Academic literature on the topic 'Modèle de Markov à variables latentes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Modèle de Markov à variables latentes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Modèle de Markov à variables latentes"
Lacroix, Robert, Claude Montmarquette, Sophie Mahseredjian, and Nicole Froment. "Disparités interindustrielles dans les taux de départs volontaires : une étude empirique." Articles 67, no. 4 (February 27, 2009): 458–81. http://dx.doi.org/10.7202/602049ar.
Full textJacquinot, Pascal, and F. Mihoubi. "Dynamique et hétérogénéité de l’emploi en déséquilibre." Articles 72, no. 2 (February 13, 2009): 113–48. http://dx.doi.org/10.7202/602200ar.
Full textLozano Keymolen, Daniel, Sergio Cuauhtémoc Gaxiola Robles Linares, and Alejandro Martínez Espinosa. "Autorreporte de salud de los adultos mayores en México, 2012-2018." Revista Brasileira de Estudos de População 38 (September 1, 2021): 1–21. http://dx.doi.org/10.20947/s0102-3098a0156.
Full textDissertations / Theses on the topic "Modèle de Markov à variables latentes"
Matias, Catherine. "Statistique asymptotique dans des modèles à variables latentes." Habilitation à diriger des recherches, Université d'Evry-Val d'Essonne, 2008. http://tel.archives-ouvertes.fr/tel-00349639.
Full textMa présentation s'organise en trois grandes thématiques : les travaux portant sur des séquences, notamment sur la modélisation de leur distribution et des processus d'évolution sous-jacents ; les travaux de statistique semi ou non paramétrique portant sur des signaux observés avec du bruit ; et enfin les travaux (en partie en cours) portant sur les graphes aléatoires.
Dortet-Bernadet, Vincent. "Contribution à l'étude statistique de modèles à variables latentes." Toulouse 3, 2001. http://www.theses.fr/2001TOU30135.
Full textCasarin, Roberto. "Méthodes de simulation pour l'estimation bayésienne des modèles à variables latentes." Paris 9, 2007. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2007PA090056.
Full textLatent variable models are now very common in econometrics and statistics. This thesis mainly focuses on the use of latent variables in mixture modelling, time series analysis and continuous time models. We follow a Bayesian inference framework based on simulation methods. In the third chapter we propose alfa-stable mixtures in order to account for skewness, heavy tails and multimodality in financial modelling. Chapter four proposes a Markov-Switching Stochastic-Volatility model with a heavy-tail observable process. We follow a Bayesian approach and make use of Particle Filter, in order to filter the state and estimate the parameters. Chapter five deals with the parameter estimation and the extraction of the latent structure in the volatilities of the US business cycle and stock market valuations. We propose a new regularised SMC procedure for doing Bayesian inference. In chapter six we employ a Bayesian inference procedure, based on Population Monte Carlo, to estimate the parameters in the drift and diffusion terms of a stochastic differential equation (SDE), from discretely observed data
Dubarry, Cyrille. "Méthodes de lissage et d'estimation dans des modèles à variables latentes par des méthodes de Monte-Carlo séquentielles." Phd thesis, Institut National des Télécommunications, 2012. http://tel.archives-ouvertes.fr/tel-00762243.
Full textDouc, Randal. "Problèmes statistiques pour des modèles à variables latentes : propriétés asymptotiques de l'estimateur du maximum de vraisemblance." Palaiseau, Ecole polytechnique, 2001. http://www.theses.fr/2001EPXXO001.
Full textAncelet, Sophie. "Exploiter l'approche hiérarchique bayésienne pour la modélisation statistique de structures spatiales: application en écologie des populations." Phd thesis, AgroParisTech, 2008. http://pastel.archives-ouvertes.fr/pastel-00004396.
Full textFilstroff, Louis. "Contributions to probabilistic non-negative matrix factorization - Maximum marginal likelihood estimation and Markovian temporal models." Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0143.
