the indenter. The objective is to determine the densification of the glass beneath the indenter. The semi-analytical results are positively compared with experimental data which are issue from LARMAUR
Pham, Thi Thanh Thao. "Un modèle d'endommagement à gradient de déformation à partir de la méthode d'homogénéisation pour les matériaux fragiles." Paris 13, 2010. http://www.theses.fr/2010PA132034.
Full textA damage model in strain gradient from the homogenization method for brittle materials In this thesis, we have built a damage model to predict the fracture in brittle materials containing a source of stress concentration. We first developed a. Method of homogenization to establish the constitutive relations including the strain gradient for a heterogeneous material. When the strain gradient is riot negligible, the procedure of homogenization accounts for the strain gradient. In the constitutive law in a natural way. Then, as an application of this method. We constructed the constitutive relations in 2D for a linear elastic material with microcracks by adapting the self-consistent scheme. The obtained equations show that the behavior of the material depends not only on the density, but also on the average size of the mierocracks. This constitutive law has been extended to a damage model by adopting the concept proposed by Griffith. We implemented this strain gradient damage model into a finite element code. The numerical results were compared with the experimental data. It has been shown that the size effect observed in experimental studies was correctly reproduced by the proposed model. Moreover, the model is also well regularizated by the presence of strain gradient
Diallo, Alpha Ousmane. "Modélisation hyperfréquence de problèmes multi-échelles appliquée au cas des antennes à métamatériaux diélectriques." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066356/document.
Full textThis work focuses on the improvement of the antennas compactness used primarily for embedded systems while respecting the performance and competitiveness requirements. The approach explored consists in using artificial materials operating in transmission and designed by structuring the dielectric material on a scale smaller than the wavelength (sub-wavelength). This structuring makes it possible in practice to achieve a variation in the effective refractive index in order to produce diffractive elements capable of performing a microwave function. However, the particularity of this type of structured element is to mix several physical scales generating complexity in their study. The largest dimension of a structured component can reach several tens of wavelength, for example 20λ, while the minimum size of the sub-wavelength structures may be less than a fraction of the wavelength, as than λ / 20. This multi-scale aspect increases the simulation times of antenna devices integrating these structured elements, thus preventing any possibility of multi-parameter optimization in reasonable times. In order to exploit fully the potential of these structured materials, a numerical model of computation has been developed on the basis of optical paths. This model gives results on the maximum gain of structured diffractive lens antennas with an accuracy of 0.5 dB. The computation time of the model is of the order of the minute compared to more than 6 hours for a complete simulation with the electromagnetic calculation software CST Microwave Studio. The speed and precision of this model have been used to optimize the design of a structured diffractive lens. To illustrate the relevance of this structured approach, its performances were compared with those of Fresnel lens antenna and hyperbolic lens antenna. This comparison was carried out under identical footprint conditions with a length to diameter ratio L / D of 0.5. The gain of the structured lens was found to be 1.6 dB higher than the Fresnel lens and 2.7 dB higher than the hyperbolic lens
Plassart, Roland. "Modélisation hydromécanique du comportement des ouvrages souterrains avec un modèle élastoviscoplastique." Thesis, Vandoeuvre-les-Nancy, INPL, 2011. http://www.theses.fr/2011INPL050N/document.
Full textThe long term behaviour of underground excavations is a social and economic stake, in particular in the context of storage in deep geological formation of high activity and long life nuclear waste. Several experimental galleries have been dug in the underground research laboratory (URL) of Meuse/Haute-Marne located close to Bure in France, where studies are leaded in order to understand the global behaviour of the constitutive rock which is the Callovo-Oxfordian (COx) argillite.The purpose of this PhD Thesis is to establish a modelling with Code_Aster of underground excavations, and especially of a Meuse/Haute-Marne laboratory gallery, taking into account non local approach, creep effect and hydromechanical coupling in the framework of the mechanics of porous media, and then to compare numerical results with available experimental data.The specific elastoviscoplastic model used in this study is the L&K model: it offers a coupling between instantaneous and delayed behaviour, and it takes into account the dilation, parameter which governs the volume strains of the material during a solicitation, and its strong variation, a specificity of geomaterials and so of COx argillite. The fluid flowing through the material adds a hydraulic component to the modelling, which is coupled to mechanic component thanks to Biot’s equations.Another novelty of this work concerns the coupling between such complex rheological behaviour and a non local approach in an industrial way. Among methods of regularization available in Code_Aster, the second gradient of dilation is well fitted to geomaterials. Its aim is to correct mesh dependency and numerical localized solutions.After describing numeric tools and setting parameters of the L&K model on laboratory tests, a good general agreement was found between numeric results and in situ measures, without resetting parameters. Time effects experimentally measured on displacement and pore pressure evolution are observed in the same modelling, validating the followed predictive approach
Trejo, Rodriguez Luis Angel. "Evaluation du modèle de programmation parallèle à phases reconfigurables : cas du gradient conjugué et de l’opération de sommes partielles." Lyon, INSA, 1993. http://www.theses.fr/1993ISAL0117.
Full textThe synchronous phase programming model proposed by Snyder and some time later by Adamo, is based on the idea that the most useful algorithms can be decomposed into series of elementary data movements. As a consequence, these algorithms can be implemented as series of phases, so that each phase can be efficiently executed on the processor graph best suited to the need of the performed data movement. We present in this work some experimental results using this model under a high level parallel programming environment called C_NET. First we present an implementation of the conjugate gradient method as phase reconfigurable algorithm, next we present some algorithms to solve the parallel prefix problem and we give some of its applications. Finally, we consider the OCP model (Optical Communication Parallel) : the parallel prefix and multi prefix operations are presented, as well as an approach to implement Cole's parallel merge sort. These algorithms are shown to be efficiently implemented on such a model
Bruneaux, Marie-Anne. "Durabilité des assemblages collés : Développement d'un modèle mécanique prédictif avec prise en compte des caractéristiques physico-chimiques de l'adhésif." Marne-la-vallée, ENPC, 2004. https://pastel.archives-ouvertes.fr/pastel-00000821.
Full textWatremetz, Benoît. "Modèle thermomécanique 3D d'un matériau à gradient de propriétés à l'aide de techniques multigrilles : application aux moules d'injection de polymères." Lyon, INSA, 2006. http://theses.insa-lyon.fr/publication/2006ISAL0057/these.pdf.
