To see the other types of publications on this topic, follow the link: Modèles de Markov cachés.

Dissertations / Theses on the topic 'Modèles de Markov cachés'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Modèles de Markov cachés.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Gagnon, Sébastien. "Modèles de Markov cachés à haute précision dynamique." Mémoire, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/8996.

Full text
Abstract:
La reconnaissance vocale est une technologie sujette à amélioration. Malgré 40 ans de travaux, de nombreuses applications restent néanmoins hors de portée en raison d'une trop faible efficacité. De façon à pallier à ce problème, l'auteur propose une amélioration au cadre conceptuel classique. Plus précisément, une nouvelle méthode d'entraînement des modèles markoviens cachés est exposée de manière à augmenter la précision dynamique des classificateurs. Le présent document décrit en détail le résultat de trois ans de recherche et les contributions scientifiques qui en sont le produit. L'aboutissement final de cet effort est la production d'un article de journal proposant une nouvelle tentative d'approche à la communauté scientifique internationale. Dans cet article, les auteurs proposent que des topologies finement adaptées de modèles markoviens cachés (HMMs) soient essentielles à une modélisation temporelle de haute précision. Un cadre conceptuel pour l'apprentissage efficace de topologies par élagage de modèles génériques complexes est donc soumis. Des modèles HMM à topologie gauche-à-droite sont d'abord entraînés de façon classique. Des modèles complexes à topologie générique sont ensuite obtenus par écrasement des modèles gauche-à-droite. Finalement, un enchaînement successif d'élagages et d'entraînements Baum-Welch est fait de manière à augmenter la précision temporelle des modèles.
APA, Harvard, Vancouver, ISO, and other styles
2

Lehéricy, Luc. "Estimation adaptative pour les modèles de Markov cachés non paramétriques." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS550/document.

Full text
Abstract:
Dans cette thèse, j'étudie les propriétés théoriques des modèles de Markov cachés non paramétriques. Le choix de modèles non paramétriques permet d'éviter les pertes de performance liées à un mauvais choix de paramétrisation, d'où un récent intérêt dans les applications. Dans une première partie, je m'intéresse à l'estimation du nombre d'états cachés. J'y introduis deux estimateurs consistants : le premier fondé sur un critère des moindres carrés pénalisés, le second sur une méthode spectrale. Une fois l'ordre connu, il est possible d'estimer les autres paramètres. Dans une deuxième partie, je considère deux estimateurs adaptatifs des lois d'émission, c'est-à-dire capables de s'adapter à leur régularité. Contrairement aux méthodes existantes, ces estimateurs s'adaptent à la régularité de chaque loi au lieu de s'adapter seulement à la pire régularité. Dans une troisième partie, je me place dans le cadre mal spécifié, c'est-à-dire lorsque les observations sont générées par une loi qui peut ne pas être un modèle de Markov caché. J'établis un contrôle de l'erreur de prédiction de l'estimateur du maximum de vraisemblance sous des conditions générales d'oubli et de mélange de la vraie loi. Enfin, j'introduis une variante non homogène des modèles de Markov cachés : les modèles de Markov cachés avec tendances, et montre la consistance de l'estimateur du maximum de vraisemblance<br>During my PhD, I have been interested in theoretical properties of nonparametric hidden Markov models. Nonparametric models avoid the loss of performance coming from an inappropriate choice of parametrization, hence a recent interest in applications. In a first part, I have been interested in estimating the number of hidden states. I introduce two consistent estimators: the first one is based on a penalized least squares criterion, and the second one on a spectral method. Once the order is known, it is possible to estimate the other parameters. In a second part, I consider two adaptive estimators of the emission distributions. Adaptivity means that their rate of convergence adapts to the regularity of the target distribution. Contrary to existing methods, these estimators adapt to the regularity of each distribution instead of only the worst regularity. The third part is focussed on the misspecified setting, that is when the observations may not come from a hidden Markov model. I control of the prediction error of the maximum likelihood estimator when the true distribution satisfies general forgetting and mixing assumptions. Finally, I introduce a nonhomogeneous variant of hidden Markov models : hidden Markov models with trends, and show that the maximum likelihood estimators of such models is consistent
APA, Harvard, Vancouver, ISO, and other styles
3

Binsztok, Henri. "Apprentissage de modèles Markoviens pour l'analyse de séquences." Paris 6, 2007. http://www.theses.fr/2007PA066568.

Full text
Abstract:
Initialement, l'apprentissage supervisé a permis d'apprendre des modèles à partir de données étiquetées. Mais, pour de nombreuses tâches, notamment dans le cadre de la modélisation utilisateur, si la quantité de données disponible est potentiellement sans limite, la quantité de données étiquetées est quasi-nulle. Dans le cadre de cette thèse, nous nous intéressons à l'apprentissage non-supervisé de modèles de séquences. L'information de séquence constitue le premier niveau de données structurées, où les données ne sont plus de simples vecteurs de caractéristiques. Nous proposons des approches d'apprentissage non-supervisé de séquences que nous appliquons à l'apprentissage automatique de modèles de Markov cachés (MMC) et modèles de Markov cachés hiérarchiques (MMCH) notamment. Notre but est d'apprendre simultanément la structure et les paramètres de modèles markoviens, pour minimiser la quantité d'information a priori nécessaire<br>Initially, Machine Learning allowed to learn models from labeled data. But, for numerous tasks, notably for the task of user modeling, if the available quantity of data is potentially without limit, the quantity of labeled data is almost nonexistent. Within the framework of this thesis, we are interested in the unsupervised learning of sequence models. The information of sequence constitutes the first level of structured data, where the data are no more simple vectors of characteristics. We propose approaches that we apply to the automatic learning of Hidden Markov Models ( HMMs) and Hierarchical HMMs (HHMMs). Our purpose is to learn simultaneously the structure and the parameters of these Markovian Models, to minimize the quantity of prior information necessary to learn them
APA, Harvard, Vancouver, ISO, and other styles
4

Aupetit, Sébastien. "Contributions aux Modèles de Markov Cachés : métaheuristiques d'apprentissage, nouveaux modèles et visualisation de dissimilarité." Phd thesis, Université François Rabelais - Tours, 2005. http://tel.archives-ouvertes.fr/tel-00168392.

Full text
Abstract:
Dans ce travail de thèse, nous présentons plusieurs contributions visant à améliorer l'utilisation des modèles de Markov cachés (MMC) dans les systèmes d'intelligence artificielle. Nous nous sommes concentrés sur trois objectifs : l'amélioration de l'apprentissage de MMC, l'expérimentation d'un nouveau type de MMC et la visualisation de dissimilarité pour mieux comprendre les interactions entre MMC. Dans la première partie, nous proposons, évaluons et comparons plusieurs nouvelles applications<br />de métaheuristiques biomimétiques classiques (les algorithmes génétiques, l'algorithme de fourmis artificielles API et l'optimisation par essaim particulaire) au problème de l'apprentissage de MMC. Dans la<br />deuxième partie, nous proposons un nouveau type de modèle de Markov caché, appelé modèle Markov caché à substitutions de symboles (MMCSS). Un MMCSS permet d'incorporer des connaissances a priori dans le processus d'apprentissage et de reconnaissance. Les premières expérimentations de ces modèles sur des images démontrent leur intérêt. Dans la troisième partie, nous proposons une nouvelle méthode de représentation de dissimilarité appelée matrice de scatterplots pseudo-euclidienne (MSPE), permettant de mieux comprendre les interactions entre des MMC. Cette MSPE est construite à partir<br />d'une technique que nous nommons analyse en composantes principales à noyau indéfini (ACPNI). Nous terminons par la présentation de la bibliothèque HMMTK, développée au cours de ce travail. Cette dernière intègre des mécanismes de parallélisation et les algorithmes développés au cours de la thèse.
APA, Harvard, Vancouver, ISO, and other styles
5

Votsi, Irène. "Evaluation des risques sismiques par des modèles markoviens cachés et semi-markoviens cachés et de l'estimation de la statistique." Thesis, Compiègne, 2013. http://www.theses.fr/2013COMP2058.

Full text
Abstract:
Le premier chapitre présente les axes principaux de recherche ainsi que les problèmes traités dans cette thèse. Plus précisément, il expose une synthèse sur le sujet, en y donnant les propriétés essentielles pour la bonne compréhension de cette étude, accompagnée des références bibliographiques les plus importantes. Il présente également les motivations de ce travail en précisant les contributions originales dans ce domaine. Le deuxième chapitre est composé d’une recherche originale sur l’estimation du risque sismique, dans la zone du nord de la mer Egée (Grèce), en faisant usage de la théorie des processus semi-markoviens à temps continue. Il propose des estimateurs des mesures importantes qui caractérisent les processus semi-markoviens, et fournit une modélisation dela prévision de l’instant de réalisation d’un séisme fort ainsi que la probabilité et la grandeur qui lui sont associées. Les chapitres 3 et 4 comprennent une première tentative de modélisation du processus de génération des séismes au moyen de l’application d’un temps discret des modèles cachés markoviens et semi-markoviens, respectivement. Une méthode d’estimation non paramétrique est appliquée, qui permet de révéler des caractéristiques fondamentales du processus de génération des séismes, difficiles à détecter autrement. Des quantités importantes concernant les niveaux des tensions sont estimées au moyen des modèles proposés. Le chapitre 5 décrit les résultats originaux du présent travail à la théorie des processus stochastiques, c’est- à-dire l’étude et l’estimation du « Intensité du temps d’entrée en temps discret (DTIHT) » pour la première fois dans des chaînes semi-markoviennes et des chaînes de renouvellement markoviennes cachées. Une relation est proposée pour le calcul du DTIHT et un nouvel estimateur est présenté dans chacun de ces cas. De plus, les propriétés asymptotiques des estimateurs proposés sont obtenues, à savoir, la convergence et la normalité asymptotique. Le chapitre 6 procède ensuite à une étude de comparaison entre le modèle markovien caché et le modèle semi-markovien caché dans un milieu markovien et semi-markovien en vue de rechercher d’éventuelles différences dans leur comportement stochastique, déterminé à partir de la matrice de transition de la chaîne de Markov (modèle markovien caché) et de la matrice de transition de la chaîne de Markov immergée (modèle semi-markovien caché). Les résultats originaux concernent le cas général où les distributions sont considérées comme distributions des temps de séjour ainsi que le cas particulier des modèles qui sont applique´s dans les chapitres précédents où les temps de séjour sont estimés de manière non-paramétrique. L’importance de ces différences est spécifiée à l’aide du calcul de la valeur moyenne et de la variance du nombre de sauts de la chaîne de Markov (modèle markovien caché) ou de la chaîne de Markov immergée (modèle semi-markovien caché) pour arriver dans un état donné, pour la première fois. Enfin, le chapitre 7 donne des conclusions générales en soulignant les points les plus marquants et des perspectives pour développements futurs<br>The first chapter describes the definition of the subject under study, the current state of science in this area and the objectives. In the second chapter, continuous-time semi-Markov models are studied and applied in order to contribute to seismic hazard assessment in Northern Aegean Sea (Greece). Expressions for different important indicators of the semi- Markov process are obtained, providing forecasting results about the time, the space and the magnitude of the ensuing strong earthquake. Chapters 3 and 4 describe a first attempt to model earthquake occurrence by means of discrete-time hidden Markov models (HMMs) and hidden semi-Markov models (HSMMs), respectively. A nonparametric estimation method is followed by means of which, insights into features of the earthquake process are provided which are hard to detect otherwise. Important indicators concerning the levels of the stress field are estimated by means of the suggested HMM and HSMM. Chapter 5 includes our main contribution to the theory of stochastic processes, the investigation and the estimation of the discrete-time intensity of the hitting time (DTIHT) for the first time referring to semi-Markov chains (SMCs) and hidden Markov renewal chains (HMRCs). A simple formula is presented for the evaluation of the DTIHT along with its statistical estimator for both SMCs and HMRCs. In addition, the asymptotic properties of the estimators are proved, including strong consistency and asymptotic normality. In chapter 6, a comparison between HMMs and HSMMs in a Markov and a semi-Markov framework is given in order to highlight possible differences in their stochastic behavior partially governed by their transition probability matrices. Basic results are presented in the general case where specific distributions are assumed for sojourn times as well as in the special case concerning the models applied in the previous chapters, where the sojourn time distributions are estimated non-parametrically. The impact of the differences is observed through the calculation of the mean value and the variance of the number of steps that the Markov chain (HMM case) and the EMC (HSMM case) need to make for visiting for the first time a particular state. Finally, Chapter 7 presents concluding remarks, perspectives and future work
APA, Harvard, Vancouver, ISO, and other styles
6

Robles, Bernard. "Etude de la pertinence des paramètres stochastiques sur des modèles de Markov cachés." Phd thesis, Université d'Orléans, 2013. http://tel.archives-ouvertes.fr/tel-01058784.

Full text
Abstract:
Le point de départ de ce travail est la thèse réalisée par Pascal Vrignat sur la modélisation de niveaux de dégradation d'un système dynamique à l'aide de Modèles de Markov Cachés (MMC), pour une application en maintenance industrielle. Quatre niveaux ont été définis : S1 pour un arrêt de production et S2 à S4 pour des dégradations graduelles. Recueillant un certain nombre d'observations sur le terrain dans divers entreprises de la région, nous avons réalisé un modèle de synthèse à base de MMC afin de simuler les différents niveaux de dégradation d'un système réel. Dans un premier temps, nous identifions la pertinence des différentes observations ou symboles utilisés dans la modélisation d'un processus industriel. Nous introduisons ainsi le filtre entropique. Ensuite, dans un but d'amélioration du modèle, nous essayons de répondre aux questions : Quel est l'échantillonnage le plus pertinent et combien de symboles sont ils nécessaires pour évaluer au mieux le modèle ? Nous étudions ensuite les caractéristiques de plusieurs modélisations possibles d'un processus industriel afin d'en déduire la meilleure architecture. Nous utilisons des critères de test comme les critères de l'entropie de Shannon, d'Akaike ainsi que des tests statistiques. Enfin, nous confrontons les résultats issus du modèle de synthèse avec ceux issus d'applications industrielles. Nous proposons un réajustement du modèle pour être plus proche de la réalité de terrain.
APA, Harvard, Vancouver, ISO, and other styles
7

Le, Cam Steven. "Analyse temps/fréquence pour l'identification de signatures pulmonaires par modèles de Markov cachés." Strasbourg, 2009. https://publication-theses.unistra.fr/public/theses_doctorat/2009/LE_CAM_Steven_2009.pdf.

