Academic literature on the topic 'Modèles à volatilité stochastique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Modèles à volatilité stochastique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Modèles à volatilité stochastique"
Gloter, Arnaud. "Estimation du coefficient de diffusion de la volatilité d'un modèle à volatilité stochastique." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 330, no. 3 (February 2000): 243–48. http://dx.doi.org/10.1016/s0764-4442(00)00119-1.
Full textMellios. "Un modèle d'équilibre général avec volatilité stochastique des taux d'intérêt et information incomplète." Annales d'Économie et de Statistique, no. 51 (1998): 101. http://dx.doi.org/10.2307/20076139.
Full textYéo, Yardjouma. "Modèle épidémiologie stochastique dans un population structurée en âge." International Journal of Scientific Research and Management 8, `10 (October 12, 2020): 187–289. http://dx.doi.org/10.18535/ijsrm/v8i10.m01.
Full textPhaneuf, Louis. "Approche d’équilibre général stochastique du cycle économique : problèmes et réalisations." L'Actualité économique 62, no. 1 (January 27, 2009): 110–46. http://dx.doi.org/10.7202/601362ar.
Full textUctum, Remzi. "Économétrie des modèles à changement de régimes : un essai de synthèse." Articles 83, no. 4 (November 18, 2008): 447–82. http://dx.doi.org/10.7202/019389ar.
Full textLubrano, Michel. "Modélisation bayésienne non linéaire du taux d’intérêt de court terme américain : l’aide des outils non paramétriques." Articles 80, no. 2-3 (October 24, 2005): 465–99. http://dx.doi.org/10.7202/011396ar.
Full textBénassy, Jean-Pascal. "Conférence François-Albert Angers (2002)." Articles 78, no. 4 (December 7, 2004): 423–57. http://dx.doi.org/10.7202/007260ar.
Full textAbi-Zeid, I., and B. Bobée. "La modélisation stochastique des étiages: une revue bibliographique." Revue des sciences de l'eau 12, no. 3 (April 12, 2005): 459–84. http://dx.doi.org/10.7202/705360ar.
Full textSmith, Herbert L. "Application de l’analyse des séries chronologiques à la projection d’effectifs de population scolaire par la méthode des composantes." Articles 38, no. 1 (June 16, 2010): 145–70. http://dx.doi.org/10.7202/039991ar.
Full textSoutter, M., and M. Musy. "Contamination des eaux souterraines par des pesticides: cartes de risque et d'incertitudes." Revue des sciences de l'eau 10, no. 1 (April 12, 2005): 103–20. http://dx.doi.org/10.7202/705272ar.
Full textDissertations / Theses on the topic "Modèles à volatilité stochastique"
Kurpiel, Adam. "Valorisation et gestion d'options : modèles à volatilité stochastique." Bordeaux 4, 2000. http://www.theses.fr/2000BOR40048.
Full textOuld, Aly Sidi Mohamed. "Modélisation de la courbe de variance et modèles à volatilité stochastique." Phd thesis, Université Paris-Est, 2011. http://tel.archives-ouvertes.fr/tel-00604530.
Full textTouzi, Nizar. "Modèles à volatilité stochastique : arbitrage, équilibre et inférence statistique." Paris 9, 1993. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1993PA090053.
Full textEl, Kolei Salima. "Estimation des modèles à volatilité stochastique par filtrage et déconvolution." Nice, 2012. http://www.theses.fr/2012NICE4095.