Full textSurface treatments cover a wide range of processes and treatments. Their aim is to increase life and operating performances of engineering materials by giving surfaces specific mechanical, thermal, and chemical properties. The task of determining which type of coating (material, thickness, and deposition process) is optimal is a complicated task. Optimizing a coating for a specific application requires bringing together knowledge from very different disciplines: physics, structural mechanic, surface chemistry, etc. This makes the development and selection of treatment a complex and costly task. It can only be undertaken with a recursive method, which includes experimental procedures and numerical calculations. The current work aims at developing a 3D thermo-mechanical model for functionally graded materials (FGM). Such materials are commonly used to protect surfaces from tribological damages. They may be either coating materials or interface regions between successive coatings with varying properties. The model is based on second order Finite Difference (FD) formulation of the thermal and elasticity equations in a non-homogeneous solid. It can handle any kind of depth dependence of the material properties. Multigrid techniques and local refinement strategies have been implemented to accelerate the convergence, reduce CPU time and thus permit the use of fine grids to accurately describe the variation in the material properties. Specific numerical techniques are used to guaranty an optimal convergence rate of the numerical technique even in the most severe cases. One application of this work is the analysis of the effect of different prospective coatings in polymer injection molding. The aim is to increase the mold life by protecting the surface and avoid the development of surface damages due to the process. An approximate model is developed for the thermal and mechanical conditions to which the coating is exposed in the different phases of the process. This study is completed with experimental methods that were used to characterize the coating properties. Finally, a simplified model is used to complete the results obtained using the time dependant analysis. It helps understanding the thermo-mechanical coupling and stress calculated in the prospective coatings to determine the most appropriate treatment for this application
Mhadji, Abdoussalam. "Développement d’un modèle à gradient d’endommagement pour la simulation de couplage thermique-mécanique : application à la dégradation des matériaux composites." Electronic Thesis or Diss., Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2025. http://www.theses.fr/2025ESMA0002.
Full textThe use of composite materials is widespread in structures where weight reduction is essential while maintaining high stiffness and strength properties. However, these materials are flammable, increasing fire risks. It is generally observed that heat flux transforms sound composite material into char, leading to the degradation of mechanical properties and a modification of initial thermal properties. Nevertheless, the influence of microstructural heterogeneity on thermal degradation, as well as the coupling between thermal degradation and mechanical damage, remains underexplored in the literature. The objective of this study is to investigate the influence of mechanical and thermal degradation mechanisms on physical phenomena such as heat transfer, thermal decomposition, and cracking. The study aims to simulate the interaction between different degradation modes and their kinetics to assess their mutual impact on the material’s behavior at the microstructural scale. To achieve this, a rigorous thermodynamic approach is adopted, introducing internal variables corresponding to each physical phenomenon, as well as their gradients. This modeling approach combines two methods: on the one hand, a phase-field gradient model is employed to describe thermal degradation, which evolves according to an Arrhenius law. This method is suitable for simulating phase transition phenomena and interface motion in a non-homogeneous material. This approach introduces a degradation gradient term to characterize the interface energy between degraded and sound regions, allowing the influence of microstructural fluctuations to be considered. On the other hand, a gradient damage model based on the principle of virtual powers distinguishes the thermodynamic forces associated with the reversible process, derived from free energy, from those associated with the irreversible process, derived from the dissipation potential. This modeling choice avoids issues related to damage localization and mesh dependency. By coupling these two approaches, it becomes possible to simulate the interaction between mechanical damage and thermal degradation of the material. The results show that, on the one hand, charred regions become areas where damage and cracking are easily initiated due to the degradation of mechanical properties. On the other hand, damaged or cracked zones act as thermal barriers, delaying heat propagation. Indeed, the presence of cracks reduces thermal conductivity in these regions, thereby limiting the advancement of the thermal front
Harmand, Noémie. "Evolution expérimentale et spécialisation dans le paysage adaptatif d'un gradient environnemental." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT062/document.
Full textToday more than ever, it is crucial to anticipate and understand the evolutionary responses of living organisms faced with heterogeneous and unstable habitats. But to what extent is this possible? To reproduce an entire evolutionary trajectory, we must first describe the “material” available for adaptation (e.g. the phenotypic effects associated with the existing and novel genetic variability), and second describe the way evolutionary forces, shaped by the ecological context, result in specific “assemblies” of this material. At its simplest, this evolutionary process can be described by several cycles of mutation-selection events, leading to the adaptation of a population to an environment. This process is reflected in the evolutionary trajectories of bacterial lineages undergoing controlled experimental evolution in the lab. Concurrently, adaptive (phenotypic) landscape models, and especially Fisher’s geometrical model of adaptation, are powerful tools to formulate general predictions, which can then be tested on such evolutionary trajectories. However, they remain highly theoretical, and are widely conceived in a simple ecological context. In this thesis, we identified the (mutational and selective) determinants of the evolutionary trajectories of bacterial lines adapting to various environmental contexts. A first set of results regards evolution along a gradient of antibiotic doses, and their relevance is highlighted by experimental validation and by the reconstruction of the underlying adaptive landscape. A second experimental part integrates a biotic component (another bacteria) to the same environmental context. The evolutionary processes acting throughout the resulting long-term coevolution – maintained by frequency-dependent selection – are studied
Nedjar, Boumediene. "Mécanique de l'endommagement. Théorie du premier gradient et application au béton." Phd thesis, Ecole Nationale des Ponts et Chaussées, 1995. http://tel.archives-ouvertes.fr/tel-00529378.
Full textOllier, Edouard. "Sélection de modèles statistiques par méthodes de vraisemblance pénalisée pour l'étude de données complexes." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEN097.
Full textThis thesis is mainly devoted to the development of penalized maximum likelihood methods for the study of complex data.A first work deals with the selection of generalized linear models in the framework of stratified data, characterized by the measurement of observations as well as covariates within different groups (or strata). The purpose of the analysis is then to determine which covariates influence in a global way (whatever the stratum) the observations but also to evaluate the heterogeneity of this effect across the strata.Secondly, we are interested in the selection of nonlinear mixed effects models used in the analysis of longitudinal data. In a first work, we describe a SAEM-type algorithm in which the penalty is taken into account during step M by solving a penalized regression problem at each iteration. In a second work, inspired by proximal gradient algorithms, we simplify the M step of the penalized SAEM algorithm previously described by performing only one proximal gradient iteration at each iteration. This algorithm, called Stochastic Approximation Proximal Gradient Algorithm (SAPG), corresponds to a proximal gradient algorithm in which the gradient of the likelihood is approximated by a stochastic approximation technique.Finally, we present two statistical modeling works realized during this thesis
Mocke, Gary. "Turbulence et courants induits par le vent en présence de gradients de densité et modèle hydrodynamique du bassin de Thau." Toulouse, INPT, 1988. http://www.theses.fr/1988INPT075H.