Full text
Abstract:
Les bruits respiratoires sont employés par le médecin comme des indicateurs de l’état physiologique du patient et lui permettent d’établir son diagnostic. Néanmoins, leur interprétation fait intervenir une grande part de subjectivité, liée à la perception du médecin. C’est pourquoi il est actuellement envisagée une analyse automatique de ces sons dans les buts d’assurer la formation des futurs médecins et d’identifier des pathologies pour l’aide au diagnostic. La structure du signal respiratoire se compose du bruit respiratoire normal sur lequel s’additionne éventuellement un son anormal qui peut être soit transitoire (un craquement, un crépitant), soit musical (un sibilant, un stridor) ou encore un mélange (squawk). Les méthodes développés dans ce travail de thèse concernent l’analyse multirésolution des signaux par des outils bayésiens dans le domaine des paquets d’ondelettes, associés à des modèles markoviens multivariés originaux adaptés au contexte difficile du traitement des sons pulmonaires. Nous proposons ainsi une méthodologie pour l’étude des signaux respiratoires, avec pour ambition la possibilité de traiter un large panel de cas pathologiques. Une méthode basée sur l’analyse multivariée du signal après recalage de portions d’intérêt du signal est présentée. Nous introduisons ensuite un nouveau graphe de Markov adapté à la décomposition en paquets d’ondelettes, dans le but d’une analyse multirésolution des signaux pulmonaires et d’une détection plus précise des caractéristiques statistiques de ces signaux particulièrement variables à la fois en temps et en fréquence<br>The detection of abnormal respiratory sounds is still carried out by pulmonary auscultation using a stethoscope and implies limitations due to the subjectivity of this process. Indeed, it depends on the individual’s own hearing, experience and its ability to differentiate patterns. Nowadays, there is a clear need for a normalization of the diagnosis methodology and for the development of a common framework for all the medical community. In this context, much of the knowledge gained in recent years has resulted from the use of modern digital processing techniques, which leads to objective analysis and comparisons of respiratory sounds. Abnormal respiratory sounds are added to the normal breathing sounds and, according to the American Thoracic Society, they fall in two main categories : continuous sounds (Wheezes, Stridors) and discontinuous sounds (crackles). The methods developped in this thesis concern multiresolution analysis of the signals using bayesian tools in the wavelet packets domain, associated to original Markov models well adapted to the difficult context of lung sounds analysis. We then propose a methodology for the study of respiratory signals, with the ambition to be able to handle a wide panel of pathological cases. First, a method based on multivariate signal analysis after a scaling of interesting features is presented. We then introduce a new Markov graph adapted to the wavelet packet decomposition, with the aim of a multiresolution analysis of the lung signals and a more precise detection of the statistical characteristics of these highly unstable signals
APA, Harvard, Vancouver, ISO, and other styles
8

Olivier, Brice. "Analyse conjointe de traces oculométriques et d'EEG à l'aide de modèles de Markov cachés couplés." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM030/document.

Full text
Abstract:
Cette thèse consiste à analyser conjointement des signaux de mouvement des yeux et d’électroencéphalogrammes (EEG) multicanaux acquis simultanément avec des participants effectuant une tâche de lecture de recueil d'informations afin de prendre une décision binaire - le texte est-il lié à un sujet ou non? La recherche d'informations textuelles n'est pas un processus homogène dans le temps - ni d'un point de vue cognitif, ni en termes de mouvement des yeux. Au contraire, ce processus implique plusieurs étapes ou phases, telles que la lecture normale, le balayage, la lecture attentive - en termes d'oculométrie - et la création et le rejet d'hypothèses, la confirmation et la décision - en termes cognitifs.Dans une première contribution, nous discutons d'une méthode d'analyse basée sur des chaînes semi-markoviennes cachées sur les signaux de mouvement des yeux afin de mettre en évidence quatre phases interprétables en termes de stratégie d'acquisition d'informations: lecture normale, lecture rapide, lecture attentive et prise de décision.Dans une deuxième contribution, nous lions ces phases aux changements caractéristiques des signaux EEG et des informations textuelles. En utilisant une représentation en ondelettes des EEG, cette analyse révèle des changements de variance et de corrélation des coefficients inter-canaux, en fonction des phases et de la largeur de bande. En utilisant des méthodes de plongement des mots, nous relions l’évolution de la similarité sémantique au sujet tout au long du texte avec les changements de stratégie.Dans une troisième contribution, nous présentons un nouveau modèle dans lequel les EEG sont directement intégrés en tant que variables de sortie afin de réduire l’incertitude des états. Cette nouvelle approche prend également en compte les aspects asynchrones et hétérogènes des données<br>This PhD thesis consists in jointly analyzing eye-tracking signals and multi-channel electroencephalograms (EEGs) acquired concomitantly on participants doing an information collection reading task in order to take a binary decision - is the text related to some topic or not ? Textual information search is not a homogeneous process in time - neither on a cognitive point of view, nor in terms of eye-movement. On the contrary, this process involves several steps or phases, such as normal reading, scanning, careful reading - in terms of oculometry - and creation and rejection of hypotheses, confirmation and decision - in cognitive terms.In a first contribution, we discuss an analysis method based on hidden semi-Markov chains on the eye-tracking signals in order to highlight four interpretable phases in terms of information acquisition strategy: normal reading, fast reading, careful reading, and decision making.In a second contribution, we link these phases with characteristic changes of both EEGs signals and textual information. By using a wavelet representation of EEGs, this analysis reveals variance and correlation changes of the inter-channels coefficients, according to the phases and the bandwidth. And by using word embedding methods, we link the evolution of semantic similarity to the topic throughout the text with strategy changes.In a third contribution, we present a new model where EEGs are directly integrated as output variables in order to reduce the state uncertainty. This novel approach also takes into consideration the asynchronous and heterogeneous aspects of the data
APA, Harvard, Vancouver, ISO, and other styles
9

Augustin, Emmanuel. "Reconnaissance de mots manuscrits par systèmes hybrides : Réseaux de neurones et modèles de Markov cachés." Paris 5, 2001. http://www.theses.fr/2001PA05S026.

Full text
Abstract:
Ce mémoire présente un système de lecture de mots manuscrits isolés, appartenant à un lexique, avec des techniques combinées réseaux de neurones (RN) et modèles de Markov cachés (MMC). Les RN et les MMC ont été abondamment étudiés pour la reconnaissance de la parole entre autre. Leur maitrise a motivé depuis 10 ans de nombreux travaux pour combiner les atouts des deux outils, en discrimination et en modélisation des séquences. Quelques systèmes sont présentés pour la parole ou l'écrit. Le principe des systèmes hybrides RN et MMC est présenté avec son apprentissage itératif selon l'algorithme expectation maximisation (EM). Ce système pemet de remplacer la qualification vectorielle des MMC discrets, classification non supervisée qui perd beaucoup d'information, par un RN. . .<br>This thesis presents a recognition system for isolated handwritten words, given a dictionary, using a combination of neural networks (NN) and hidden markov models (HMM). NN and HMM have been extensively studied, the former in the field of isolated character recognition and the later in speech recognition, among other applications. Know-how on NN and HMM has motivated within the last 10 years many researches to combine the advantages of the two tools, that is discrimination power and sequence modelling. Some historical and original systems are recalled from speech and handwriting recognition. .
APA, Harvard, Vancouver, ISO, and other styles
10

Terrapon, Nicolas. "Recherche de domaines protéiques divergents à l'aide de modèles de Markov cachés : application à Plasmodium falciparum." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2010. http://tel.archives-ouvertes.fr/tel-00811835.

Full text
Abstract:
Les modèles de Markov cachés (MMC) - par exemple ceux de la librairie Pfam - sont des outils très populaires pour l'annotation des domaines protéiques. Cependaqnt, ils ne sont pas toujours adaptés aux protéines les plus divergentes. C'est notamment le cas avec Plasmodium falciparum (principal agent du paludisme chez l'Homme), où les MMC de Pfam identifient peu de familles distinctes de domaines, et couvrent moins de 50% des protéines de l'organisme. L'objectif de cette thèse est d'apporter des méthodes nouvelles pour affiner la détection de domaines dans les protéines divergentes. Le premier axe développé est une approche d'identification de domaines utilisant leurs propriétés de co- occurrence. Différentes études ont montré que la majorité des domaines apparaissent dans les protéines avec un ensemble très réduits d'autres domaines favoris. Notre méthode exploite cette propriété pour détecter des domaines trop divergents pour être identifiés par l'approche classique. Cette détection s'accompagne d'une estimation du taux d'erreur par une procédure de ré-échantillonnage. Chez P. falciparum, elle permet d'identifier, avec un taux d'erreur estimé inférieur à 20%, 585 nouveaux domaines - dont 159 familles étaient inédites dans cet organisme -, ce qui représente 16% du nombre de domaines connus. Le second axe de mes recherches présente plusieurs méthodes de corrections statistiques et évolutives des MMC pour l'annotation d'organismes divergents. Deux types d'approches ont été proposées. D'un côté, nous intégrons aux alignements d'apprentissage des MMC les séquences précédemment identifiés dans l'organisme cible ou ses proches relatifs. La limitation de cette solution est que seules des familles de domaines déjà connues dans le taxon peuvent ainsi être identifiées. Le deuxième type d'approches contourne cette limitation en corrigeant tous les modèles par une prise en compte de l'évolution des séquences d'apprentissage. Pour cela, nous faisons appel à des techniques classiques de la bioinformatique et de l'apprentissage statistique. Les résultats obtenus offrent un ensemble de prédictions complémentaires totalisant 663 nouveaux domaines supplémentaires - dont 504 familles inédites -, soit une augmentation de 18% à ajouter aux précédents résultats.
APA, Harvard, Vancouver, ISO, and other styles
11

Tay, Yong Haur. "Reconnaissance de l'écriture manuscrite hors-ligne par réseau de neurones artificiels et modèles de Markov cachés." Nantes, 2002. http://www.theses.fr/2002NANT2106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kijak, Ewa. "Structuration multimodale des vidéos de sport par modèles stochastiques." Phd thesis, Université Rennes 1, 2003. http://tel.archives-ouvertes.fr/tel-00532944.

Full text
Abstract:
Cette étude présente une méthode de structuration d'une vidéo utilisant des indices sonores et visuels. Cette méthode repose sur un modèle statistique de l'entrelacement temporel des plans de la vidéo. Le cadre général de la modélisation est celui des modèles de Markov cachés. Les indices visuels sont utilisés pour caractériser le type des plans. Les indices audio décrivent les événements sonores apparaissant durant un plan. La structure de la vidéo est représentée par un modèle de Markov caché hiérarchique, intégrant les informations a priori sur le contenu de la vidéo, ainsi que sur les règles d'édition. L'approche est validée dans le cadre des vidéos de tennis, ce dernier présentant une structure intrinsèque hiérarchique bien définie. En résultat de l'analyse de l'entrelacement temporel des différents types de plans, des scènes caractéristiques du tennis sont identifiées. De plus, chaque plan de la vidéo est assigné à un niveau de hiérarchie décrit en terme de point, jeu et set. Cette classification et segmentation simultanées de la structure globale de la vidéo peuvent être utilisées pour la création de résumés vidéo ou pour permettre une navigation non linéaire dans le document vidéo.
APA, Harvard, Vancouver, ISO, and other styles
13

Akhbari, Mahsa. "Analyse des intervalles ECG inter- et intra-battement sur des modèles d'espace d'état et de Markov cachés." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAT026.

Full text
Abstract:
Les maladies cardiovasculaires sont l'une des principales causes de mortalité chez l'homme. Une façon de diagnostiquer des maladies cardiaques et des anomalies est le traitement de signaux cardiaques tels que le ECG. Dans beaucoup de ces traitements, des caractéristiques inter-battements et intra-battements de signaux ECG doivent être extraites. Ces caractéristiques comprennent les points de repère des ondes de l’ECG (leur début, leur fin et leur point de pic), les intervalles significatifs et les segments qui peuvent être définis pour le signal ECG. L'extraction des points de référence de l'ECG consiste à identifier l'emplacement du pic, de début et de la fin de l'onde P, du complexe QRS et de l'onde T. Ces points véhiculent des informations cliniquement utiles, mais la segmentation precise de chaque battement de l'ECG est une tâche difficile, même pour les cardiologues expérimentés.Dans cette thèse, nous utilisons un cadre bayésien basé sur le modèle dynamique d'ECG proposé par McSharry. Depuis ce modèle s'appuyant sur la morphologie des ECG, il peut être utile pour la segmentation et l'analyse d'intervalles d'ECG. Afin de tenir compte de la séquentialité des ondes P, QRS et T, nous utiliserons également l'approche de Markov et des modèles de Markov cachés (MMC). En bref dans cette thèse, nous utilisons un modèle dynamique (filtre de Kalman), un modèle séquentiel (MMC) et leur combinaison (commutation de filtres de Kalman (SKF)). Nous proposons trois méthodes à base de filtres de Kalman, une méthode basée sur les MMC et un procédé à base de SKF. Nous utilisons les méthodes proposées pour l'extraction de points de référence et l'analyse d'intervalles des ECG. Le méthodes basées sur le filtrage de Kalman sont également utilisés pour le débruitage d'ECG, la détection de l'alternation de l'onde T, et la détection du pic R de l'ECG du foetus.Pour évaluer les performances des méthodes proposées pour l'extraction des points de référence de l'ECG, nous utilisons la base de données "Physionet QT", et une base de données "Swine" qui comprennent ECG annotations de signaux par les médecins. Pour le débruitage d'ECG, nous utilisons les bases de données "MIT-BIH Normal Sinus Rhythm", "MIT-BIH Arrhythmia" et "MIT-BIH noise stress test". La base de données "TWA Challenge 2008 database" est utilisée pour la détection de l'alternation de l'onde T. Enfin, la base de données "Physionet Computing in Cardiology Challenge 2013 database" est utilisée pour la détection du pic R de l'ECG du feotus. Pour l'extraction de points de reference, la performance des méthodes proposées sont évaluées en termes de moyenne, écart-type et l'erreur quadratique moyenne (EQM). Nous calculons aussi la sensibilité des méthodes. Pour le débruitage d'ECG, nous comparons les méthodes en terme d'amélioration du rapport signal à bruit<br>Cardiovascular diseases are one of the major causes of mortality in humans. One way to diagnose heart diseases and abnormalities is processing of cardiac signals such as ECG. In many of these processes, inter-beat and intra-beat features of ECG signal must be extracted. These features include peak, onset and offset of ECG waves, meaningful intervals and segments that can be defined for ECG signal. ECG fiducial point (FP) extraction refers to identifying the location of the peak as well as the onset and offset of the P-wave, QRS complex and T-wave which convey clinically useful information. However, the precise segmentation of each ECG beat is a difficult task, even for experienced cardiologists.In this thesis, we use a Bayesian framework based on the McSharry ECG dynamical model for ECG FP extraction. Since this framework is based on the morphology of ECG waves, it can be useful for ECG segmentation and interval analysis. In order to consider the time sequential property of ECG signal, we also use the Markovian approach and hidden Markov models (HMM). In brief in this thesis, we use dynamic model (Kalman filter), sequential model (HMM) and their combination (switching Kalman filter (SKF)). We propose three Kalman-based methods, an HMM-based method and a SKF-based method. We use the proposed methods for ECG FP extraction and ECG interval analysis. Kalman-based methods are also used for ECG denoising, T-wave alternans (TWA) detection and fetal ECG R-peak detection.To evaluate the performance of proposed methods for ECG FP extraction, we use the "Physionet QT database", and a "Swine ECG database" that include ECG signal annotations by physicians. For ECG denoising, we use the "MIT-BIH Normal Sinus Rhythm", "MIT-BIH Arrhythmia" and "MIT-BIH noise stress test" databases. "TWA Challenge 2008 database" is used for TWA detection and finally, "Physionet Computing in Cardiology Challenge 2013 database" is used for R-peak detection of fetal ECG. In ECG FP extraction, the performance of the proposed methods are evaluated in terms of mean, standard deviation and root mean square of error. We also calculate the Sensitivity for methods. For ECG denoising, we compare methods in their obtained SNR improvement
APA, Harvard, Vancouver, ISO, and other styles
14

Jacob, Bruno. "Un outil informatique de gestion de modèles de Markov cachés : expérimentations en reconnaissance automatique de la parole." Toulouse 3, 1995. http://www.theses.fr/1995TOU30240.