Full textThis thesis deals with the estimation of the state and/or the parameters of state-space models. The motivations come from financial applications, namely, from the estimation of the stochastic volatility and the parameters of its dynamics. Here, we consider two models : the Taylor SV model and the Heston model. After presenting the filtering methods, we propose a new approach of M-estimation based on a déconvolution strategy for linear state space models. We show that this method leads to a consistent and asymptotically normal estimator with an explicit variance, allowing constructing asymptotic confidence interval in practice. For the SV model, a thorough comparison with filtering methods and other classical methods is given on simulated and real data. This study shows the performance of our new approach. The Heston model is an example of complex state space models and, due to the nonlinearity, we cannot apply our approach. Nevertheless, filtering methods can be used for this model and we show how the filters update the estimation of the volatility and the parameters thanks to the observation of option prices. This illustrates the flexibility of these methods. Finally, we analyze the model risk induces by an error in the estimation of the parameters. Our objective consists in understanding the behavior of the filtering methods when the model is not well parameterized. A theoretical analysis consists in isolating the model risk due to the uncertainty of the parameters from the error of estimation for linear (and weakly nonlinear) models. An application of this result is given for the Heston model
Grimaud, Agnès. "Modélisation stochastique et estimation de la dispersion du pollen de maïs.Estimation dans des modèles à volatilité stochastique." Phd thesis, Université Paris-Diderot - Paris VII, 2005. http://tel.archives-ouvertes.fr/tel-00011584.
Full textDans la seconde partie, on s'intéresse à des modèles à volatilité stochastique «mean-reverting», souvent utilisés en économie. Le processus observé est fonction d'une diffusion non observable dont on souhaite estimer les paramètres. Une méthode d'estimation à deux pas basée sur la structure ARMA(1,1) du processus est proposée, en utilisant un estimateur de moments et un contraste de Whittle. Des simulations sont réalisées afin de comparer cette méthode avec d'autres méthodes existantes. Ensuite un paramètre dit «leverage» est ajouté et un modèle discrétisé est étudié. Un critère auxiliaire est proposé pour estimer les paramètres à l'aide d'une méthode d'inférence indirecte. Enfin des simulations sont réalisées pour évaluer leurs performances.
Jraifi, Abdelilah. "Analyse numérique de modèles de diffusion-sauts à volatilité stochastique : cas de l'évaluation des options." Thesis, Valenciennes, 2014. http://www.theses.fr/2014VALE0002.
Full textIn the modern economic world, the options contracts are used because they allow to hedge against the vagaries and risks refers to fluctuations in the prices of the underlying assets. The determination of the price of these contracts is of great importance for investors.We are interested in problems of options pricing, actually the European and Quanto options on a financial asset. The price of that asset is modeled by a multi-dimentional jump diffusion with stochastic volatility. Otherwise, the first model considers the volatility as a continuous process and the second model considers it as a jump process. Finally in the 3rd model, the underlying asset is without jump and volatility follows a model CEV without jump. This model allow better to take into account some phenomena observed in the markets. We develop numerical methods that determine the values of prices for these options. We first write the model as an integro-differential stochastic equations system "EIDS", of which we study existence and unicity of solutions. Then we relate the resolution of PIDE to the computation of the option value. This link, which is based on the notion of infinitesimal generators, allows us to use different numerical methods. We therefore introduce the variational equation associated with the PIDE, and drawing on the work of Zhang [106], we show that it admits a unique solution in a weights Sobolev space We focus on the numerical approximation of the price of the option, by treating the problem in a bounded domain. We use the finite elements method of type (P1), and the scheme of Euler-Maruyama, for this serve, on the one hand the finite differences method in time, and on the other hand the method of Monte Carlo and the Quasi Monte Carlo method. For this last method we use of Halton sequences to improve the speed of convergence.We present a comparative study of the different numerical results in many different cases in order to investigate the performance and effectiveness of the used methods
Peng, Qidi. "Inférence statistique pour des processus multifractionnaires cachés dans un cadre de modèles à volatilité stochastique." Thesis, Lille 1, 2011. http://www.theses.fr/2011LIL10049/document.