Full textMarquis, Benjamin. "La limite de répartition supérieure de l'érable à sucre et du bouleau jaune sous contrôle climatique: étude dendroécologique le long d'un gradient d'élévation." Mémoire, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/8735.
Full textMontebello, Claudio. "Analysis of the stress gradient effect in Fretting-Fatigue through a description based on nonlocal intensity factors." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLN019/document.
Full textIn this manuscript a new method to describe the stress gradient effect in fretting-fatigue is proposed. It is based on the description of the mechanical fields arising close to the contact edges through nonlocal intensity factors. For this purpose, the kinetic field around the contact ends is partitioned into a summation of multiple terms, each one expressed as the product between intensity factors, Is, Ia, Ic, depending on the macroscopic loads applied to the mechanical assembly, and spatial reference fields, ds, da, dc, depending on the local geometry of the part. This description is obtained through nonintrusive post-processing of FE computation and is conceived in order to be easily implementable in the industrial context. As a matter of fact, for any given macroscopic load and geometry, a set of nonlocal intensity factors is computed that permits to characterize the mechanical fields close to the contact edges. Such nonlocal description has the advantage of being (i) geometry independent so that the nonlocal intensity factors can be used to compare laboratory test with real-scale industrial assembly, (ii) applicable to industrial FE models usually characterized by rougher meshes compared to the ones used to describe fretting-fatigue in the academic context. The procedure is applied to fretting-fatigue test data in order to verify whether the nonlocal intensity factors can be used to transpose experimental results to different contact geometries from the one in which they have been obtained
Belluau, Michaël. "Traits fonctionnels, tolérances et distributions des espèces herbacées sur un gradient de disponibilité en eau : une approche prédictive par modèle d'équation structurale." Thèse, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/11584.
Full textAbstract : Species assembly (their presence/absence) in a natural community is the consequence of several filtering mechanisms made by the environment. Among these filters, the abiotic filter selects species able to tolerate local environmental conditions. Variation in water availability in the soil is one of the main environmental gradients according to which plant species are differently distributed. Considering the hypothesis that functional traits and their relationships are hierarchical, habitat preferences of species along environmental gradients should be determined by a combination of hierarchical physiological and morpho-anatomical traits. During this PhD, my overall goal is to identify morphological, anatomical and physiological drought tolerance functional traits that can predict the presence of species along a soil hydrology gradient. More specifically : (i) What are the physiological traits that best reflect drought tolerance? (ii) What are the relationships between morpho-anatomical traits and physiological traits of tolerance? (iii) What are the optimal morpho-anatomical traits for predicting tolerance of herbaceous species to drought? (iv) What forms of relationships exist between optimal morpho-anatomical traits of tolerance and the presence of species in drought condition? (v) Can the presence of species in drought condition be predicted from their morpho-anatomical features? Our results show (1) that it is possible to predict the distribution of species on a soil hydrology gradient from five physiological traits of drought tolerance. These five traits are maximum net photosynthesis, maximum stomatal conductance, water potential of the soil at the wilting point, stomatal conductance at the wilting point, and efficiency of water use at the wilting point. We have shown that (ii) the physiological traits of drought tolerance are predicted by optimal morpho-anatomical traits (leaf area, leaf dry matter content, leaf nitrogen content, root length and stomatal surface). (iii) Morpho-anatomical features alone are not good predictors of species hydrology and (iv) the sequence “morpho-anatomical traits physiological traits species hydrology” gives the best predictions. However (v) the model does not provide reliable predictions using morpho-anatomical traits measured under natural conditions. These results confirm, at least partially, the hypothesis that the distribution of species on a hydrological gradient can be predicted from their drought tolerance traits themselves predicted by their morpho-anatomical features. In summary, we used a functional approach by constructing a predictive causal model that allowed us to focus on environmental filtering mechanisms and more specifically on the role of the species hydrological niche in assembling plant communities.
Hou, Longfeng. "Etude numérique sur le modèle de coefficient d’absorption corrélé en multi spectral." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0068.
Full textRadiative heat transfer of gas plays an important role in industrial applications such as in combustion chambers, atmospheric sciences, etc. Several models [11] have been proposed to estimate the radiative properties of gases. The most accurate one is the Line-By-Line (LBL) approach. However, this technique involves excessive computation cost which makes it inappropriate for most applications. Nevertheless, it remains the reference approach for the assessment of other approximate models. The Correlated k-distribution method (Ck) [11] was shown to be a relevant choice for many applications. This method performs usually well, when only small temperature gradients are involved [21]. However, if the gaseous medium is subject to large temperature gradients, it may lead to errors that can reach 50% in terms of radiative heat fluxes when compared to LBL simulations [21]. The aim of the present paper is to propose an enhanced version of the Ck method, called the Multi-Spectral Correlated k-distribution approach (MSCk). The main difference between Ck and MSCk models is that in the Ck approach spectral intervals over which the radiative properties of the gas are averaged are chosen contiguous whereas, in the MSCk technique, those intervals are built in order to ensure that the absorption coefficient are scaled over them [27]. Accordingly, the usual assumption of correlated spectrum used in k-distribution approaches for the treatment of non uniformities is more acceptable in the MSCk case than in the Ck one. The building of those spectral intervals (using Functional Data Clustering, [52]) is detailed and the approach is assessed against LBL reference data in several test cases. These cases involve H2O-N2 and H2O-CO2-N2 mixtures in the [300-3000K] temperature range. Results show that the MSCk method enables to achieve better accuracies than Ck methods while remaining acceptable in terms of computational cost
Letierce, François. "Approche calculatoire pour la déconvolution en aveugle : application à l'imagerie SIMS." Thesis, Evry-Val d'Essonne, 2007. http://www.theses.fr/2007EVRY0038.