Full text
Abstract:
Nous proposons dans ce document l'utilisation d'un compilateur de modeles de markov caches dans le cadre de la reconnaissance automatique de la parole. Apres avoir presente les caracteristiques du compilateur, nous presentons quelques applications le mettant en uvre afin de valider cet outil: ? une methode de filtrage lexical en deux etapes: un sous-dictionnaire est selectionne par un modele de markov cache principal, dont les unites sont des classes majeures. A partir de celui-ci, un modele de markov cache temporaire est construit avec des unites pseudo-diphones afin d'obtenir le mot reconnu. Le compilateur est ici utilise dans une application classique de reconnaissance. ? une nouvelle methode de fusion de donnees acoustiques et articulatoires a l'aide d'une relation de type maitre/esclave entre deux modeles de markov caches, dans le but d'augmenter la robustesse des reconnaissances dans le bruit. Nous avons adapte le compilateur afin qu'il construise ces variantes des modeles de markov caches. ? un systeme de decodage acoustico-phonetique base sur des unites phonetiques issues d'une quantification vectorielle. Nous utilisons le compilateur comme un outil de validation du systeme de decodage. ? une proposition de post-traitement des resultats d'un systeme de reconnaissance de mots isoles afin d'en augmenter les performances. Nous testons ici la compatibilite des reseaux construits par le compilateur avec ceux d'un systeme deja existant. Nous concluons par une discussion sur les extensions possibles du compilateur
APA, Harvard, Vancouver, ISO, and other styles
15

Le, Corff Sylvain. "Estimations pour les modèles de Markov cachés et approximations particulaires : Application à la cartographie et à la localisation simultanées." Phd thesis, Telecom ParisTech, 2012. http://tel.archives-ouvertes.fr/tel-00773405.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à l'estimation de paramètres dans les chaînes de Markov cachées dans un cadre paramétrique et dans un cadre non paramétrique. Dans le cas paramétrique, nous imposons des contraintes sur le calcul de l'estimateur proposé : un premier volet de cette thèse est l'estimation en ligne d'un paramètre au sens du maximum de vraisemblance. Le fait d'estimer en ligne signifie que les estimations doivent être produites sans mémoriser les observations. Nous proposons une nouvelle méthode d'estimation en ligne pour les chaînes de Markov cachées basée sur l'algorithme Expectation Maximization appelée Block Online Expectation Maximization (BOEM). Cet algorithme est défini pour des chaînes de Markov cachées à espace d'état et espace d'observations généraux. La consistance de l'algorithme ainsi que des vitesses de convergence en probabilité ont été prouvées. Dans le cas d'espaces d'états généraux, l'implémentation numérique de l'algorithme BOEM requiert d'introduire des méthodes de Monte Carlo séquentielles - aussi appelées méthodes particulaires - pour approcher des espérances conditionnelles sous des lois de lissage qui ne peuvent être calculées explicitement. Nous avons donc proposé une approximation Monte Carlo de l'algorithme BOEM appelée Monte Carlo BOEM. Parmi les hypothèses nécessaires à la convergence de l'algorithme Monte Carlo BOEM, un contrôle de la norme Lp de l'erreur d'approximation Monte Carlo explicite en fonction du nombre d'observations T et du nombre de particules N est nécessaire. Par conséquent, une seconde partie de cette thèse a été consacrée à l'obtention de tels contrôles pour plusieurs méthodes de Monte Carlo séquentielles : l'algorithme Forward Filtering Backward Smoothing et l'algorithme Forward Filtering Backward Simulation. Ensuite, nous considérons des applications de l'algorithme Monte Carlo BOEM à des problèmes de cartographie et de localisation simultanées. Ces problèmes se posent lorsqu'un mobile se déplace dans un environnement inconnu. Il s'agit alors de localiser le mobile tout en construisant une carte de son environnement. Enfin, la dernière partie de cette thèse est relative à l'estimation non paramétrique dans les chaînes de Markov cachées. Le problème considéré a été très peu étudié et nous avons donc choisi de l'aborder dans un cadre précis. Nous supposons que la chaîne (Xk) est une marche aléatoire sur un sous-espace compact de Rm dont la loi des incréments est connue à un facteur d'échelle a près. Nous supposons également que, pour tout k, Yk est une observation dans un bruit additif gaussien de f(Xk), où f est une fonction à valeurs dans Rl que nous cherchons à estimer. Le premier résultat que nous avons établi est l'identifiabilité du modèle statistique considéré. Nous avons également proposé une estimation de la fonction f et du paramètre a à partir de la log-vraisemblance par paires des observations. Nous avons prouvé la convergence en probabilité de ces estimateurs lorsque le nombre d'observations utilisées tend vers l'infini.
APA, Harvard, Vancouver, ISO, and other styles
16

Ait-Mohand, Kamel. "Techniques d'adaptation de modèles markoviens. Application à la reconnaissance de documents anciens." Rouen, 2011. http://www.theses.fr/2011ROUES008.

Full text
Abstract:
Ce travail s'intéresse à la reconnaissance de caractères dans les documents imprimés. Le but est de créer un OCR suffisamment robuste pour être performant sur les documents anciens dont les particularités les rendent difficiles à traiter par les OCRs. Nous avons créé un système de reconnaissance polyfonte basé sur des modèles de Markov cachés (MMC) et nous l'avons intégré dans une chaîne de traitement OCR complète en utilisant des outils logiciels libres. Afin d'améliorer les performances de ce système sur de nouvelles données, nous avons créé des algorithmes d'adaptation qui modifient conjointement la structure et les probabilités d'émission des MMC. Nous avons évalué le système de reconnaissance polyfonte ainsi que les algorithmes d'adaptation sur des bases d'images réelles et synthétiques. Les résultats obtenus montrent que le système de reconnaissance polyfonte est compétitif comparé aux systèmes d'OCR industriels et que nos algorithmes d'adaptation de la structure devancent nettement les algorithmes d'adaptation de l'état de l'art<br>This work focuses on the recognition of characters in printed documents. The goal is to create a sufficiently robust OCR system that can deal with ancient documents whose peculiarity makes them difficult to process. We created a polyfont recognition system based on Hidden Markov Models (HMM) and we have integrated it into a complete processing chain using open source OCR tools. To improve the performance of this system on new data, we created new adaptation algorithms that jointly modify the structure and emission probabilities of HMMs. We evaluated the polyfont recognition system and the adaptation algorithms on synthetic and real images datasets. The results show that the polyfont recognition system is competitive compared to commercial OCR systems and that our structure-adaptation algorithms are more efficient than other state of the art adaptation algorithms
APA, Harvard, Vancouver, ISO, and other styles
17

Durand, Jean-Baptiste. "Modèles à structure cachée : inférence, estimation, sélection de modèles et applications." Phd thesis, Université Joseph Fourier (Grenoble), 2003. https://tel.archives-ouvertes.fr/tel-00002754v3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bettayeb, Miloud. "Modélisation d'un usager de jeu vidéo avec un modèle de Markov caché." Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/28472/28472.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Le, Corff Sylvain. "Estimations pour les modèles de Markov cachés et approximations particulaires : Application à la cartographie et à la localisation simultanées." Electronic Thesis or Diss., Paris, ENST, 2012. http://www.theses.fr/2012ENST0052.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à l'estimation de paramètres dans les chaînes de Markov cachées. Nous considérons tout d'abord le problème de l'estimation en ligne (sans sauvegarde des observations) au sens du maximum de vraisemblance. Nous proposons une nouvelle méthode basée sur l'algorithme Expectation Maximization appelée Block Online Expectation Maximization (BOEM). Cet algorithme est défini pour des chaînes de Markov cachées à espace d'état et espace d'observations généraux. Dans le cas d'espaces d'états généraux, l'algorithme BOEM requiert l'introduction de méthodes de Monte Carlo séquentielles pour approcher des espérances sous des lois de lissage. La convergence de l'algorithme nécessite alors un contrôle de la norme Lp de l'erreur d'approximation Monte Carlo explicite en le nombre d'observations et de particules. Une seconde partie de cette thèse se consacre à l'obtention de tels contrôles pour plusieurs méthodes de Monte Carlo séquentielles. Nous étudions enfin des applications de l'algorithme BOEM à des problèmes de cartographie et de localisation simultanées. La dernière partie de cette thèse est relative à l'estimation non paramétrique dans les chaînes de Markov cachées. Le problème considéré est abordé dans un cadre précis. Nous supposons que (Xk) est une marche aléatoire dont la loi des incréments est connue à un facteur d'échelle a près. Nous supposons que, pour tout k, Yk est une observation de f(Xk) dans un bruit additif gaussien, où f est une fonction que nous cherchons à estimer. Nous établissons l'identifiabilité du modèle statistique et nous proposons une estimation de f et de a à partir de la vraisemblance par paires des observations<br>This document is dedicated to inference problems in hidden Markov models. The first part is devoted to an online maximum likelihood estimation procedure which does not store the observations. We propose a new Expectation Maximization based method called the Block Online Expectation Maximization (BOEM) algorithm. This algorithm solves the online estimation problem for general hidden Markov models. In complex situations, it requires the introduction of Sequential Monte Carlo methods to approximate several expectations under the fixed interval smoothing distributions. The convergence of the algorithm is shown under the assumption that the Lp mean error due to the Monte Carlo approximation can be controlled explicitly in the number of observations and in the number of particles. Therefore, a second part of the document establishes such controls for several Sequential Monte Carlo algorithms. This BOEM algorithm is then used to solve the simultaneous localization and mapping problem in different frameworks. Finally, the last part of this thesis is dedicated to nonparametric estimation in hidden Markov models. It is assumed that the Markov chain (Xk) is a random walk lying in a compact set with increment distribution known up to a scaling factor a. At each time step k, Yk is a noisy observations of f(Xk) where f is an unknown function. We establish the identifiability of the statistical model and we propose estimators of f and a based on the pairwise likelihood of the observations
APA, Harvard, Vancouver, ISO, and other styles
20

Ahmad, Abdul Rahim. "Reconnaissance de l'écriture manuscrite en-ligne par approche combinant systèmes à vastes marges et modèles de Markov cachés." Phd thesis, Université de Nantes, 2008. http://tel.archives-ouvertes.fr/tel-00426903.

Full text
Abstract:
Nos travaux concernent la reconnaissance de l'écriture manuscrite qui est l'un des domaines de prédilection pour la reconnaissance des formes et les algorithmes d'apprentissage. Dans le domaine de l'écriture en-ligne, les applications concernent tous les dispositifs de saisie permettant à un usager de communiquer de façon transparente avec les systèmes d'information. Dans ce cadre, nos travaux apportent une contribution pour proposer une nouvelle architecture de reconnaissance de mots manuscrits sans contrainte de style. Celle-ci se situe dans la famille des approches hybrides locale/globale où le paradigme de la segmentation/reconnaissance va se trouver résolu par la complémentarité d'un système de reconnaissance de type discriminant agissant au niveau caractère et d'un système par approche modèle pour superviser le niveau global. Nos choix se sont portés sur des Séparateurs à Vastes Marges (SVM) pour le classifieur de caractères et sur des algorithmes de programmation dynamique, issus d'une modélisation par Modèles de Markov Cachés (HMM). Cette combinaison SVM/HMM est unique dans le domaine de la reconnaissance de l'écriture manuscrite. Des expérimentations ont été menées, d'abord dans un cadre de reconnaissance de caractères isolés puis sur la base IRONOFF de mots cursifs. Elles ont montré la supériorité des approches SVM par rapport aux solutions à bases de réseaux de neurones à convolutions (Time Delay Neural Network) que nous avions développées précédemment, et leur bon comportement en situation de reconnaissance de mots.
APA, Harvard, Vancouver, ISO, and other styles
21

Ahouandjinou, Arnaud. "Reconnaissance de scénario par les Modèles de Markov Cachés Crédibilistes : Application à l'interprétation automatique de séquences vidéos médicales." Thesis, Littoral, 2014. http://www.theses.fr/2014DUNK0380/document.