Full textThe paradigmatic example of a multifractional stochastic process is multifractional Brownian motion (mBm). This fractal Gaussian process with continuous nowhere differentiable trajectories is a natural extension of the well-known fractional Brownian motion (fBm). FBm was introduced a longtime ago by Kolmogorov and later it has been made « popular» by Mandelbrot; in several outstanding works, the latter author has emphasized the fact that this model is of a great importance in various applied areas. Regarding mBm, it was introduced, more than fifteen years ago, by Benassi, Jaffard, Lévy Véhel, Peltier and Roux. Roughly speaking, it is obtained by replacing the constant Hurst parameter of fBm by a smooth function H(t) which depends on the time variable t. Therefore, in contrast with fBm, theincrements of mBm are non stationary and the local roughness of its trajectories (usually measured through the pointwise Hölder exponent) is allowed to significantly evolve over time; in fact, at each time t, the pointwise Hölder exponent of mBm is equal to H(t). It is worth noticing that the latter property makes this process more flexible than fBm; thanks to it, mBm has now become a useful model in the area of signal and image processing, aswell as in other areas such as finance. Since at least one decade, several authors have been interested in statistical inference problems connected with mBm and other multifractional processes/fields; their motivations have both applied and theoretical aspects. Among those problems, an important one is the estimation of H(t), the pointwise Hölder exponent at an arbitrary time t. In the solutions of such issues, the generalized quadratic variation method, which was first introduced by Istas and Lang in a setting of stationary increments processes, usually plays a crucial role. This method allows to construct asymptotically normal estimators starting from quadratic means of generalized increments of a process observed on a grid. So far, to our knowledge, in the statistical literature concerning mBm, it has been assumed that, the observation of the true values of this process on a grid, is available; yet, such an assumption does not always seem to be realistic. The main goal of the thesis is to study statistical inference problems related to mBm, when only a corrupted version of it, can be observed on a regular grid. This corrupted version is given by a class of stochastic volatility models whose definition is inspired by some Gloter and Hoffmann’s earlier works; last, notice that thanks to Itô formula this statistical setting can be viewed as the classical setting: « signal+noise »
Henon, Sandrine. "Évaluation et couverture de produits dérivés dans les marchés imparfaits : un modèle de taux avec volatilité stochastique." Marne-la-Vallée, 2005. http://www.theses.fr/2005MARN0242.
Full textGloter, Arnaud. "Estimation des paramètres d'une diffusion cachée : intégrales de processus de diffusion et modèles à volatilité stochastique." Marne-la-Vallée, 2000. http://www.theses.fr/2000MARN0066.
Full textMoukoukou, Arsène. "Existence d'un portefeuille optimal et étude d'un modèle a volatilité stochastique." Rouen, 1999. http://www.theses.fr/1999ROUES010.
Full textBooks on the topic "Modèles à volatilité stochastique"
H, Skiadas Christos, ed. Recent advances in stochastic modeling and data analysis: Chania, Greece, 29 May - 1 June 2007. [Hackensack], N.J: World Scientific, 2007.
Find full textStochastic calculus for fractional Brownian motion and related processes. Berlin: Springer-Verlag, 2008.
Find full textChaos and order in the capital markets: A new view of cycles, prices, and market volatility. New York: Wiley, 1991.
Find full textChaos and order in the capital markets: A new view of cycles, prices, and market volatility. 2nd ed. New York: Wiley, 1996.
Find full textRamón, Gutiérrez, and Valderrama Mariano J, eds. Selected topics on stochastic modelling. Singapore: World Scientific, 1994.
Find full textBook chapters on the topic "Modèles à volatilité stochastique"
Jedrzejewski, Franck. "Intégrale stochastique." In Modèles aléatoires et physique probabiliste, 273–86. Paris: Springer Paris, 2009. http://dx.doi.org/10.1007/978-2-287-99308-4_12.
Full text"6 Modèles de volatilité." In Mathématiques des marchés financiers, 105–24. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0866-3-008.
Full text"6 Modèles de volatilité." In Mathématiques des marchés financiers, 105–24. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0866-3.c008.
Full text"LA VOLATILITÉ STOCHASTIQUE ET LE SMILE." In Finance computationnelle et gestion des risques, 391–408. Presses de l'Université du Québec, 2006. http://dx.doi.org/10.2307/j.ctv18ph6c6.15.
Full textKOROLIOUK, Dimitri, and Vladimir S. KOROLIUK. "Approximation de la diffusion des systèmes et réseaux de files d’attente." In Théorie des files d’attente 1, 75–110. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9001.ch3.
Full text