Full textSecondary Ion Mass Spectrometry (SIMS) creates images of atomic distributions on a sample's surface. The point spread function (PSF) is unknown. Blind deconvolution is used to remove the associated blur. This ill-conditionned problem is solved by constraining its solution (regularization). The optimum degree of regularization depends on a parameter to be determined. This parameter is found, as well as those of the PSF, by the generalized cross validation method. A calibration phase reduces the search space for the PSF parameters. The gaussian model used for the PSF is exploited to accelerate the computations. The image is deconvolved by solving a large linear system with the conjugate gradient method. A preconditionner making use of the PSF separability (isotropic or anisotropic) speeds up convergence
Shi, Feifei. "Comportement des tôles métalliques à gradient de propriété sous chargement dynamique." Thesis, Cachan, Ecole normale supérieure, 2015. http://www.theses.fr/2015DENS0035/document.
Full textThis Ph.D dissertation aimed at the comprehensive understanding and the constitutive modeling of the mechanical behaviours of the surface mechanical attrition treatment (SMAT) treated AISI304 stainless steel sheet under a large range of loading rates. SMAT treated AISI304 stainless steel sheets are multi-layered functionally graded materials (FGM). The main research results and conclusions are summarized as followed:(1) The overall rate sensitivity SMAT treated AISI304 stainless steel sheet is characterized by the double shearing test under quasi-static and dynamic loading where a large strain can be achieved without geometry instability. Impact double shear test are performed with a large diameter Hopkinson bar system and an adapted equal-impedance clamping device. Significant rate sensitivity is found. It is also observed that such a rate enhancement does not induce an important reduction of the ductility.(2) In order to extract accurate material information from the double shear tests, their testing conditions are thoroughly analyzed using numerical simulation. Numerical models including clamping devices have been built to investigate the influence of this clamping device at the early stage of loading. A limited effect was found for various imperfect testing conditions such as the clamping device stiffness, non-homogeneous stress and strain fields, non-equilibrium state, etc. On the contrary, numerical and analytical study shows that the simple small strain assumption usually used in double shear tests are not accurate enough. Eulerian cumulated strain definition should be used to get consistent numerical results. From this finding, the experimental rate sensitivity obtained for the SMAT treated AISI304 stainless steel sheet are recalculated.(3) A multi-layers elastic plastic damageable constitutive model is proposed to model SMAT treated AISI304 stainless steel sheet. The parameters are identified using tensile testing results. The elastic plastic behavior is curve fitted with a simple Ludwig hardening model. However, the damage parameters should be identified using an inverse method on the basis of numerical simulation of these tensile tests. In order to validate this multi-layer elastic plastic damageable constitutive model, indentation/piercing tests on SMAT treated AISI304 stainless steel sheet are performed. Numerical simulation of this indentation/piercing tests is also realized. It is found that the identified multi-layer elastic plastic damageable constitutive model allows for a quite accurate prediction of the experimental piercing tests.(4) In order to evaluate the impact anti-piercing capacity of the SMAT treated AISI304 stainless steel sheet, the impact perforation tests using Hopkinson bar are carried out. Numerical simulation of these impact perforation tests are realized with a similar FEM model as the quasi-static case. As the rate sensitivity of SMAT treated AISI304 stainless steel sheet is experimentally characterized with double shear test, a rate sensitive multi-layer elastic plastic damageable constitutive model is introduced. The numerical results agree well with the experimental ones, which indicates the effectiveness of the numerical model as well as the rate sensitive multi-layer elastic plastic damageable constitutive model
Bejjani, Nadine. "Wave propagation in multilayered plates : the Bending-Gradient model and the asymptotic expansion method." Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC1025.
Full textThis thesis is dedicated to the modelling of plane wave propagation in infinite multilayered plates, in the context of linear elasticity. The aim of this work is to find an analytical or semi-analytical approximation of the wave dispersion relations when the ratio of the thickness to the wavelength is small. The dispersion relations, linking the angular frequency and the wave number, provide key information about the propagation characteristics of the wave modes. Two methods are proposed in this thesis: the Bending-Gradient model and the asymptotic expansion method. The relevance of these methods is tested by comparing their predictions to those of well-known plate theories, and to reference results computed using the finite element method. Preliminarily, the first part of the thesis is devoted to the mathematical justification of the Bending-Gradient theory in the static framework using variational methods. The first step is to identify the mathematical spaces in which the variational problems of the Bending-Gradient are well posed. A series of existence and uniqueness theorems of the corresponding solutions are then formulated and proved. The second part is dedicated to the formulation of the equations of motion of the Bending-Gradient theory. Numerical simulations are realized for different types of layer stacks to assess the ability of this model to correctly predict the propagation of flexural waves. The third part is concerned with the asymptotic analysis of the three-dimensional equations of motion, carried out using the asymptotic expansion method, the small parameter being the ratio of the thickness to the wavelength. Assuming that the three-dimensional fields can be written as expansions in power of the small parameter, a series of problems which can be solved recursively is obtained. The validity of this method is evaluated by comparison with the finite element method
Enakoutsa, Koffi. "Modèles non locaux en rupture ductile des métaux." Paris 6, 2007. https://tel.archives-ouvertes.fr/tel-01492088.
Full textIn the first part, one assess the practical hability of two proposals of modolfication of the Gurson model to circumvent the problem of unlimited strain and damage localization in this model. The assessment of the model is based on two criteria, absence of mesh size effect in finish elements computations and agreement of experimental and numerical results for some typical ductile fracture tests. The first proposal consisted of adopting some nonlocal evolution equation for the porosity involving some convolution integral. The second proposal is an extension of Gurson's condition of homogeneous boundary strain rate, to the case of conditions of inhomogeneous boundary strain rate. In the second part, one define a model for porous ductile material containing two "populations" of cavities, extending that of Perrin et al. (2000) to the case where continuous nucleation of secondary small voids is taking into account
Dos, Reis Daniel. "Évaluation électromagnétique en régime diffusif de défauts et objets 3D enfouis : du modèle d'interaction à l'inversion de données." Paris 7, 2001. http://www.theses.fr/2001PA077186.
Full textCordier, Tristan. "Structure des assemblages fongiques de la phyllosphère des arbres forestiers et effet potentiel du changement climatique." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14511/document.