Full text
Abstract:
Les travaux de recherche développés dans cette thèse concernent la mise en oeuvre d'un système de vidéo surveillance intelligente en milieu hospitalier. Dans le contexte d'une application en unité de soins intensifs médicale, nous introduisons la notion originale de Boite Noire Médicale et nous proposons un nouveau système de monitoring visuel de Détection Automatique de Situations à risque et d'Alerte (DASA) basé sur un système de vidéosurveillance multi-caméra intelligent. L'objectif étant d'interpréter les flux d'informations visuelles et de détecter en temps réel les situations à risque afin de prévenir l'équipe médicale et ensuite archiver les évènements dans une base de donnée vidéo qui représente la Boite Noire Médicale. Le système d'interprétation est basé sur des algorithmes de reconnaissance de scénarios qui exploitent les Modèles de Markovs Cachés (MMCs). Une extension du modèle MMC standard est proposé afin de gérer la structure hiérarchique interne des scénarios et de contrôler la durée de chaque état du modèle markovien. La contribution majeure de ce travail repose sur l'intégration d'un raisonnement de type évènementiel, pour gérer la décision de reconnaissance en tenant compte des imperfections des informations disponibles. Les techniques de reconnaissance de scénarios proposées ont été testées et évaluées sur une base de séquences vidéo médicales et comparés aux modèles de Markov cachés probabilistiques classiques<br>This thesis focuses on the study and the implementation of an intelligent visual monitoring system in hospitals. In the context of an application for patient monitoring in mediacal intensive care unit, we introduce an original concept of the Medical Black Box and we propose a new system for visual monitoring of Automatic Detection of risk Situations and Alert (DASA) based on a CCTV system with network smart camera. The aim is to interpret the visual information flow and to detect at real-time risk situations to prevent the mediacl team and then archive the events in a video that is based Medical Black Box data. The interpretation system is based on scenario recognition algorithms that exploit the Hidden Markov Models (HMM). An extension of the classic model of HMM is proposed to handle the internal reporting structure of the scenarios and to control the duration of each state of the Markov model. The main contribution of this work relies on the integration of an evidential reasoning, in order to manage the recognition decision taking into account the imperfections of available information. The proposed scenarios recognition method have been tested and assessed on database of medical video sequences and compared to standard probabilistic Hidden Markov Models
APA, Harvard, Vancouver, ISO, and other styles
22

Bréhélin, Laurent. "Modèles de Markov cachés et apprentissage pas fusions d'états : algorithmes, applications, utilisations pour le test de circuits intégrés." Montpellier 2, 2001. http://www.theses.fr/2001MON20051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Rouan, Lauriane. "Apports des chaînes de Markov cachées à l'analyse de données de capture-recapture." Montpellier 2, 2007. http://www.theses.fr/2007MON20188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bianne-Bernard, Anne-Laure. "Reconnaissance de mots manuscrits cursifs par modèles de Markov cachés en contexte : application au français, à l'anglais et à l'arabe." Paris, Télécom ParisTech, 2011. https://pastel.hal.science/pastel-00656402.

Full text
Abstract:
L'objectif de cette thèse est d'élaborer un système de reconnaissance de mots manuscrits pouvant être appris et appliqué sur différents styles d'écriture. L'approche utilisée est une approche analytique: les mots sont découpés en sous-parties (caractères) à modéliser. Le découpage est effectué de manière implicite par l'utilisation de fenêtres glissantes qui permettent de transformer les images de mots en séquences. La méthode choisie pour apprendre les modèles de caractères utilise les modèles de Markov cachés (HMMs). Chaque caractère est représenté par un HMM de type Bakis, ce qui permet d'absorber les variations d'écriture entre scripteurs. Les mots sont reconstruits ensuite par concaténation des modèles qui les composent. Dans cette thèse, le choix est fait de chercher à améliorer la modélisation HMM de caractères en agissant au coeur même des modèles. A cette fin, une nouvelle approche est proposée, qui utilise l'aspect contextuel pour la modélisation : un caractère est modélisé en fonction de son contexte et son modèle est nommé trigraphe. La prise en compte de l'environnement d'un caractère pour sa modélisation implique cependant une multiplication des paramètres HMMs à apprendre sur un nombre souvent restreint de données d'observation. Une méthode originale de regroupement de paramètres est proposée dans ces travaux : le clustering d'états par position à l'aide d'arbres binaires de décision. Ce type de clustering, inédit dans les systèmes de reconnaissance de l'écriture, permet au système de réduire le nombre de paramètres tout en conservant l'un des principaux attraits des HMMs : l'utilisation d'un lexique de test indépendant de celui d'apprentissage<br>This thesis aims at elaborating a new handwritten words recognition system that can be learned and applied on any handwriting style and any alphabet. An analytic approach is used. Words are divided into subparts (characters or graphemes) that have to be modelled. The division is made implicitly thanks to sliding windows, which transform the word images into sequences. Hidden Markov Models, widely known as one of the most powerful tools for sequence modelling, are chosen to model the characters. A Bakis-type HMM represents each character. This enables the model to absorb variations in handwriting. A word model is built by concatenating its compound characters models. In this thesis, the choice is made to strengthen the HMM modelling by acting directly within the models. To this end, a new approach is proposed, using context knowledge : each character model depends on its context (its preceding and following characters). This new character model is named trigraph. Taking into account the characters environment allows more precise and more effective models to be built. However, this implies a multiplication of HMM parameters to be learned (often on a restricted number of observation data). An original method for parameter grouping is proposed in this thesis to overcome this issue : a state-based clustering, performed on each state position and based on binary decision trees. This type of clustering is new in the handwriting recognition field. It has many advantages, including parameter reduction. Moreover, the use of decision trees allows the HMMs to keep one of their most interesting attributes : independence between training and testing lexicon
APA, Harvard, Vancouver, ISO, and other styles
25

Kriouile, Abdelaziz. "La reconnaissance automatique de la parole et les modèles markoviens cachés : modèles du second ordre et distance de Viterbi à optimalité locale." Nancy 1, 1990. http://www.theses.fr/1990NAN10273.

Full text
Abstract:
Des travaux intensifs sur la reconnaissance automatique de la parole utilisant les modèles stochastiques ont été réalisés durant les cinq dernières années. L'application des modèles markoviens cachés (HMM) du premier ordre a conduit 0 des résultats impressionnants dans le domaine de la reconnaissance de mots isolés et de la parole continue. Notre objectif était de montrer que l'apport des modèles markoviens cachés à la reconnaissance automatique de la parole est d'autant plus important qu'on mène des réflexions fondamentales sur les modèles markoviens eux-mêmes et sur la façon de les appliquer. Nous avons développé une nouvelle formulation de Baum-Welch et une extension de l'algorithme de Viterbi, qui rendent les modèles markoviens cachés du second ordre efficaces en calcul pour des applications en temps réel. Il y avait une nette amélioration du taux de reconnaissance avec le second ordre. L'extension a des HMM d'ordre plus élevé a été aussi discutée. Enfin, nous avons proposé une nouvelle stratégie d'utilisation de l'algorithme de Viterbi pour la reconnaissance de la parole continue. Elle est basée sur la comparaison d'optimums locaux dans une fenêtre de trames. Cette stratégie, par bloc, a donné de meilleurs résultats que les versions classiques de l'algorithme de Viterbi. Elle permet une interaction avec d'autres processeurs.
APA, Harvard, Vancouver, ISO, and other styles
26

Infantes, Guillaume. "Apprentissage de modèles de comportement pour le contrôle d'exécution et la planification robotique." Phd thesis, Université Paul Sabatier - Toulouse III, 2006. http://tel.archives-ouvertes.fr/tel-00129505.

Full text
Abstract:
Les systèmes robotiques autonomes évoluent dans des environnements fortement imprévisibles, et sont sujets à des très grandes imprécisions des capteurs et de leur connaissance en général. De fait, ils sont construits dans l'objectif de robustesse et non pas de fournir des modèles de leur comportement, qui sont nécessaires à la prise de décision de plus haut niveau, type planification ou contrôle d'exécution. Dans les applications actuelles, ils sont souvent très abstraits et simplifiés par rapport à une application réelle. Nous proposons d'explorer la construction automatique de modèles intermédiaires stochastiques pour des systèmes robotiques réels. Dans un premier temps, nous expliquons la construction de modèles de Markov cachés, des données brutes à la définition d'états inobservables, et leur apprentissage. Nous passons ensuite à des modèles d'expressivité plus grande, et expliquons pourquoi les méthodes de calcul exact sont impossibles à appliquer. Nous montrons alors un algorithme original d'apprentissage quantitatif de tels modèles, et passons en revue différentes méthodes d'apprentissage de la causalité sous-jacente. Nous montrons une utilisation de tels modèles pour optimiser un comportement robotique, et pour que le système puisse décider d'apprendre.
APA, Harvard, Vancouver, ISO, and other styles
27

Bianne, Bernard Anne-Laure. "Reconnaissance de mots manuscrits cursifs par modèles de Markov cachés en contexte : application au français, à l'anglais et à l'arabe." Phd thesis, Télécom ParisTech, 2011. http://pastel.archives-ouvertes.fr/pastel-00656402.

Full text
Abstract:
L'objectif de cette thèse est d'élaborer un système de reconnaissance de mots manuscrits pouvant être appris et appliqué sur différents styles d'écriture. L'approche utilisée est une approche analytique: les mots sont découpés en sous-parties (caractères) à modéliser. Le découpage est effectué de manière implicite par l'utilisation de fenêtres glissantes qui permettent de transformer les images de mots en séquences. La méthode choisie pour apprendre les modèles de caractères utilise les modèles de Markov cachés (HMMs). Chaque caractère est représenté par un HMM de type Bakis, ce qui permet d'absorber les variations d'écriture entre scripteurs. Les mots sont reconstruits ensuite par concaténation des modèles qui les composent. Dans cette thèse, le choix est fait de chercher à améliorer la modélisation HMM de caractères en agissant au coeur même des modèles. A cette fin, une nouvelle approche est proposée, qui utilise l'aspect contextuel pour la modélisation : un caractère est modélisé en fonction de son contexte et son modèle est nommé trigraphe. La prise en compte de l'environnement d'un caractère pour sa modélisation implique cependant une multiplication des paramètres HMMs à apprendre sur un nombre souvent restreint de données d'observation. Une méthode originale de regroupement de paramètres est proposée dans ces travaux : le clustering d'états par position à l'aide d'arbres binaires de décision. Ce type de clustering, inédit dans les systèmes de reconnaissance de l'écriture, permet au système de réduire le nombre de paramètres tout en conservant l'un des principaux attraits des HMMs : l'utilisation d'un lexique de test indépendant de celui d'apprentissage.
APA, Harvard, Vancouver, ISO, and other styles
28

Morillot, Olivier. "Reconnaissance de textes manuscrits par modèles de Markov cachés et réseaux de neurones récurrents : application à l'écriture latine et arabe." Electronic Thesis or Diss., Paris, ENST, 2014. http://www.theses.fr/2014ENST0002.

Full text
Abstract:
La reconnaissance d’écriture manuscrite est une composante essentielle de l’analyse de document. Une tendance actuelle de ce domaine est de passer de la reconnaissance de mots isolés à celle d’une séquence de mots. Notre travail consiste donc à proposer un système de reconnaissance de lignes de texte sans segmentation explicite de la ligne en mots. Afin de construire un modèle performant, nous intervenons à plusieurs niveaux du système de reconnaissance. Tout d’abord, nous introduisons deux méthodes de prétraitement originales : un nettoyage des images de lignes de texte et une correction locale de la ligne de base. Ensuite, nous construisons un modèle de langage optimisé pour la reconnaissance de courriers manuscrits. Puis nous proposons deux systèmes de reconnaissance à l’état de l’art fondés sur les HMM (Hidden Markov Models) contextuels et les réseaux de neurones récurrents BLSTM (Bi-directional LongShort-Term Memory). Nous optimisons nos systèmes afin de proposer une comparaison de ces deux approches. Nos systèmes sont évalués sur l’écriture cursive latine et arabe et ont été soumis à deux compétitions internationales de reconnaissance d’écriture. Enfin, enperspective de notre travail, nous présentons une stratégie de reconnaissance pour certaines chaînes de caractères hors-vocabulaire<br>Handwriting recognition is an essential component of document analysis. One of the popular trends is to go from isolated word to word sequence recognition. Our work aims to propose a text-line recognition system without explicit word segmentation. In order to build an efficient model, we intervene at different levels of the recognition system. First of all, we introduce two new preprocessing techniques : a cleaning and a local baseline correction for text-lines. Then, a language model is built and optimized for handwritten mails. Afterwards, we propose two state-of-the-art recognition systems based on contextual HMMs (Hidden Markov Models) and recurrent neural networks BLSTM (Bi-directional Long Short-Term Memory). We optimize our systems in order to give a comparison of those two approaches. Our systems are evaluated on arabic and latin cursive handwritings and have been submitted to two international handwriting recognition competitions. At last, we introduce a strategy for some out-of-vocabulary character strings recognition, as a prospect of future work
APA, Harvard, Vancouver, ISO, and other styles
29

Azizi, Lamiae. "Champs aléatoires de Markov cachés pour la cartographie du risque en épidémiologie." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00680066.

Full text
Abstract:
La cartographie du risque en épidémiologie permet de mettre en évidence des régionshomogènes en terme du risque afin de mieux comprendre l'étiologie des maladies. Nousabordons la cartographie automatique d'unités géographiques en classes de risque commeun problème de classification à l'aide de modèles de Markov cachés discrets et de modèlesde mélange de Poisson. Le modèle de Markov caché proposé est une variante du modèle dePotts, où le paramètre d'interaction dépend des classes de risque.Afin d'estimer les paramètres du modèle, nous utilisons l'algorithme EM combiné à une approche variationnelle champ-moyen. Cette approche nous permet d'appliquer l'algorithmeEM dans un cadre spatial et présente une alternative efficace aux méthodes d'estimation deMonte Carlo par chaîne de Markov (MCMC).Nous abordons également les problèmes d'initialisation, spécialement quand les taux de risquesont petits (cas des maladies animales). Nous proposons une nouvelle stratégie d'initialisationappropriée aux modèles de mélange de Poisson quand les classes sont mal séparées. Pourillustrer ces solutions proposées, nous présentons des résultats d'application sur des jeux dedonnées épidémiologiques animales fournis par l'INRA.
APA, Harvard, Vancouver, ISO, and other styles
30

Ben, Mabrouk Mohamed. "Modèles de Markov triplets en restauration des signaux." Phd thesis, Institut National des Télécommunications, 2011. http://tel.archives-ouvertes.fr/tel-00694128.