Full textNon-negative matrix factorization (NMF) has become a popular dimensionality reductiontechnique, and has found applications in many different fields, such as audio signal processing,hyperspectral imaging, or recommender systems. In its simplest form, NMF aims at finding anapproximation of a non-negative data matrix (i.e., with non-negative entries) as the product of twonon-negative matrices, called the factors. One of these two matrices can be interpreted as adictionary of characteristic patterns of the data, and the other one as activation coefficients ofthese patterns. This low-rank approximation is traditionally retrieved by optimizing a measure of fitbetween the data matrix and its approximation. As it turns out, for many choices of measures of fit,the problem can be shown to be equivalent to the joint maximum likelihood estimation of thefactors under a certain statistical model describing the data. This leads us to an alternativeparadigm for NMF, where the learning task revolves around probabilistic models whoseobservation density is parametrized by the product of non-negative factors. This general framework, coined probabilistic NMF, encompasses many well-known latent variable models ofthe literature, such as models for count data. In this thesis, we consider specific probabilistic NMFmodels in which a prior distribution is assumed on the activation coefficients, but the dictionary remains a deterministic variable. The objective is then to maximize the marginal likelihood in thesesemi-Bayesian NMF models, i.e., the integrated joint likelihood over the activation coefficients.This amounts to learning the dictionary only; the activation coefficients may be inferred in asecond step if necessary. We proceed to study in greater depth the properties of this estimation process. In particular, two scenarios are considered. In the first one, we assume the independence of the activation coefficients sample-wise. Previous experimental work showed that dictionarieslearned with this approach exhibited a tendency to automatically regularize the number of components, a favorable property which was left unexplained. In the second one, we lift thisstandard assumption, and consider instead Markov structures to add statistical correlation to themodel, in order to better analyze temporal data
Ridall, Peter Gareth. "Bayesian Latent Variable Models for Biostatistical Applications." Queensland University of Technology, 2004. http://eprints.qut.edu.au/16164/.
Full textBry, Xavier. "Une méthodologie exploratoire pour l'analyse et la synthèse d'un modèle explicatif : l'Analyse en Composantes Thématiques." Paris 9, 2004. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2004PA090055.
Full textRastelli, Riccardo, and Nial Friel. "Optimal Bayesian estimators for latent variable cluster models." Springer Nature, 2018. http://dx.doi.org/10.1007/s11222-017-9786-y.
Full textBook chapters on the topic "Modèle de Markov à variables latentes"
Marano, Giovanni, Gianni Betti, and Francesca Gagliardi. "Latent Class Markov Models for Measuring Longitudinal Fuzzy Poverty." In Advances in Latent Variables, 73–81. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/10104_2014_4.
Full textLe Corff, Sylvain, Gersende Fort, and Eric Moulines. "New Online EM Algorithms for General Hidden Markov Models. Application to the SLAM Problem." In Latent Variable Analysis and Signal Separation, 131–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28551-6_17.
Full text"Multilevel Factor Analysis Modelling Using Markov Chain Monte Carlo Estimation." In Latent Variable and Latent Structure Models, 237–56. Psychology Press, 2014. http://dx.doi.org/10.4324/9781410602961-17.
Full text"Background on latent variable andMarkov chain models." In Latent Markov Models for Longitudinal Data, 38–71. Chapman and Hall/CRC, 2012. http://dx.doi.org/10.1201/b13246-6.
Full textMooijaart, Ab, and Kees van Montfort. "Latent Markov Models for Categorical Variables and Time-Dependent Covariates." In Longitudinal Models in the Behavioral and Related Sciences, 1–17. Routledge, 2017. http://dx.doi.org/10.4324/9781315091655-1.
Full textMolina, Teresita, Jorge Luis García-Alcaraz, Valeria Martínez Loya, Nadia Sofia Tanino, and Diego Tlapa. "Impact of Human Resources on Quality After Just-in-Time Implementation." In Handbook of Research on Manufacturing Process Modeling and Optimization Strategies, 235–55. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-2440-3.ch011.
Full textConference papers on the topic "Modèle de Markov à variables latentes"
Zhu, Chen, Hengshu Zhu, Hui Xiong, Pengliang Ding, and Fang Xie. "Recruitment Market Trend Analysis with Sequential Latent Variable Models." In KDD '16: The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2939672.2939689.
Full textFlitti, F., and Ch Collet. "Markov Regularization of Mixture of Latent variable Models for Multi-component Image Unsupervised Joint Reduction/Segmentatin." In 2006 9th International Conference on Information Fusion. IEEE, 2006. http://dx.doi.org/10.1109/icif.2006.301667.
Full textZhou, Fan, Qiang Gao, Goce Trajcevski, Kunpeng Zhang, Ting Zhong, and Fengli Zhang. "Trajectory-User Linking via Variational AutoEncoder." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/446.
Full textLi, Yaqiong, Xuhui Fan, Ling Chen, Bin Li, Zheng Yu, and Scott A. Sisson. "Recurrent Dirichlet Belief Networks for interpretable Dynamic Relational Data Modelling." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/342.
Full text