Full textPhyllosphere is the habitat provided by the leaves of living plants. Many microbial species -pathogens, saprophytes or mutualists of plants - inhabit this environment. These microbes therefore influence the dynamics and structure of plant communities. The main objective was to study the potential effects of climate change on the structure of phyllosphere fungal assemblages, and on the ecological niche of pathogenic fungal species of forest trees. We used two approaches, i) the study of altitudinal gradients and ii) the construction of bioclimatic niche models. Since phyllosphere fungal assemblages of forest trees are still poorly known, we first described their diversity and quantified their spatial variability at the scale of a forest stand.Our results show that the phyllosphere of a forest tree houses hundreds of fungal species, with few dominant species and many rare species. Factors structuring these assemblages include both abiotic and biotic factors: the temperature appears as the most explanatory variable along an elevation algradient. At the scale of a forest stand, the genetic proximity between trees is more important than the geographic distance. Analysis of the bioclimatic niche models of pathogenic fungi forest at the French scale highlights some climatic limitations, and the summer rainfall is an important explanatory variable. However, many introduced species already occupy the distribution of their host, without apparent climatic limitation. The effects of climate change on most pathogens will be exercised indirectly by very important depressive effects on the abundance of their host trees. Only pathogens adapted to the Mediterranean biotope would increase their impact
Barbagallo, Gabriele. "Modeling fibrous composite reinforcements and metamaterials : Theoretical development and engineering applications." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI098/document.
Full textThe systematic use of a so-called Cauchy theory sometimes leads to an oversimplification of reality. Indeed, certain characteristics of the microstructure are implicitly neglected in these approaches. However, even if all the materials are heterogeneous on a sufficiently small scale and therefore possess a microstructure, this does not necessarily induce a specific behavior on a macroscopic scale. In this case, the Cauchy theory would be perfectly adapted to their description. On the other hand, other materials possess microstructures on a large-enough scale (micron, millimeter, centimeter), whose effects have repercussions on macroscopic behavior. The Cauchy model is then insufficient to describe their specific global behavior related to what occurs at smaller scales, e.g. concentration of forces or deformations, or strong local gradients. One of the most promising fields of application of enriched continuous theories concerns the study of the mechanical behavior of woven composite reinforcements. This class of materials, made up by weaving yarns (made up themselves of many thinner fibers), possess very different rigidities in tension and in shear: the yarns are very stiff in tension but the angle between two yarns can vary very easily. This very marked contrast of material mechanical properties makes it necessary to describe its homogenized properties within the framework of a second gradient theory (or a constrained micromorphic one). Cauchy models are also not well-suited for the description of the dynamic response of certain microstructured materials showing dispersive behaviors or band-gaps. Enriched continuous theories (and in particular the relaxed micromorphic model) can be good candidates for modeling these materials in a more precise and realistic way, since they can include the macroscopic manifestation of their microstructure. These microstructured materials may have original properties, to improve and optimize the responses of the structures that use them. Indeed, these structures are designed using such microstructured materials - also known as metamaterials - to exhibit improved strengths, shaping facilities, minimized weights, and much more. They can also possess innovative properties in the field of vibration control or in the field of stealth technology
Baudoin, Pierre. "Caractérisation et identification de propriétés de matériaux métalliques à gradients de microstructure." Thesis, Lille 1, 2015. http://www.theses.fr/2015LIL10015/document.
Full textThe main objective of this thesis is to design a consistent methodology for the characterization and simulation of functionally graded metals. This approach should allow the assessment of the high cycle fatigue response of forged railway axles produced by Valdunes, in the context of the Innovaxle project. The tests conducted on the forged material reveal a very heterogeneous microstructure, whose grain size varies in the width of the axle. A procedure based on recrystallisation is designed to reproduce this grain size gradient on a smaller scale, on a reference material (ARMCO iron). The characterization of the obtained graded microstructure shows heterogeneities in the local elasto-plastic response of the specimen. This behaviour is tentatively described by a heterogeneously distributed elasto-plastic law over the microstructure, the local yield strength being obtained from the local grain size through a Hall-Petch formulation. This model is used to simulate the response of graded microstructures under heterogeneous loadings in the high cycle fatigue regime. The interests of functionally graded materials are outlined by these simulations. The finite element simulations run in this work make use of the Code Aster software, and the digital image correlation program YADICS is used for image registration purposes
Tissot, Romain. "Utilisation de l'IA pour l'analyse d'un robot parallèle à câbles destiné à l'assistance aux personnes fragiles." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4050.
Full textCable-driven parallel robots (CDPR) represent a new class of parallel robots. These robots use wound cables for their legs instead of the rigid link chains used in traditional parallel robots. This technology is cable-dependent and therefore subject to the unilateral forces exerted by the cables on the platform, the cables' elasticity, and sagging due to their own weight. Initially, we present the modeling of this type of robot, particularly focusing on the behavior of so-called Irvine cables, as this offers a more realistic approach compared to other models. Next, we address the use of neural networks (NN) for solving the direct kinametic model (DK), after having previously presented the performance of other solving methods for comparison. NNs exhibit interesting qualities for problem-solving in various fields; however, they will need to be significantly adapted to the DK problem, starting with the ability to determine multiple exact solutions while minimizing computation time, which is a critical challenge in this context. Finally, we will address the problem of calibrating the Young's modulus E of the cable materials, with the goal of identifying the elasticity of each cable based on measurements taken from the CDPR. The calibration aims to meet a crucial safety need in the context of mobility assistance for vulnerable individuals and can be used for maintenance and performance improvement. We demonstrate the feasibility of such calibration through simulation, using two methods: gradient descent and the use of NNs, while also highlighting their current limitations. These limitations indicate that further research and development are necessary to refine these methods for practical use, especially in real-world applications where accuracy and speed are of paramount importance
Abdallah, Youssouf. "Compaction banding in high-porosity limestones : Experimental observations and modelling." Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC1024.