Full text
Abstract:
La restauration statistique non-supervisée de signaux admet d'innombrables applications dans les domaines les plus divers comme économie, santé, traitement du signal, ... Un des problèmes de base, qui est au coeur de cette thèse, est d'estimer une séquence cachée (Xn)1:N à partir d'une séquence observée (Yn)1:N. Ces séquences sont considérées comme réalisations, respectivement, des processus (Xn)1:N et (Yn)1:N. Plusieurs techniques ont été développées pour résoudre ce problème. Le modèle parmi le plus répandu pour le traiter est le modèle dit "modèle de Markov caché" (MMC). Plusieurs extensions de ces modèles ont été proposées depuis 2000. Dans les modèles de Markov couples (MMCouples), le couple (X, Y) est markovien, ce qui implique que p(x|y) est également markovienne (alors que p(x) ne l'est plus nécessairement), ce qui permet les mêmes traitements que dans les MMC. Plus récemment (2002) les MMCouples ont été étendus aux "modèles de Markov triplet" (MMT), dans lesquels on introduit un processus auxiliaire U et suppose que le triplet T = (X, U, Y) est markovien. Là encore il est possible, dans un cadre plus général que celui des MMCouples, d'effectuer des traitements avec une complexité raisonnable. L'objectif de cette thèse est de proposer des nouvelles modélisations faisant partie des MMT et d'étudier leur pertinence et leur intérêt. Nous proposons deux types de nouveautés: (i) Lorsque la chaîne cachée est discrète et lorsque le couple (X, Y) n'est pas stationnaire, avec un nombre fini de "sauts" aléatoires dans les paramètres, l'utilisation récente des MMT dans lesquels les sauts sont modélisés par un processus discret U a donné des résultats très convaincants (Lanchantin, 2006). Notre première idée est d'utiliser cette démarche avec un processus U continu, qui modéliserait des non-stationnarités "continues" de(X, Y). Nous proposons des chaînes et des champs triplets et présentons quelques expériences. Les résultats obtenus dans la modélisation de la non-stationnarité continue semblent moins intéressants que dans le cas discret. Cependant, les nouveaux modèles peuvent présenter d'autres intérêts; en particulier, ils semblent plus efficaces que les modèles "chaînes de Markov cachées" classiques lorsque le bruit est corrélé; (ii) Soit un MMT T = (X, U, Y) tel que X et Y sont continu et U est discret fini. Nous sommes en présence du problème de filtrage, ou du lissage, avec des sauts aléatoires. Dans les modélisations classiques le couple caché (X, U) est markovien mais le couple (U, Y) ne l'est pas, ce qui est à l'origine de l'impossibilité des calculs exacts avec une complexité linéaire en temps. Il est alors nécessaire de faire appel à diverses méthodes approximatives, dont celles utilisant le filtrage particulaire sont parmi les plus utilisées. Dans des modèles MMT récents le couple caché (X, U) n'est pas nécessairement markovien, mais le couple (U, Y) l'est, ce qui permet des traitements exacts avec une complexité raisonnable (Pieczynski 2009). Notre deuxième idée est d'étendre ces derniers modèles aux triplets T = (X, U, Y) dans lesquels les couples (U, Y) sont "partiellement" de Markov. Un tel couple (U, Y) n'est pas de Markov mais U est de Markov conditionnellement àY. Nous obtenons un modèle T = (X, U, Y) plus général, qui n'est plus de Markov, dans lequel le filtrage et le lissage exacts sont possibles avec une complexité linéaire en temps. Quelques premières simulations montrent l'intérêt des nouvelles modélisations en lissage en présence des sauts.
APA, Harvard, Vancouver, ISO, and other styles
31

Ahmed, Eman Ahmed Sayed. "Modélisation constructive des systèmes à événements discrets. Application aux organismes artificiels." Thesis, Université Côte d'Azur, 2020. http://www.theses.fr/2020COAZ4016.

Full text
Abstract:
Les humains peuvent ressentir leurs muscles. Ils peuvent également reconnaître leur environnement et les objets qui s'y trouvent. Enfin, ils sont capables de se situer dans cet environnement et d'y atteindre des objets. Comment ces capacités sont acquises et interagissent les unes avec les autres au cours du développement ? Cette question demeure ouverte en biologie. Notre objectif est donc d’aider les biologistes à mieux comprendre comment un humain est capable de construire sa carte cognitive et d’effectuer des mouvements dirigés vers un objectif. Sur le plan développemental, l’acquisition des capacités sensorimotrices humaines débute avec le fœtus. Nous présentons ici un modèle théorique du développement de la carte cognitive d’un fœtus humain à partir de son système sensorimoteur. Le modèle intègre les proprioceptions des membres du corps et les perceptions de l’environnement et comment celles-ci coopèrent pour construire une carte cognitive. Cette carte est essentielle afin d'effectuer des mouvements dirigés vers un objectif et atteindre différents objets au sein de l’environnement. Nous proposons un nouvel algorithme de clustering appelé “Frequency-based-means”, qui est utilisé pour obtenir les proprioceptions et les perceptions qui constituant la carte d’association. Des modèles de Markov cachés sont utilisés pour modéliser l’apprentissage et la production de mouvements<br>Humans can internally sense their muscles. They can also recognize their environment with its objects and are able to navigate through it easily to reach them. How these abilities are gained and interact each other is still an open question in biology. Our aim is to help biologists to understand how a human is able to build his cognitive map and make goal-directed movements. The origin of human capabilities goes back to the fetus stage. We present a theoretical model of the development of the cognitive map of a fetus human from his sensorimotor system. The model integrates the proprioceptions of body limbs and perceptions from the environment and how these cooperate to build a cognitive map, which in turn, is essential for making goal-directed movements to reach different objects in the surrounding environment. We propose a new clustering algorithm called “Frequency-based-means”; which is used to get the proprioceptions and the perceptions that form the association map. Hidden Markov Models are used to model movement learning and production
APA, Harvard, Vancouver, ISO, and other styles
32

Delakis, Emmanouil. "Structuration multimodale des vidéos de tennis en utilisant des modèles segmentaux." Phd thesis, Université Rennes 1, 2006. http://tel.archives-ouvertes.fr/tel-00524285.

Full text
Abstract:
L'analyse automatique du contenu de la vidéo est un sujet de recherche émergent avec de nombreuses applications pratiques sur de grandes bases de données de vidéo ou sur les enregistreurs vidéo personnels. Le centre de cette étude est la construction automatique de la table des matières d'une émission de tennis en utilisant les modèles markoviens et la programmation dynamique. Motivés par le besoin de représentations multimodales plus efficaces, nous proposons l'utilisation des caractéristiques segmentales dans le cadre des modèles de segment, au lieu des caractéristiques en trames des modèles de Markov cachés. En considérant chaque scène de la vidéo comme un segment, les points de synchronisation entre différentes modalités sont étendus aux frontières de la scène, qui est l'unité thématique de base de la vidéo. Les caractéristiques visuelles venant de la vidéo diffusée et les caractéristiques auditives enregistrées dans le court sont traitées avant fusion dans leurs propres segments, avec leurs propres modèles et fréquences d'échantillonnage. Diverses techniques pour modéliser les segments sont examinées, y compris les modèles de Markov cachés de densité discrète ou continue, les modèles bigrames ou des approches connexionnistes, fonctionnant sur les caractéristiques audiovisuelles automatiquement extraites. Des modèles de segments et des modèles de Markov cachés, avec des topologies hiérarchiques ou ergodiques, sont établis et comparés sur un corpus de 15 heures de vidéos de tennis. Les paramètres des modèles sont estimés sur des données étiquetées. Selon le modèle segmentale utilisé, la fusion asynchrone avec des modèles de segments peut atteindre le même niveau de performance que les modèles de Markov cachés. La fusion des ressources textuelles de la vidéo, c'est-à-dire les annonces de points, est également considérée. Pour exploiter entièrement leur contenu sémantique sur l'évolution réelle du jeu et tenir compte des événements non reconnus, un arrangement original du décodage de Viterbi a été développé. Il produit des solutions qui sont conformes aux annonces de points et apporte ainsi une nette amélioration de la performance du système.
APA, Harvard, Vancouver, ISO, and other styles
33

Boudaren, Mohamed El Yazid. "Modèles graphiques évidentiels." Phd thesis, Institut National des Télécommunications, 2014. http://tel.archives-ouvertes.fr/tel-01004504.

Full text
Abstract:
Les modélisations par chaînes de Markov cachées permettent de résoudre un grand nombre de problèmes inverses se posant en traitement d'images ou de signaux. En particulier, le problème de segmentation figure parmi les problèmes où ces modèles ont été le plus sollicités. Selon ces modèles, la donnée observable est considérée comme une version bruitée de la segmentation recherchée qui peut être modélisée à travers une chaîne de Markov à états finis. Des techniques bayésiennes permettent ensuite d'estimer cette segmentation même dans le contexte non-supervisé grâce à des algorithmes qui permettent d'estimer les paramètres du modèle à partir de l'observation seule. Les chaînes de Markov cachées ont été ultérieurement généralisées aux chaînes de Markov couples et triplets, lesquelles offrent plus de possibilités de modélisation tout en présentant des complexités de calcul comparables, permettant ainsi de relever certains défis que les modélisations classiques ne supportent pas. Un lien intéressant a également été établi entre les modèles de Markov triplets et la théorie de l'évidence de Dempster-Shafer, ce qui confère à ces modèles la possibilité de mieux modéliser les données multi-senseurs. Ainsi, dans cette thèse, nous abordons trois difficultés qui posent problèmes aux modèles classiques : la non-stationnarité du processus caché et/ou du bruit, la corrélation du bruit et la multitude de sources de données. Dans ce cadre, nous proposons des modélisations originales fondées sur la très riche théorie des chaînes de Markov triplets. Dans un premier temps, nous introduisons les chaînes de Markov à bruit M-stationnaires qui tiennent compte de l'aspect hétérogène des distributions de bruit s'inspirant des chaînes de Markov cachées M-stationnaires. Les chaînes de Markov cachée ML-stationnaires, quant à elles, considèrent à la fois la loi a priori et les densités de bruit non-stationnaires. Dans un second temps, nous définissons deux types de chaînes de Markov couples non-stationnaires. Dans le cadre bayésien, nous introduisons les chaînes de Markov couples M-stationnaires puis les chaînes de Markov couples MM-stationnaires qui considèrent la donnée stationnaire par morceau. Dans le cadre évidentiel, nous définissons les chaînes de Markov couples évidentielles modélisant l'hétérogénéité du processus caché par une fonction de masse. Enfin, nous présentons les chaînes de Markov multi-senseurs non-stationnaires où la fusion de Dempster-Shafer est employée à la fois pour modéliser la non-stationnarité des données (à l'instar des chaînes de Markov évidentielles cachées) et pour fusionner les informations provenant des différents senseurs (comme dans les champs de Markov multi-senseurs). Pour chacune des modélisations proposées, nous décrivons les techniques de segmentation et d'estimation des paramètres associées. L'intérêt de chacune des modélisations par rapport aux modélisations classiques est ensuite démontré à travers des expériences menées sur des données synthétiques et réelles
APA, Harvard, Vancouver, ISO, and other styles
34

Douc, Randal. "Problèmes statistiques pour des modèles à variables latentes : propriétés asymptotiques de l'estimateur du maximum de vraisemblance." Palaiseau, Ecole polytechnique, 2001. http://www.theses.fr/2001EPXXO001.

Full text
Abstract:
Un modèle autorégressif à régime markovien est un processus à temps discret à deux composantes x n, y n évoluant de la façon suivante : x n est une chaine de Markov homogène et y n suit une loi conditionnelle dépendante non seulement de x n mais aussi de y n 1, , y n 8. Le processus x n, usuellement appelé régime n'est pas observé et l'inférence doit être menée à partir du processus observable y n. Ces modèles incluent en particulier les modèles de chaines de Markov cachées utilisés en reconnaissance de la parole, économétrie, neuro-physiologie ou analyse des séries temporelles. Dans ce travail, nous prouvons consistance et normalité asymptotique de l'estimateur de maximum de vraisemblance dans le cas où les variables aléatoires cachées vivent dans un espace compact non nécessairement fini. Nous investissons deux techniques différentes, la première appliquée aux modèles de Markov cachées utilise l'ergodicité géométrique de certaines chaines de Markov étendues, et s'appuie sur une méthode proposée par Legland et Mevel (1997) dans le cas où les x k prennent un nombre fini de valeurs. Bien que cette technique semble adaptée à l'étude des estimateurs récursifs (ou l'estimateur est réévalue à chaque nouvelle observation), sa mise en oeuvre nécessite néanmoins des hypothèses relativement fortes. Une seconde approche que nous avons directement applique aux modèles autorégressifs non-linéaires a régime markovien utilise des approximations par des suites stationnaires et permet de prouver consistance et normalité asymptotique sous des hypothèses plus faibles
APA, Harvard, Vancouver, ISO, and other styles
35

Essid, Houcine. "Modélisation spatio-temporelle à base de modèles de Markov cachés pour la prévision des changements en imagerie satellitaire : cas de la végétation et de l'urbain." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2012. http://tel.archives-ouvertes.fr/tel-01037990.

Full text
Abstract:
Les séries temporelles d'images satellitaires sont une source d'information importante pour le suivi des changements spatio-temporels des surfaces terrestres. En outre, le nombre d'images est en augmentation constante. Pour les exploiter pleinement, des outils dédiés au traitement automatique du contenu informationnel sont développés. Néanmoins ces techniques ne satisfont pas complètement les géographes qui exploitent pourtant, de plus en plus couramment, les données extraites des images dans leurs études afin de prédire le futur. Nous proposons dans cette thèse, une méthodologie générique à base d'un modèle de Markov caché pour l'analyse et la prédiction des changements sur une séquence d'images satellitaires. Cette méthodologie présente deux modules : un module de traitement intégrant les descripteurs et les algorithmes classiquement utilisés en interprétation d'images, et un module d'apprentissage basé sur les modèles de Markov cachés. La performance de notre approche est évaluée par des essais d'interprétations des évènements spatio-temporels effectués sur plusieurs sites d'études. Les résultats obtenus permettront d'analyser et de prédire les changements issus des différentes séries temporelles d'images SPOT et LANDSAT pour l'observation des évènements spatio-temporels telle que l'expansion urbaine et la déforestation.
APA, Harvard, Vancouver, ISO, and other styles
36

David, Etienne. "Time series forecasting models applied on large datasets with inclusion of external signals." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAS002.