Full textThe mechanical deformation of sedimentary rocks can give rise to the formation of compaction bands which can significantly affect the performance of geosystems. The objective of this thesis is to identify the formation of compaction bands in porous carbonate rocks in laboratory experiments and to propose a constitutive model based on second-gradient plasticity theory to account for the effect of local heterogeneity.Axisymmetric compression tests are combined with X-Ray Computed Tomography observations. Samples are imaged before and after several loading steps and at different confining pressure levels. Digital Volume Correlation technique is applied on consecutive images to build 3D deformation maps at a millimetric gauge length, which permit to identify strain localization zones. A simple method based on kinematic considerations is proposed to classify these zones. Compaction bands have been identified at high confining pressures, pure shear bands are obtained for low confinements whereas compactive shear bands are observed in the transitional regime. In contrast, a diffuse compaction occurs in hydrostatic loading conditions. 3D porosity maps are constructed at some intermediate meso-scale and superimposed on deformation maps. The heterogeneity of porosity is found to control the pattern of compaction bands, as they lay inside high-porosity zones and avoid denser zones. Grain crushing is identified as the main micromechanism of the deformation. Very fine particles fill the pores and induce a porosity reduction. Large pores are observed to remain intact in denser zones, as they are protected by a surrounding rigid lattice of cemented grains. When shear strain is identified in deformation bands, porosity heterogeneity is found to control the volumetric behavior. Along a compactive/pure shear band, some cracks are observed in denser zones, whereas grain crushing and pore filling are observed in the more porous zones. These mechanisms are responsible for a complex co-existence of local contractancy and dilatancy along shear bands.Standard constitutive elastic-plastic laws of homogeneous media are insufficient to model correctly compaction banding, as a zero-thickness band is obtained for rate-independent materials in a Cauchy continuum. To regularize this problem, higher-order continua (micromorphic media) can be considered, where internal lengths in relation with the microstructure are introduced in the constitutive relations. A particular issue of these models is to calibrate the higher-order parameters. In the framework of second-gradient plasticity theory, the yield surface depends on a hardening parameter, related to the plastic strain and its second gradient. The plastic porosity reduction is taken here as the hardening parameter. A calibration procedure of the additional higher-order parameters based on macroscopic mechanical data and the data provided by the X-Ray images is proposed. Once the model is calibrated, a linear stability analysis in axisymmetric triaxial loading is applied to predict the formation of compaction bands. The calibrated model is subsequently implemented in a finite element code, textit{Numerical Geolab}, to perform numerical simulations of the experiments. Numerical results are finally compared to the experimental observations
Samé, Allou Badara. "Modèles de mélange et classification de données acoustiques en temps réel." Compiègne, 2004. http://www.theses.fr/2004COMP1540.
Full textThe motivation for this Phd Thesis was a real-time flaw diagnosis application for pressurized containers using acoustic emissions. It has been carried out in collaboration with the Centre Technique des Industries Mécaniques (CETIM). The aim was to improve LOTERE, a real-time computer-aided-decision software, which has been found to be too slow when the number of acoustic emissions becomes large. Two mixture model-based clustering approaches, taking into account time constraints, have been proposed. The first one consists in clustering 'bins' resulting from the conversion of original observations into an histogram. The second one is an on-line approach updating recursively the classification. An experimental study using both simulated and real data has shown that the proposed methods are very efficient
Lemaire, Simon. "Discrétisations non-conformes d'un modèle poromécanique sur maillages généraux." Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00957292.
Full textBertheloot, Jessica. "Distribution de l'azote chez le blé (Triticum aesticum L.) après la floraison:un modèle dynamique fondé sur une approche structure-fonction." Phd thesis, AgroParisTech, 2009. http://pastel.archives-ouvertes.fr/pastel-00005134.
Full textBaldi, Guillaume. "Contributions à la modélisation procédurale de structures cellulaires stochastoques 2D et à leur génération par l'exemple." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD001.
Full textThe creation of procedural materials and textures requires considerable expertise, and is time-consuming, tedious and costly. We are therefore looking to develop tools for the automatic generation of procedural textures and materials from input exemplars provided in the form of images: This is known as inverse procedural modeling.In this thesis, we propose a procedural model called Cellular Point Process Texture Basis Function (C-PPTBF) for representing 2D stochastic cellular structures, involving functions that are differentiable with respect to most of their parameters, making it possible to estimate these parameters from examples without resorting entirely to deep neural networks. We have set up a processing pipeline to estimate the parameters of our model from structural examples provided in the form of binary images, combining an estimation performed using a convolutional neural network trained on images produced with our C-PPTBF model and an estimation phase using gradient descent directly on the parameters of the procedural model
Mancio, Reis Felipe Miguel. "Dynamique d'une goutte sur une surface à mouillabilité hétérogène : application à l'intensification des transferts de chaleur avec changement d'état." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30062/document.
Full textThe present work deals with the use of surface tension forces induced by heterogeneous wettability to solve this problem. It is considered that heterogeneous wettability of a solid surface enables the mechanical non-equilibrium of the drop embryos forming at the wall. Theoretically, contact angle hysteresis has been neglected in most of the studies about wettability gradients but recently found to be a major phenomenon deserving attention. Therefore, we developed a dynamic model that explicitly takes into account the contact angle hysteresis. Results of this model were compared with experimental data found in the literature. Subsequently mass transfer was added to this same model in order to understand the effect of a wettability gradient on heat transfer during dropwise condensation process. Quantitative analysis of the results showed that the theoretical hysteresis greatly reduced the droplet velocity. In addition, the model identified the importance of spatial heterogeneities of contact angle hysteresis on the dynamic behavior of the drop. Finally the heat transfers during the growth phase proved to be much more intense than during the dynamic phase. The interest is therefore to minimize the size of the droplet removed to enable both high density and nucleation frequency. The theoretical results analysis showed that such surface energy gradient enhances the transfers. Simultaneously with this theoretical approach, an experimental setup has been developed to study the effects of wettability surfaces when water vapor condensation occurs. Experimental results revealed the ability of wettability gradient to maintain a dropwise condensation regime rather than a filmwise regime. The occurrence of nucleation and growth of small droplets, that involve important heat transfer rate, is widely promoted by the fast droplet removal
Portier, François. "Réduction de la dimension en régression." Phd thesis, Université Rennes 1, 2013. http://tel.archives-ouvertes.fr/tel-00871049.
Full textAssadi-Haghi, Atousa. "Contribution au développement de méthodes d'optimisation structurelle pour la conception assistée par ordinateur de composants et de circuits hyperfréquences." Limoges, 2007. https://aurore.unilim.fr/theses/nxfile/default/1a189347-19d7-4422-99d6-9019a30e6b99/blobholder:0/2007LIMO4050.pdf.