Full text
Abstract:
La prévision de séries temporelles est un problème mathématique répandu dans de nombreux secteurs, devenant un véritable défi pour les méthodes existantes de la littérature lorsque de grands ensembles de données rassemblant des milliers de séries temporelles et des signaux externes sont considérés. Une illustration concrète de ce problème peut être trouvée dans l'industrie de la mode où ses acteurs tentent d'anticiper l'évolution de milliers de vêtements pour créer leurs collections, analysant les comportements des influenceurs pour proposer la mode de demain.En utilisant cette application comme fil conducteur, nous présentons trois contributions explorant différentes réponses concernant le problème de prévision de séries temporelles où de grands ensembles de données et des signaux externes sont considérés. Une première réponse est proposée avec l'introduction d'un nouveau modèle hybride et la publication d'un large ensemble de données rassemblant 10000 séries temporelles de mode et des signaux externes d'influenceurs. Une seconde approche est ensuite étudiée avec un travail théorique sur les modèles de Markov cachés à signaux externes. Enfin, une dernière réponse est proposée avec l'introduction d'une nouvelle méthode mélangeant le fonctionnement interne des modèles de Markov cachés avec des réseaux de neurones.Les résultats présentés dans ces trois contributions ont mis en évidence plusieurs éléments de réponse. Premièrement, les réseaux de neurones sont décisifs pour traiter de grands ensembles de données et sont particulièrement bien conçus pour exploiter des signaux externes. Deuxièmement, les modèles de Markov cachés avec signaux externes sont également des méthodes efficaces, capables de capturer des dépendances complexes entre des séries temporelles et leurs signaux externes. Cependant, ils ne parviennent pas à gérer de grands ensembles de données car un modèle doit être entraîné pour chaque nouvelle série temporelle. Enfin, inspirés par les résultats frappants des modèles de Markov cachés avec des signaux externes, nous montrons que l'introduction de processus cachés dans des modèles basés sur des réseaux neuronaux peut les aider à explorer plus profondément les grands ensembles de données, à modéliser une plus grande variété de comportements et à exploiter plus finement les signaux externes<br>Time series forecasting is a widespread mathematical problem in numerous sectors becoming a real challenge for existing methods of the literature where large datasets gathering thousands of time series and external signals are considered. A concrete illustration of this issue can be find in the fashion industry where its actors try to anticipate the evolution of thousands of garments to create their collections, analysing influencers and early adopters behaviours to propose the fashion of tomorrow.Using this application as a common thread, we present three contributions exploring different answers regarding the time series forecasting problem where large datasets and external signals are considered. A first answer is proposed with the introduction of a new hybrid model and the publication of a large dataset gathering 10000 fashion time series and influencers external signals. A second approach is then studied with theoretical work done on hidden Markov models with external signals. Finally, a last answer is proposed with the introduction of a new method mixing the inner workings of hidden Markov model and neural networks.Results presented in this three contribution highlighted several elements of answer. Firstly, neural networks are decisive to deal with large datasets and they are particularly well designed to leverage external signals. Secondly, hidden Markov models with external signals are also strong methods that can capture complex dependencies between time series and their external signals. However, they fail at handling large datasets as a model has to be trained for each new time series. Finally, inspired by the striking results of hidden Markov models with external signals, we reveal that introducing hidden processes in neural-network-based models can help them explore large datasets more deeply, model a richer variety of behaviour and leverage more finely external signals
APA, Harvard, Vancouver, ISO, and other styles
37

Delattre, Maud. "Inférence statistique dans les modèles mixtes à dynamique Markovienne." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00765708.

Full text
Abstract:
La première partie de cette thèse est consacrée à l'estimation par maximum de vraisemblance dans les modèles mixtes à dynamique markovienne. Nous considérons plus précisément des modèles de Markov cachés à effets mixtes et des modèles de diffusion à effets mixtes. Dans le Chapitre 2, nous combinons l'algorithme de Baum-Welch à l'algorithme SAEM pour estimer les paramètres de population dans les modèles de Markov cachés à effets mixtes. Nous proposons également des procédures spécifiques pour estimer les paramètres individuels et les séquences d' états cachées. Nous étudions les propriétés de cette nouvelle méthodologie sur des données simulées et l'appliquons sur des données réelles de nombres de crises d' épilepsie. Dans le Chapitre 3, nous proposons d'abord des modèles de diffusion à effets mixtes pour la pharmacocin étique de population. Nous en estimons les paramètres en combinant l'algorithme SAEM a un filtre de Kalman étendu. Nous étudions ensuite les propriétés asymptotiques de l'estimateur du maximum de vraisemblance dans des modèles de diffusion observés sans bruit de mesure continûment sur un intervalle de temps fixe lorsque le nombre de sujets tend vers l'infini. Le Chapitre 4 est consacré a la s élection de covariables dans des modèles mixtes généraux. Nous proposons une version du BIC adaptée au contexte de double asymptotique où le nombre de sujets et le nombre d'observations par sujet tendent vers l'infini. Nous présentons quelques simulations pour illustrer cette procédure.
APA, Harvard, Vancouver, ISO, and other styles
38

Trevezas, Samis. "Etude de l'estimation du Maximum de Vraisemblance dans des modèles Markoviens, Semi-Markoviens et Semi-Markoviens Cachés avec Applications." Phd thesis, Université de Technologie de Compiègne, 2008. http://tel.archives-ouvertes.fr/tel-00472644.

Full text
Abstract:
Dans ce travail je présente une étude unifiée basée sur l'estimation du maximum de vraisemblance pour des modèles markoviens, semi-markoviens et semi-markoviens cachés. Il s'agit d'une étude théorique des propriétés asymptotiques de l'EMV des modèles mentionnés ainsi que une étude algorithmique. D'abord, nous construisons l'estimateur du maximum de vraisemblance (EMV) de la loi stationnaire et de la variance asymptotique du théorème de la limite centrale (TLC) pour des fonctionnelles additives des chaînes de Markov ergodiques et nous démontrons sa convergence forte et sa normalité asymptotique. Ensuite, nous considérons un modèle semi-markovien non paramétrique. Nous présentons l'EMV exact du noyau semi-markovien qui gouverne l'évolution de la chaîne semi-markovienne (CSM) et démontrons la convergence forte, ainsi que la normalité asymptotique de chaque sous-vecteur fini de cet estimateur en obtenant des formes explicites pour les matrices de covariance asymptotiques. Ceci a été appliqué pour une observation de longue durée d'une seule trajectoire d'une CSM, ainsi que pour une suite des trajectoires i.i.d. d'une CSM censurée à un instant fixe. Nous introduisons un modèle semi-markovien caché (MSMC) général avec dépendance des temps de récurrence en arrière. Nous donnons des propriétés asymptotiques de l'EMV qui correspond à ce modèle. Nous déduisons également des expressions explicites pour les matrices de covariance asymptotiques qui apparaissent dans le TLC pour l'EMV des principales caractéristiques des CSM. Enfin, nous proposons une version améliorée de l'algorithme EM (Estimation-Maximisation) et une version stochastique de cet algorithme (SAEM) afin de trouver l'EMV pour les MSMC non paramétriques. Des exemples numériques sont présentés pour ces deux algorithmes.
APA, Harvard, Vancouver, ISO, and other styles
39

Trevezas, Samis. "Etude de l'estimation du maximum de vraisemblance dans des modèles markoviens, semi-markoviens et semi-markoviens cachés avec applications." Phd thesis, Compiègne, 2008. http://www.theses.fr/2008COMP1772.

Full text
Abstract:
Nous construisons l'estimateur du maximum de vraisemblance (EMV) de la loi stationnaire et de la variance asymptotique du théorème de la limite centrale (TLC) pour des fonctionnelles additives des chaînes de Markov ergodiques et nous démontrons sa convergence forte et sa normalité asymptotique. Ensuite, nous considérons un modèle semi-markovien non paramétrique. Nous présentons l'EMV exact du noyau semi-markovien qui gouverne l'évolution de la chaîne semi-markovienne (CSM) et démontrons la convergence forte, ainsi que la normalité asymptotique de chaque sous-vecteur fini de cet estimateur en obtenant des formes explicites pour les matrices de covariance asymptotiques. Ceci a été appliqué pour une observation de longue durée d'une seule trajectoire d'une CSM, ainsi que pour une suite des trajectoires i. I. D. D'une CSM censurée à un instant fixe. Nous introduisons un modèle semi-markovien caché (MSMC) général avec dépendance des temps de récurrence arrière. Nous donnons des propriétés asymptotiques de l'EMV qui correspond à ce modèle. Nous déduisons également des expressions explicites pour les matrices de de covariance asymptotiques qui apparaissent dans le TLC pour l'EMV des principales caractéristiques des CSM. Enfin, nous proposons une version améliorée de l'algorithme EM (Estimation-Maximisation) et une version stochastique de cet algorithme (SAEM) afin de trouver l'EMV pour les MSMC non para métriques. Des exemples numériques sont présentés pour ces deux algorithmes<br>We construct the maximum likehood estimator (MLE) of the stationnary distribution an of the asymptotic variance of the central limit theorem for additive functionals of ergodic Markov chains and we prove its strong consistency and its asymptotic normamlity. In the sequel, we consider a non-parametric semi-Markov model. We present the exact MLE of the semi-Markov kernel that governs the evolution of the semi-Markov chain (SMC) and we prove the strong consistency as well as the asymptotic normality of every finite subvector of this estimator by obtaining explicit forms for the asymptotic covariance matrices. The asymptotics were considered for one trajectory of SMC as well as for a sequence of i. D. D. Observations of a SMC censored at a fixed time. We introduce a general hidden semi-Markov model (HSMM) with backward recurrence time dependence. We prove asymptotic properties of the MLE that corresponds to this model. We also deduce explicit expressions for the asymptotic covariance matrices that appear in the CLT for the MLE of some basic characteristics of the SMC. Finally, we propose an improved version of the EM algorithm for HSMM and a stochastic version of this algorithm (SAEM), in order to find the MLE for non-parametric HSMMs. Numerical examples are presented for both algorithms
APA, Harvard, Vancouver, ISO, and other styles
40

RAFI, Selwa. "Chaînes de Markov cachées et séparation non supervisée de sources." Phd thesis, Institut National des Télécommunications, 2012. http://tel.archives-ouvertes.fr/tel-00995414.

Full text
Abstract:
Le problème de la restauration est rencontré dans domaines très variés notamment en traitement de signal et de l'image. Il correspond à la récupération des données originales à partir de données observées. Dans le cas de données multidimensionnelles, la résolution de ce problème peut se faire par différentes approches selon la nature des données, l'opérateur de transformation et la présence ou non de bruit. Dans ce travail, nous avons traité ce problème, d'une part, dans le cas des données discrètes en présence de bruit. Dans ce cas, le problème de restauration est analogue à celui de la segmentation. Nous avons alors exploité les modélisations dites chaînes de Markov couples et triplets qui généralisent les chaînes de Markov cachées. L'intérêt de ces modèles réside en la possibilité de généraliser la méthode de calcul de la probabilité à posteriori, ce qui permet une segmentation bayésienne. Nous avons considéré ces méthodes pour des observations bi-dimensionnelles et nous avons appliqué les algorithmes pour une séparation sur des documents issus de manuscrits scannés dans lesquels les textes des deux faces d'une feuille se mélangeaient. D'autre part, nous avons attaqué le problème de la restauration dans un contexte de séparation aveugle de sources. Une méthode classique en séparation aveugle de sources, connue sous l'appellation "Analyse en Composantes Indépendantes" (ACI), nécessite l'hypothèse d'indépendance statistique des sources. Dans des situations réelles, cette hypothèse n'est pas toujours vérifiée. Par conséquent, nous avons étudié une extension du modèle ACI dans le cas où les sources peuvent être statistiquement dépendantes. Pour ce faire, nous avons introduit un processus latent qui gouverne la dépendance et/ou l'indépendance des sources. Le modèle que nous proposons combine un modèle de mélange linéaire instantané tel que celui donné par ACI et un modèle probabiliste sur les sources avec variables cachées. Dans ce cadre, nous montrons comment la technique d'Estimation Conditionnelle Itérative permet d'affaiblir l'hypothèse usuelle d'indépendance en une hypothèse d'indépendance conditionnelle
APA, Harvard, Vancouver, ISO, and other styles
41

Boudaren, Mohamed El Yazid. "Modèles graphiques évidentiels." Electronic Thesis or Diss., Evry, Institut national des télécommunications, 2014. http://www.theses.fr/2014TELE0001.

Full text
Abstract:
Les modélisations par chaînes de Markov cachées permettent de résoudre un grand nombre de problèmes inverses se posant en traitement d’images ou de signaux. En particulier, le problème de segmentation figure parmi les problèmes où ces modèles ont été le plus sollicités. Selon ces modèles, la donnée observable est considérée comme une version bruitée de la segmentation recherchée qui peut être modélisée à travers une chaîne de Markov à états finis. Des techniques bayésiennes permettent ensuite d’estimer cette segmentation même dans le contexte non-supervisé grâce à des algorithmes qui permettent d’estimer les paramètres du modèle à partir de l’observation seule. Les chaînes de Markov cachées ont été ultérieurement généralisées aux chaînes de Markov couples et triplets, lesquelles offrent plus de possibilités de modélisation tout en présentant des complexités de calcul comparables, permettant ainsi de relever certains défis que les modélisations classiques ne supportent pas. Un lien intéressant a également été établi entre les modèles de Markov triplets et la théorie de l’évidence de Dempster-Shafer, ce qui confère à ces modèles la possibilité de mieux modéliser les données multi-senseurs. Ainsi, dans cette thèse, nous abordons trois difficultés qui posent problèmes aux modèles classiques : la non-stationnarité du processus caché et/ou du bruit, la corrélation du bruit et la multitude de sources de données. Dans ce cadre, nous proposons des modélisations originales fondées sur la très riche théorie des chaînes de Markov triplets. Dans un premier temps, nous introduisons les chaînes de Markov à bruit M-stationnaires qui tiennent compte de l’aspect hétérogène des distributions de bruit s’inspirant des chaînes de Markov cachées M-stationnaires. Les chaînes de Markov cachée ML-stationnaires, quant à elles, considèrent à la fois la loi a priori et les densités de bruit non-stationnaires. Dans un second temps, nous définissons deux types de chaînes de Markov couples non-stationnaires. Dans le cadre bayésien, nous introduisons les chaînes de Markov couples M-stationnaires puis les chaînes de Markov couples MM-stationnaires qui considèrent la donnée stationnaire par morceau. Dans le cadre évidentiel, nous définissons les chaînes de Markov couples évidentielles modélisant l’hétérogénéité du processus caché par une fonction de masse. Enfin, nous présentons les chaînes de Markov multi-senseurs non-stationnaires où la fusion de Dempster-Shafer est employée à la fois pour modéliser la non-stationnarité des données (à l’instar des chaînes de Markov évidentielles cachées) et pour fusionner les informations provenant des différents senseurs (comme dans les champs de Markov multi-senseurs). Pour chacune des modélisations proposées, nous décrivons les techniques de segmentation et d’estimation des paramètres associées. L’intérêt de chacune des modélisations par rapport aux modélisations classiques est ensuite démontré à travers des expériences menées sur des données synthétiques et réelles<br>Hidden Markov chains (HMCs) based approaches have been shown to be efficient to resolve a wide range of inverse problems occurring in image and signal processing. In particular, unsupervised segmentation of data is one of these problems where HMCs have been extensively applied. According to such models, the observed data are considered as a noised version of the requested segmentation that can be modeled through a finite Markov chain. Then, Bayesian techniques such as MPM can be applied to estimate this segmentation even in unsupervised way thanks to some algorithms that make it possible to estimate the model parameters from the only observed data. HMCs have then been generalized to pairwise Markov chains (PMCs) and triplet Markov chains (TMCs), which offer more modeling possibilities while showing comparable computational complexities, and thus, allow to consider some challenging situations that the conventional HMCs cannot support. An interesting link has also been established between the Dempster-Shafer theory of evidence and TMCs, which give to these latter the ability to handle multisensor data. Hence, in this thesis, we deal with three challenging difficulties that conventional HMCs cannot handle: nonstationarity of the a priori and/or noise distributions, noise correlation, multisensor information fusion. For this purpose, we propose some original models in accordance with the rich theory of TMCs. First, we introduce the M-stationary noise- HMC (also called jumping noise- HMC) that takes into account the nonstationary aspect of the noise distributions in an analogous manner with the switching-HMCs. Afterward, ML-stationary HMC consider nonstationarity of both the a priori and/or noise distributions. Second, we tackle the problem of non-stationary PMCs in two ways. In the Bayesian context, we define the M-stationary PMC and the MM-stationary PMC (also called switching PMCs) that partition the data into M stationary segments. In the evidential context, we propose the evidential PMC in which the realization of the hidden process is modeled through a mass function. Finally, we introduce the multisensor nonstationary HMCs in which the Dempster-Shafer fusion has been used on one hand, to model the data nonstationarity (as done in the hidden evidential Markov chains) and on the other hand, to fuse the information provided by the different sensors (as in the multisensor hidden Markov fields context). For each of the proposed models, we describe the associated segmentation and parameters estimation procedures. The interest of each model is also assessed, with respect to the former ones, through experiments conducted on synthetic and real data
APA, Harvard, Vancouver, ISO, and other styles
42

Berard, Caroline. "Modèles à variables latentes pour des données issues de tiling arrays : Applications aux expériences de ChIP-chip et de transcriptome." Thesis, Paris, AgroParisTech, 2011. http://www.theses.fr/2011AGPT0067.