Full textThe thesis manuscript reports on the study of structural optimization methods for computer aided design of microwave devices. In the first part, a geometrical optimization approach is developed and applied to the design of a packaged circuit. The approach is based on model order reduction using segmentation and geometrical parameterization of the electromagnetic model. The reduced model is optimized through a gradient method, minimizing a cost function dedicated to identification of parasitic modes in the package. In the second part, a topological optimization approach, based on topology gradient evaluation, is applied for optimizing metal distribution upon the surface of a microstrip component. For solving local optimum problems, the method is hybridized with a genetic algorithm for exploring more largely the optimization domain, improving the convergence by this way
Halimi, Abdelghafour. "Modélisation et traitement statistique d'images de microscopie confocale : application en dermatologie." Phd thesis, Toulouse, INPT, 2017. http://oatao.univ-toulouse.fr/19515/1/HALIMI_Abdleghafour.pdf.
Full textCrabbé, Blandine. "Gradient damage models in large deformation." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX085/document.
Full textGradient damage models, also known as phase-field models, are now widely used to model brittle and ductile fracture, from the onset of damage to the propagation of a crack in various materials. Yet, they have been mainly studied in the framework of small deformation, and very few studies aims at proving their relevance in a finite deformation framework. This would be more helpful for the tyre industry that deals with very large deformation problems, and has to gain insight into the prediction of the initiation of damage in its structures.The first part of this work places emphasis on finding analytical solutions to unidimensional problems of damaging viscous materials in small and large deformation.In all the cases, the evolution of damage is studied, both in the homogeneous and localised cases. Having such solutions gives a suitable basis to implement these models and validate the numerical results.A numerical part naturally follows the first one, that details the specificities of the numerical implementation of these non local models in large deformation. In order to solve the displacement and damage problems, the strategy of alternate minimisation (or staggered algorithm) is used. When solved on the reference configuration, the damage problem is the same as in small deformation, and consists in a bound constraint minimisation. The displacement problem is non linear, and a mixed finite element method is used to solve a displacement-pressure problem. A quasi-incompressible Mooney-Rivlin law is used to model the behaviour of the hyperelastic material. Various tests in 2D and 3D are performed to show that gradient damage models are perfectly able to initiate damage in sound, quasi-incompressible structures, in large deformation.In the simulations depicted above, it should be noted that the damage laws combined to the hyperelastic potential results in an initiation of damage that takes place in zones of high deformation, or in other words, in zones of high deviatoric stress. However, in some polymer materials, that are known to be quasi-incompressible, it has been shown that the initiation of damage can take place in zones of high hydrostatic pressure. This is why an important aspect of the work consists in establishing a damage law such that the material be incompressible when there is no damage, and the pressure play a role in the damage criterion. Such a model is exposed in the third part.Finally, the last part focuses on the cavitation phenomenon, that can be understood as the sudden growth of a cavity. We first study it as a purely hyperelastic bifurcation, in order to get the analytical value of the critical elongation for which cavitation occurs, in the case of a compressible isotropic neo-hookean material submitted to a radial displacement. We show that there is a competition between the cavitation phenomenon and the damage, and that depending on the ratio of the critical elongation for damage and the critical elongation for cavitation, different rupture patterns can appear
Pham, Kim. "Construction et analyse de modèles d'endommagement à gradient." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2010. http://tel.archives-ouvertes.fr/tel-00559405.
Full textJoussemet, Magali. "Sur la construction de modèles d'endommagement avec gradient." Poitiers, 1997. http://www.theses.fr/1997POIT2303.
Full textHilger, Susanne [Verfasser]. "Statistical mechanics of gradient models / Susanne Hilger." Bonn : Universitäts- und Landesbibliothek Bonn, 2019. http://d-nb.info/1192821440/34.
Full textLuu, Duy Hao. "Gradient Theory: Constitutive Models and Fatigue Criteria." Palaiseau, Ecole polytechnique, 2013. http://pastel.archives-ouvertes.fr/docs/00/86/60/81/PDF/These_Duy-Hao_LUU.pdf.
Full textIn the present thesis, two new classes of phenomenological models in the framework of the continuum thermodynamics and gradient theory are proposed. The first one is standard gradient constitutive model used to deal with the mechanical problems at micro-scale, and the other concerns gradient fatigue criteria for the problems at small scale. Using these, some common effects which are not captured yet in the classical mechanics but become significant at sufficiently small scales, are taken into account. For each class, the size and gradient effects which are the two effects most commonly discussed and very confused between each other in the literature, are clearly distinct and demonstrated to be integrated into the later via gradient terms. The thesis contains two principal contents presented in the part A and part B, respectively corresponding to the two new model classes. The following are their summary: Part A- Standard Gradient Constitutive Models: Application in Micro-Mechanics. A formulation of Standard Gradient Plasticity Models, based on an abundant researches on strain gradient plasticity (SPG) theory in the literature such as the ones of Q. S. Nguyen (2000, 2005, 2011 and 2012), is proposed and numerically implemented. The models are based on a global approach in the framework of continuum thermodynamics and generalized standard materials where the standard gradients of the internal parameters in the set of state variables are introduced. The governing equations for a solid are derived from an extended version of the virtual work equation (Frémond, 1985 or Gurtin, 1996). These equations can also be derived from the formalism of energy and dissipation potentials and appear as a generalized Biot equation for the solid. The gradient formulation established in such way is considered a higher-order extension of the local plasticity theory, with the introduction of the material characteristic length scale and the insulation boundary condition proposed by Polizzotto. The presence of strain gradient leads to a Laplacian equation and to non-standard boundary value problem with partial differential equations of higher order. A computational method, at the global level, based on diffusion like-problem spirit is used. Illustrations are given and applied to some typical problems in micro-mechanics to reproduce the well-known mechanical phenomenon, the effect "smaller is stronger". A good agreement between numerical results and reference counterparts is found; mesh-independence of numerical results is observed. Part B- Gradient Fatigue Criteria at Small Scale. A reformulation of gradient fatigue criteria is proposed in the context of multiaxial high-cycle fatigue (HCF) of metallic materials, initiated by Papadopoulos 1996. The notable dependence of fatigue limit on some common factors concerning the material specimen size is analysed and modeled. These factors, which are not taken into account before in classical fatigue criteria but become significant at sufficiently small scales, are included in the new formulation. Among such factors, three ones intimately related to each other, the pure size (smaller is stronger), stress gradient (higher gradient is higher resistance) and loading (i. E. Loading mode) effects, are here investigated. An effort has been made to roughly integrate all these effects into only one through gradient terms. According to that, a new class of fatigue criteria with stress gradient terms introduced not only in the normal stress but also in the shear stress parts, are formulated. Such a formulation allows to capture all the pure size (if important) and stress gradient (if any) effects, as well as to cover a wide range of loading effect (traction, bending and shearing, for instance). Due to such a property, these new criteria are naturally generalized to multiaxial loadings to be a new version of stress gradient dependent multiaxial fatigue criteria. Application to some classical fatigue criteria such Crossland and Dang Van is provided as illustrations. As shown, classical fatigue criteria as well as the one of Papadopoulos 1996, are considered special cases of the new respective criteria. An overview for the whole thesis is put in this Summary, and an overview for each model class is found in the Chapter 1 where a general introduction of the thesis is given. Their corresponding detail are presented in the Chapters 2-4 (for part A) and Chapters 5-6 (for part B). The last chapter, Chapter 7, is dedicated to general conclusions and perspectives
Marques-da-Silva, Antonio Hermes. "Gradient test under non-parametric random effects models." Thesis, Durham University, 2018. http://etheses.dur.ac.uk/12645/.
Full textNguyen, Anh-Dung. "Contributions to modeling, structural analysis, and routing performance in dynamic networks." Phd thesis, Toulouse, INPT, 2013. http://oatao.univ-toulouse.fr/9725/1/nguyen.pdf.
Full textArmattoe, Kodjo Mawuli. "Modélisation non-locale du comportement thermomécanique d'Alliages à Mémoire de Forme (AMF) avec prise en compte de la localisation et des effets de la chaleur latente lors de la transformation de phase : application aux structures minces en AMF." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0053/document.
Full textIn this Phd thesis, thermo-mechanical models based on a nonlocal approach are proposed in order to describe the behavior of Shape Memory Alloys (SMA), taking into account localization and latent heat effects during phase transformation. These models are obtained as extensions of an existing local model. In order to describe the localization of phase transformation, the extension of the initial model consisted of rewriting it in a nonlocal context through the introduction of a new variable, defined as the nonlocal counterpart of the martensite volume fraction. The use of this model has required the development of a specific finite element in ABAQUS with the nonlocal martensite volume fraction as an additional degree of freedom. The simulations show the relevance of such an approach in the description of the phase transformation occurring in thin SMA structures subjected to thermo-mechanical loadings. To achieve the description of the latent heat effects, a heat balance equation with a source term depending on contributions of the phase transformation was added to the constitutive equations of the initial model. Even there, the use of the model required the development of a finite element which takes into account the thermo-mechanical coupling and considers the proposed formulation for the thermal balance. Numerical simulations have shown the delaying effect of the latent heat on phase transformation and the possible heterogeneous character of the phase transformation in this case. These effects are even more important as the strain rate is high
Anjo, Luiz Fernando Resende dos Santos. "Modelo hidraulico para transitorios lentos em conduto forçado." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/258182.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo
Made available in DSpace on 2018-08-11T21:41:10Z (GMT). No. of bitstreams: 1 Anjo_LuizFernandoResendedosSantos_D.pdf: 3588080 bytes, checksum: 122271523488dc8a40a0d509bd1b0cf8 (MD5) Previous issue date: 2008
Resumo: Este texto descreve as etapas que objetivam a utilização da estrutura originalmenteproposta por Todini e Pilati no chamado método gradiente (MG), utilizado para análise em regime permanente em instalações a condutos forçados, na formulação de um modelo dinâmico inercial rígido (MDIR), para a análise de escoamentos transitórios lentos neste tipo de instalação. São apresentadas as bases teóricas para esta nova modelação, justificadas através do equacionamento geral do escoamento fluido em condutos forçados. Os resultados obtidos pelo MDIR são comparados com os resultados obtidos pelo programa EPANET que utiliza o método gradiente. Discussões a respeito da importância da incorporação do efeito de inércia são apresentadas através de um estudo de casos, no caso de modelação hidráulica, e para análises de qualidade decorrentes desta.
Abstract: This research describes the stages which aim the use of the original structure proposed by Todini and Pilati in the so called gradient method (GM), used in the analysis in steady state of pipe networks, in the formulation of an inertial rigid dynamic model (IRDM) to analyse slow transients in this type of installation. The theoretical bases are presented for this new method, justified by the general equation of fluids flow in pipes networks. The results obtained by the MDIR are compared to the results obtained in the EPANET program, which uses the gradient method. Discussion on the importance of the incorporation of the inertia effect are presented through a study case of hydraulic modelation and for quality analysis which derived from it.
Doutorado
Recursos Hidricos
Doutor em Engenharia Civil
Pinto, Camila Nardi. "Otimização de parâmetros de interação do modelo UNIFAC-VISCO de misturas de interesse para a indústria de óleos essenciais." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/74/74132/tde-27042015-160229/.
Full textThe determination of physical properties of essential oils is critical to their application in the food industry and also in equipment design. The large number of variables involved in deterpenation process, such as temperature, pressure and composition, to make use of viscosity predictive models required. This study aimed obtain parameters for the viscosity predictive model UNIFAC-VISCO using gradient descent as optimization method to model systems viscosity data representing the phases that can be formed in deterpenation processes for extraction liquid-liquid of bergamot, lemon and mint essential oils, using aqueous ethanol as solvente in different compositions at 25 º C. The work was divided in two configurations; in the first one the interaction parameters previously reported in the literature were kept fixed; in the second one all interaction parameters were adjusted. The model and the gradient descent method were implemented in MATLAB language. The optimization algorithm was runned 10 times for each configuration, starting from different arrays of initial interaction parameters obtained by the Monte Carlo method. The results were compared with the study carried out by Florido et al. (2014), which used genetic algorithm as optimization method. The first configuration provided an average deviation (DMR) of 1,366 and the second configuration resulted in a DMR 1,042. The gradient descent method showed better results for the first configuration comparing with the genetic algorithm method (DMR 1.70). On the other hand, for the second configuration the genetic algorithm method had a better result (DMR 0.68). The UNIFAC-VISCO model predictive ability was evaluated for eucalyptus essential oil system using the obtained parameters, providing DMR equal to 17.191 and 3.711, for the first and second configuration, respectively. The parameters determined by genetic algorithm presented lower DMR for the two settings (3.56 and 1.83 to the first and second configuration, respectively). The major parameters for calculating the DMR are CH-CH3 and OH-H2O to the first and second configuration, respectively. The parameters involving the C group did not influence the DMR and may be excluded from further analysis.