Full text
Abstract:
Les puces tiling arrays sont des puces à haute densité permettant l'exploration des génomes à grande échelle. Elles sont impliquées dans l'étude de l'expression des gènes et de la détection de nouveaux transcrits grâce aux expériences de transcriptome, ainsi que dans l'étude des mécanismes de régulation de l'expression des gènes grâce aux expériences de ChIP-chip. Dans l'objectif d'analyser des données de ChIP-chip et de transcriptome, nous proposons une modélisation fondée sur les modèles à variables latentes, en particulier les modèles de Markov cachés, qui sont des méthodes usuelles de classification non-supervisée. Les caractéristiques biologiques du signal issu des puces tiling arrays telles que la dépendance spatiale des observations le long du génome et l'annotation structurale sont intégrées dans la modélisation. D'autre part, les modèles sont adaptés en fonction de la question biologique et une modélisation est proposée pour chaque type d'expériences. Nous proposons un mélange de régressions pour la comparaison de deux échantillons dont l'un peut être considéré comme un échantillon de référence (ChIP-chip), ainsi qu'un modèle gaussien bidimensionnel avec des contraintes sur la matrice de variance lorsque les deux échantillons jouent des rôles symétriques (transcriptome). Enfin, une modélisation semi-paramétrique autorisant des distributions plus flexibles pour la loi d'émission est envisagée. Dans un objectif de classification, nous proposons un contrôle de faux-positifs dans le cas d'une classification à deux groupes et pour des observations indépendantes. Puis, nous nous intéressons à la classification d'un ensemble d'observations constituant une région d'intérêt, telle que les gènes. Les différents modèles sont illustrés sur des jeux de données réelles de ChIP-chip et de transcriptome issus d'une puce NimbleGen couvrant le génome entier d'Arabidopsis thaliana<br>Tiling arrays make possible a large scale exploration of the genome with high resolution. Biological questions usually addressed are either the gene expression or the detection of transcribed regions which can be investigated via transcriptomic experiments, and also the regulation of gene expression thanks to ChIP-chip experiments. In order to analyse ChIP-chip and transcriptomic data, we propose latent variable models, especially Hidden Markov Models, which are part of unsupervised classification methods. The biological features of the tiling arrays signal, such as the spatial dependence between observations along the genome and structural annotation are integrated in the model. Moreover, the models are adapted to the biological question at hand and a model is proposed for each type of experiment. We propose a mixture of regressions for the comparison of two samples, when one sample can be considered as a reference sample (ChIP-chip), and a two-dimensional Gaussian model with constraints on the variance parameter when the two samples play symmetrical roles (transcriptome). Finally, a semi-parametric modeling is considered, allowing more flexible emission distributions. With the objective of classification, we propose a false-positive control in the case of a two-cluster classification and for independent observations. Then, we focus on the classification of a set of observations forming a region of interest such as a gene. The different models are illustrated on real ChIP-chip and transcriptomic datasets coming from a NimbleGen tiling array covering the entire genome of Arabidopsis thaliana
APA, Harvard, Vancouver, ISO, and other styles
43

Vernet, Elodie Edith. "Modèles de mélange et de Markov caché non-paramétriques : propriétés asymptotiques de la loi a posteriori et efficacité." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS418/document.

Full text
Abstract:
Les modèles latents sont très utilisés en pratique, comme en génomique, économétrie, reconnaissance de parole... Comme la modélisation paramétrique des densités d’émission, c’est-à-dire les lois d’une observation sachant l’état latent, peut conduire à de mauvais résultats en pratique, un récent intérêt pour les modèles latents non paramétriques est apparu dans les applications. Or ces modèles ont peu été étudiés en théorie. Dans cette thèse je me suis intéressée aux propriétés asymptotiques des estimateurs (dans le cas fréquentiste) et de la loi a posteriori (dans le cadre Bayésien) dans deux modèles latents particuliers : les modèles de Markov caché et les modèles de mélange. J’ai tout d’abord étudié la concentration de la loi a posteriori dans les modèles non paramétriques de Markov caché. Plus précisément, j’ai étudié la consistance puis la vitesse de concentration de la loi a posteriori. Enfin je me suis intéressée à l’estimation efficace du paramètre de mélange dans les modèles semi paramétriques de mélange<br>Latent models have been widely used in diverse fields such as speech recognition, genomics, econometrics. Because parametric modeling of emission distributions, that is the distributions of an observation given the latent state, may lead to poor results in practice, in particular for clustering purposes, recent interest in using non parametric latent models appeared in applications. Yet little thoughts have been given to theory in this framework. During my PhD I have been interested in the asymptotic behaviour of estimators (in the frequentist case) and the posterior distribution (in the Bayesian case) in two particuliar non parametric latent models: hidden Markov models and mixture models. I have first studied the concentration of the posterior distribution in non parametric hidden Markov models. More precisely, I have considered posterior consistency and posterior concentration rates. Finally, I have been interested in efficient estimation of the mixture parameter in semi parametric mixture models
APA, Harvard, Vancouver, ISO, and other styles
44

Vasishta, Pavan. "Building and Leveraging Prior Knowledge for Predicting Pedestrian Behaviour Around Autonomous Vehicles in Urban Environments." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM038.

Full text
Abstract:
Les véhicules autonomes qui naviguent dans les zones urbaines interagissent avec les piétons et les autres utilisateurs de l'espace partagé, comme les bicyclettes, tout au long de leur trajet, soit dans des zones ouvertes, comme les centres urbains, soit dans des zones fermées, comme les parcs de stationnement. Alors que de plus en plus de véhicules autonomes sillonnent les rues de la ville, leur capacité à comprendre et à prévoir le comportement des piétons devient primordiale. Ceci est possible grâce à l'apprentissage par l'observation continue de la zone à conduire. D'autre part, les conducteurs humains peuvent instinctivement déduire le mouvement des piétons sur une rue urbaine, même dans des zones auparavant invisibles. Ce besoin d'accroître la conscience de la situation d'un véhicule pour atteindre la parité avec les conducteurs humains alimente le besoin de données plus vastes et plus approfondies sur le mouvement des piétons dans une myriade de situations et d'environnements variés.Cette thèse porte sur le problème de la réduction de cette dépendance à l'égard de grandes quantités de données pour prédire avec précision les mouvements des piétons sur un horizon prolongé. Ce travail s'appuie plutôt sur la connaissance préalable, elle-même dérivée des principes sociologiques de "Vision naturelle" et de "Mouvement naturel" du JJ Gibson. Il suppose que le comportement des piétons est fonction de l'environnement bâti et que tous les mouvements sont orientés vers l'atteinte d'un but. Connaissant ce principe sous-jacent, le coût de la traversée d'une scène du point de vue d'un piéton peut être deviné. Sachant cela, on peut en déduire leur comportement. Cet ouvrage apporte une contribution au cadre de compréhension du comportement piétonnier en tant que confluent de modèles graphiques probabilistes et de principes sociologiques de trois façons : modélisation de l'environnement, apprentissage et prévision.En ce qui concerne la modélisation, le travail suppose que certaines parties de la scène observée sont plus attrayantes pour les piétons et que d'autres sont répugnantes. En quantifiant ces " affordances " en fonction de certains Points d'Intérêt (POI) et des différents éléments de la scène, il est possible de modéliser cette scène sous observation avec différents coûts comme base des caractéristiques qu'elle contient.En ce qui concerne l'apprentissage, ce travail étend principalement la méthode du Modèle de Markov Caché Croissant (GHMM) - une variante du modèle probabiliste du Modèle de Markov Caché (HMM) - avec l'application des connaissances préalables pour initialiser une topologie capable de déduire avec précision les " mouvements types " dans la scène. Deuxièmement, le modèle généré se comporte comme une carte auto-organisatrice, apprenant progressivement un comportement piétonnier atypique et le codant dans la topologie tout en mettant à jour les paramètres du HMM sous-jacent.Sur la prédiction, ce travail effectue une inférence bayésienne sur le modèle généré et peut, grâce aux connaissances préalables, réussir à mieux prédire les positions futures des piétons sans disposer de trajectoires de formation, ce qui permet de l'utiliser dans un environnement urbain avec uniquement des données environnementales, que la méthode GHMM actuellement en application.Les contributions de cette thèse sont validées par des résultats expérimentaux sur des données réelles capturées à partir d'une caméra aérienne surplombant une rue urbaine très fréquentée, représentant un environnement bâti structuré et du point de vue de la voiture dans un parking, représentant un environnement semi-structuré et testé sur des trajectoires typiques et atypiques dans chaque cas<br>Autonomous Vehicles navigating in urban areas interact with pedestrians and other shared space users like bicycles throughout their journey either in open areas, like urban city centers, or closed areas, like parking lots. As more and more autonomous vehicles take to the city streets, their ability to understand and predict pedestrian behaviour becomes paramount. This is achieved by learning through continuous observation of the area to drive in. On the other hand, human drivers can instinctively infer pedestrian motion on an urban street even in previously unseen areas. This need for increasing a vehicle's situational awareness to reach parity with human drivers fuels the need for larger and deeper data on pedestrian motion in myriad situations and varying environments.This thesis focuses on the problem of reducing this dependency on large amounts of data to predict pedestrian motion accurately over an extended horizon. Instead, this work relies on Prior Knowledge, itself derived from the JJ Gibson's sociological principles of ``Natural Vision'' and ``Natural Movement''. It assumes that pedestrian behaviour is a function of the built environment and that all motion is directed towards reaching a goal. Knowing this underlying principle, the cost for traversing a scene from a pedestrian's perspective can be divined. Knowing this, inference on their behaviour can be performed. This work presents a contribution to the framework of understanding pedestrian behaviour as a confluence of probabilistic graphical models and sociological principles in three ways: modelling the environment, learning and predicting.Concerning modelling, the work assumes that there are some parts of the observed scene which are more attractive to pedestrians and some areas, repulsive. By quantifying these ``affordances'' as a consequence of certain Points of Interest (POIs) and the different elements in the scene, it is possible to model this scene under observation with different costs as a basis of the features contained within.Concerning learning, this work primarily extends the Growing Hidden Markov Model (GHMM) method - a variant of the Hidden Markov Model (HMM) probabilistic model- with the application of Prior Knowledge to initialise a topology able to infer accurately on ``typical motions'' in the scene. Secondly, the model that is generated behaves as a Self-Organising map, incrementally learning non-typical pedestrian behaviour and encoding this within the topology while updating the parameters of the underlying HMM.On prediction, this work carries out Bayesian inference on the generated model and can, as a result of Prior Knowledge, manage to perform better than the existing implementation of the GHMM method in predicting future pedestrian positions without the availability of training trajectories, thereby allowing for its utilisation in an urban scene with only environmental data.The contributions of this thesis are validated through experimental results on real data captured from an overhead camera overlooking a busy urban street, depicting a structured built environment and from the car's perspective in a parking lot, depicting a semi-structured environment and tested on typical and non-typical trajectories in each case
APA, Harvard, Vancouver, ISO, and other styles
45

Arribas, Gil Ana. "Estimation dans des modèles à variables cachées : alignement des séquences biologiques et modèles d'évolution." Paris 11, 2007. http://www.theses.fr/2007PA112054.

Full text
Abstract:
Cette thèse est consacrée à l'estimation paramétrique dans certains modèles d'alignement de séquences biologiques. Ce sont des modèles construits à partir des considérations sur le processus d'évolution des séquences. Dans le cas de deux séquences, le processus d'évolution classique résulte dans un modèle d'alignement appelé pair-Hidden Markov Model (pair-HMM). Dans le pair-HMM les observations sont formées par le couple de séquences à aligner et l'alignement caché est une chaîne de Markov. D'un point de vue théorique nous donnons un cadre rigoureux pour ce modèle et étudions la consistance des estimateurs bayésien et par maximum de vraisemblance. D'un point de vue appliqué nous nous intéressons à la détection de motifs conservés dans les séquences à travers de l'alignement. Pour cela nous introduisons un processus d'évolution permettant différents comportements évolutifs à différents endroits de la séquence et pour lequel le modèle d'alignement est toujours un pair-HMM. Nous proposons des algorithmes d'estimation d'alignements et paramètres d'évolution adaptés à la complexité du modèle. Finalement, nous nous intéressons à l'alignement multiple (plus de deux séquences). Le processus d'évolution classique résulte dans ce cas dans un modèle d'alignement à variables cachées plus complexe et dans lequel il faut prendre en compte les relations phylogénétiques entre les séquences. Nous donnons le cadre théorique pour ce modèle et étudions, comme dans le cas de deux séquences, la propriété de consistance des estimateurs<br>This thesis is devoted to parameter estimation in models for biological sequence alignment. These are models constructed considering an evolution process on the sequences. In the case of two sequences evolving under the classical evolution process, the alignment model is called a pair-Hidden Markov Model (pair-HMM). Observations in a pair-HMM are formed by the couple of sequences to be aligned and the hidden alignment is a Markov chain. From a theoretical point of view, we provide a rigorous formalism for these models and study consistency of maximum likelihood and bayesian estimators. From the point of view of applications, we are interested in detection of conserved motifs in the sequences. To do this we present an evolution process that allows heterogeneity along the sequence. The alignment under this process still fits the pair-HMM. We propose efficient estimation algorithms for alignments and evolution parameters. Finally we are interested in multiple alignment (more than two sequences). The classical evolution process for the sequences provides a complex hidden variable model for the alignment in which the phylogenetic relationships between the sequences must be taken into account. We provide a theoretical framework for this model and study, as for the pairwise alignment, the consistency of estimators
APA, Harvard, Vancouver, ISO, and other styles
46

Ziani, Ahmed. "Interprétation en temps réel de séquence vidéo par exploitation des modèles graphiques probabilistes." Littoral, 2010. http://www.theses.fr/2010DUNK0271.

Full text
Abstract:
Le travail de recherche concerne l'étude et la mise en oeuvre de systèmes de reconnaissance de scénarios dans des séquences d'images de vidéosurveillance. Les couches hautes du système de reconnaissance exploitent principalement les approches graphiques probabilistes (réseaux bayésiens et les modèles de Markov Cachés et leurs extensions) qui permettent de gérer de manière efficace les incertitudes au sein du système d'interprétation. Un premier algorithme de reconnaissance de séquences d'événements, combinant deux extensions de modèles de Markov cachés (hiérarchique et semi-markovien) a été proposé. Il permet de modéliser des scénarios complexes basés sur une structure hiérarchisée intégrant des contraintes temporelles sur la durée de chaque événement. Ensuite, nous avons étudié une approche de reconnaissance de trajectoire d'objets en utilisant les modèles de Markov cachés semi-continus. Nous avons adapté une méthode de quantification permettant d'obtenir automatiquement les états du modèle. Dans le but d'accélérer le comportement du système de reconnaissance, nous avons proposé une technique de prédiction basée sur la reconnaissance des débuts de trajectoires et qui permet rapidement d'écarter les modèles ne pouvant être compatibles avec les observations. La dernière partie du travail a été le développement d'une structure globale et modulaire d'un système de reconnaissance de scénarios. L'intérêt principal de cette architecture est de pouvoir exploiter des techniques probabilistes tout en intégrant des capacités de raisonnement temporel. L'architecture logique du système exploite une approche multi agents organisée selon trois couches. Afin de gérer les contraintes temps réel de l'application, la stratégie de contrôle du système de reconnaissance active un nombre minimal 'agents en fonction de ses décisions internes. Les agents de la première couche ont pour rôle de mettre en évidence les événements élémentaires et sont construits principalement à base de réseaux bayésiens ou de modèles de Markov cachés. Les agents temporels de la deuxième couche sont construits également à partir d'une structure spécifique de type réseau bayésien. Ils ont pour rôle de modéliser de manière explicite les relations temporelles entre événements mis en évidence à partir de la première couche. Les agents du troisième niveau interviennent dans l'étape finale de décision en exploitant l'ensemble des décisions des agents intermédiaires. Les différentes approches de reconnaissance de scénarios ont été testées sur divers séquences réelles en environnement extérieur et intérieur<br>The research covers the design and implementation of systems for recognition of scenarios in video image sequences. The upper layers of the recognition system operating primarily graphical probabilistic approaches (Bayesian networks and Hidden Markov models and their extensions) that can effectively handle uncertainties in the interpretation system. A first algorithm for recognition of sequences of events, combining two extensions of HMM (hierarchical and semi-Markov) was proposed. It allows to model complex scenarios based on a hierarchical structure integrating temporal constraints on the duration of each event. Then, we proposed a prediction technique based on the recognition of early tracks and allows quick to dismiss the models may be consistent with the observations. The last part of the work was the development of a global structure and a modular recognition system scenarios. The main advantage of this architecture is to use probabilistic techniques while integrating temporal reasoning capabilities. The logical architecture of the system uses a multi agents. In order to manage real-time constraints of the application, the control strategy of the recognition systems enables a minimum number of agents according to its internal decisions. The agents of the first layer has a role to highlight the basic events and are constructed mainly of Bayesian networks or hidden Markov models. The agents of the second temporal layer are also built from a specific structure type Bayesian network. Their role is to model explicitly the temporal relationships between events highlighted from the first layer. The third level officials involved in the final stage of decision using all of the decisions of intermediate agents. Different approaches to recognition of scenarios were tested on various real images in external and internal environment
APA, Harvard, Vancouver, ISO, and other styles
47

Baron, Standley-Réginald. "Analyse de la conjoncture et des données sujettes à la révision : application au Canada." Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/28582/28582.pdf.

Full text
Abstract:
Ce papier met l`accent sur deux points essentiels : l`analyse de la conjoncture en temps réel et la révision des données. Contrairement à d`autres travaux, nous cherchons non seulement à évaluer la conjoncture en temps réel mais aussi nous essayons de voir à quel point la révision des données peut affecter notre estimation de la conjoncture. Pour déterminer les différentes phases du cycle économique canadien, nous adoptons l`approche d`Hamilton et Chauvet (2006). En utilisant le PIB comme indice pour caractériser la conjoncture et en appliquant les modèles à changements de régime markoviens, comme méthode moderne de séparation des phases d’expansion et de récession dans une économie. Les résultats obtenus permettent de faire ressortir deux points importants. La révision des données n`affecte pas significativement l`analyse des points tournants en temps réel, par contre elle s`avère importante quand il faut juger de l`ampleur d`une récession ou d`une expansion. Mots clés : cycle économique en temps réel, révision des données, modèles à changements de régime markoviens.
APA, Harvard, Vancouver, ISO, and other styles
48

Eng, Catherine. "Développement de méthodes de fouille de données basées sur les modèles de Markov cachés du second ordre pour l'identification d'hétérogénéités dans les génomes bactériens." Thesis, Nancy 1, 2010. http://www.theses.fr/2010NAN10041/document.

Full text
Abstract:
Les modèles de Markov d’ordre 2 (HMM2) sont des modèles stochastiques qui ont démontré leur efficacité dans l’exploration de séquences génomiques. Cette thèse explore l’intérêt de modèles de différents types (M1M2, M2M2, M2M0) ainsi que leur couplage à des méthodes combinatoires pour segmenter les génomes bactériens sans connaissances a priori du contenu génétique. Ces approches ont été appliquées à deux modèles bactériens afin d’en valider la robustesse : Streptomyces coelicolor et Streptococcus thermophilus. Ces espèces bactériennes présentent des caractéristiques génomiques très distinctes (composition, taille du génome) en lien avec leur écosystème spécifique : le sol pour les S. coelicolor et le milieu lait pour S. thermophilus<br>Second-order Hidden Markov Models (HMM2) are stochastic processes with a high efficiency in exploring bacterial genome sequences. Different types of HMM2 (M1M2, M2M2, M2M0) combined to combinatorial methods were developed in a new approach to discriminate genomic regions without a priori knowledge on their genetic content. This approach was applied on two bacterial models in order to validate its achievements: Streptomyces coelicolor and Streptococcus thermophilus. These bacterial species exhibit distinct genomic traits (base composition, global genome size) in relation with their ecological niche: soil for S. coelicolor and dairy products for S. thermophilus. In S. coelicolor, a first HMM2 architecture allowed the detection of short discrete DNA heterogeneities (5-16 nucleotides in size), mostly localized in intergenic regions. The application of the method on a biologically known gene set, the SigR regulon (involved in oxidative stress response), proved the efficiency in identifying bacterial promoters. S. coelicolor shows a complex regulatory network (up to 12% of the genes may be involved in gene regulation) with more than 60 sigma factors, involved in initiation of transcription. A classification method coupled to a searching algorithm (i.e. R’MES) was developed to automatically extract the box1-spacer-box2 composite DNA motifs, structure corresponding to the typical bacterial promoter -35/-10 boxes. Among the 814 DNA motifs described for the whole S. coelicolor genome, those of sigma factors (B, WhiG) could be retrieved from the crude data. We could show that this method could be generalized by applying it successfully in a preliminary attempt to the genome of Bacillus subtilis
APA, Harvard, Vancouver, ISO, and other styles
49

Chaubert, Florence. "Combinaisons markoviennes et semi-markoviennes de modèles de régression : application à la croissance d'arbres forestiers." Montpellier 2, 2008. http://www.theses.fr/2008MON20117.

Full text
Abstract:
Ce travail est consacré à l'étude des combinaisons markoviennes et semi-markoviennes de modèles de régression, i. E. Des mélanges finis de modèles de régression avec dépendances (semi-)markoviennes. Cette famille de modèles statistiques permet l'analyse de données structurées en phases successives asynchrones entre individus, influencées par des covariables pouvant varier dans le temps et présentant une hétérogénéité inter-individuelle. L'algorithme d'inférence proposé pour les combinaisons (semi-)markoviennes de modèles linéaires généralisés est un algorithme du gradient EM. Pour les combinaisons (semi-)markoviennes de modèles linéaires mixtes, nous proposons des algorithmes de type MCEM où l'étape E se décompose en deux étapes de restauration conditionnelle: une pour les séquences d'états sachant les effets aléatoires (et les données observées) et une pour les effets aléatoires sachant les séquences d'états (et les données observées). Différentes méthodes de restauration conditionnelle sont présentées. Nous étudions deux types d'effets aléatoires: des effets aléatoires individuels et des effets aléatoires temporels. L'intérêt de cette famille de modèles est illustré par l'analyse de la croissance d'arbres forestiers en fonctions de facteurs climatiques. Ces modèles nous permettent d'identifier et de caractériser les trois principales composantes de la croissance (la composante ontogénique, la composante environnementale et la composante individuelle). Nous montrons que le poids de chaque composante varie en fonction de l'espèce et des interventions sylvicoles<br>This work focuses on Markov and semi-Markov switching regression models, i. E. Finite mixtures of regression models with (semi-)Markovian dependencies. These statistical models enable to analyse data structured as a succession of stationary phases that are asynchronous between individuals, influenced by time-varying covariates and which present inter-individual heterogeneity. The proposed inference algorithm for (semi-)Markov switching generalized linear models is a gradient EM algorithm. For (semi-)Markov switching linear mixed models, we propose MCEM-like algorithms whose E-step decomposes into two conditional restoration steps: one for the random effects given the state sequences (and the observed data) and one for the state sequences given the random effects (and the observed data). Various conditional restoration steps are presented. We study two types of random effects: individual-wise random effects and environmental random effects. The relevance of these models is illustrated by the analysis of forest tree growth influenced by climatic covariates. These models allow us to identify and characterize the three main growth components (ontogenetic component, environmental component and individual component). We show that the weight of each component varies according to species and silvicultural interventions
APA, Harvard, Vancouver, ISO, and other styles
50

Le, Coz Sebastian. "Modélisation de la dynamique des adventices dans un agroécosystème." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30034.

Full text
Abstract:
De nombreuses espèces ont un stade dormant dans leur cycle de vie, comme les graines chez les plantes. Ces espèces ont recours à plusieurs méthodes afin de survivre dans l'environnement. En particulier, les plantes sont connues pour avoir une stratégie de survie dépendant de la dormance et de la dispersion des graines. Le modèle de métapopulation est souvent utilisé afin d'étudier la dynamique régionale d'espèces. Cependant, celui-ci ne modélisant pas de stade dormant dans la dynamique de l'espèce, appliqué à une espèce avec stade dormant, il peut amener à prédire l'extinction de l'espèce au sein d'un patch alors que celle-ci est présente sous forme dormante. Du fait que le stade dormant d'une espèce soit difficilement observable en pratique, si l'on veut inclure la dormance dans un modèle, il est préférable d'utiliser des variables cachées pour modéliser ce stade. Plusieurs modèles avec structure Markovienne et variables cachées ont déjà été utilisés pour étudier les espèces avec stade caché. Cependant ils présentent tous des limites : la modélisation des données en présence/absence, le stade dormant limité à une année ainsi que la colonisation entre patchs qui n'est pas prise en compte. Je propose ici un modèle de chaîne de Markov cachée multidimensionnelle avec retour des données qui permet de décrire la dynamique d'espèces avec stade caché où seuls les stades observables sont à l'origine d'interactions entre patchs. Ces interactions entre patchs sont modélisées à partir de l'influence indistinguable des populations observables des patchs voisins sur une population observable ou cachée. Ce modèle, utilisant des données en classes d'abondance, permet une dormance potentiellement infinie. J'ai montré que la complexité algorithmique de l'estimation des paramètres du modèle n'est pas exponentielle, comme on pourrait s'y attendre, mais seulement linéaire en le nombre de patchs. Les résultats sur simulations montrent qu'il est possible de restaurer l'état d'une population en stade caché ainsi que de prédire le prochain état d'une population observable. Les résultats sur données de plantes adventices mettent en évidence la survie de banque de graines comme le processus ayant le plus d'influence sur l'état de la banque de graines. Le modèle permet d'étudier de façon efficace la dynamique de plantes adventices ainsi que d'autres espèces avec stade caché<br>Many species have a dormant stage in their life cycle, such as seeds for plants. These species have different types of survival strategies. In particular, plants are known have survival strategies dependent on dormancy and dispersal of seeds. The metapopulation model, which does not consider a dormancy stage and is often used to analyse a species' dynamic, applied to a species which undergoes dormancy can lead to wrongly declare extinction in a patch where dormant individuals can still be present. In order to include dormancy in a model it is preferable to use hidden variables to model dormant individuals as they are often unobservable. Several Markovian models with hidden variables have already been proposed to study species with hidden stages. However, they all have different limitations : only presence/absence observations are modelled ; the dormancy stage is limited to one year or colonisation from neighbour patches is not taken into account. We propose a hidden Markov model with data feedback which describes the local and regional dynamics of a species with hidden stages where only observables stages may influence other patchs. The model allows species to undergo potentially time infinite dormancy using abundance classes. One would expect estimation, restoration and prediction of the next non-dormant populations to have an exponential computational time in terms of patches, however we have demonstrated that estimation, restoration and prediction are all achievable in a linear in terms of patches. The regional dynamic is modeled using the indistinguishable influence of neighbour non-dormant populations states on a dormant or non-dormant population. Numerical experiments on simulated data show that the state dormant populations can easily be retrieved as well as the future non-dormant populations' state. Results on weed species highlight that the state of the seed bank is mostly influenced by seed survival. Our framework provides a simple and efficient tool that could be further exploited to analyse and compare annual plants' dynamics, like weeds survival strategies in crop fields and even for species with hidden stages
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography