Journal articles on the topic 'Modeling of heat flows'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Modeling of heat flows.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chen, C. J., W. Lin, Y. Haik, and K. D. Carlson. "Modeling of complex flows and heat transfer." Journal of Visualization 1, no. 1 (1998): 51–63. http://dx.doi.org/10.1007/bf03182474.
Full textStatharas, John C., John G. Bartzis, and Demosthenes D. Papailiou. "Heat Transfer Modeling in Low Flows and Application to Reflood Heat Transfer." Nuclear Technology 92, no. 2 (1990): 248–59. http://dx.doi.org/10.13182/nt90-a34476.
Full textThakre, S. S., and J. B. Joshi. "CFD modeling of heat transfer in turbulent pipe flows." AIChE Journal 46, no. 9 (2000): 1798–812. http://dx.doi.org/10.1002/aic.690460909.
Full textPeskova, E. E. "Numerical modeling of subsonic axisymmetric reacting gas flows." Journal of Physics: Conference Series 2057, no. 1 (2021): 012071. http://dx.doi.org/10.1088/1742-6596/2057/1/012071.
Full textKeyhani, M., and R. A. Polehn. "Finite Difference Modeling of Anisotropic Flows." Journal of Heat Transfer 117, no. 2 (1995): 458–64. http://dx.doi.org/10.1115/1.2822544.
Full textWood, Brian D., Xiaoliang He, and Sourabh V. Apte. "Modeling Turbulent Flows in Porous Media." Annual Review of Fluid Mechanics 52, no. 1 (2020): 171–203. http://dx.doi.org/10.1146/annurev-fluid-010719-060317.
Full textHasan, A. R., and C. S. Kabir. "Modeling two-phase fluid and heat flows in geothermal wells." Journal of Petroleum Science and Engineering 71, no. 1-2 (2010): 77–86. http://dx.doi.org/10.1016/j.petrol.2010.01.008.
Full textHachem, E., G. Jannoun, J. Veysset, et al. "Modeling of heat transfer and turbulent flows inside industrial furnaces." Simulation Modelling Practice and Theory 30 (January 2013): 35–53. http://dx.doi.org/10.1016/j.simpat.2012.07.013.
Full textYao, Xiaobo, and André W. Marshall. "Quantitative Salt-Water Modeling of Fire-Induced Flows for Convective Heat Transfer Model Development." Journal of Heat Transfer 129, no. 10 (2007): 1373–83. http://dx.doi.org/10.1115/1.2754943.
Full textZaichik, L. I., V. A. Pershukov, M. V. Kozelev, and A. A. Vinberg. "Modeling of dynamics, heat transfer, and combustion in two-phase turbulent flows: 2. Flows with heat transfer and combustion." Experimental Thermal and Fluid Science 15, no. 4 (1997): 311–22. http://dx.doi.org/10.1016/s0894-1777(96)00201-4.
Full textZaichik, L. I., V. A. Pershukov, M. V. Kozelev, and A. A. Vinberg. "Modeling of dynamics, heat transfer, and combustion in two-phase turbulent flows: 1. Isothermal flows." Experimental Thermal and Fluid Science 15, no. 4 (1997): 291–310. http://dx.doi.org/10.1016/s0894-1777(97)00009-5.
Full textTsui, Yeng-Yung, Shi-Wen Lin, and Kuen-Je Ding. "Modeling of Heat Transfer Across the Interface in Two-Fluid Flows." Numerical Heat Transfer, Part B: Fundamentals 66, no. 2 (2014): 162–80. http://dx.doi.org/10.1080/10407790.2014.894450.
Full textYeoh, G. H., and J. Y. Tu. "Thermal-hydrodynamic modeling of bubbly flows with heat and mass transfer." AIChE Journal 51, no. 1 (2004): 8–27. http://dx.doi.org/10.1002/aic.10297.
Full textNagrani, Pranay P., Federico Municchi, Amy M. Marconnet, and Ivan C. Christov. "Two-fluid modeling of heat transfer in flows of dense suspensions." International Journal of Heat and Mass Transfer 183 (February 2022): 122068. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.122068.
Full textHamidi, K., T. Rezoug, and S. Poncet. "Numerical Modeling of Heat Transfer in Taylor-Couette-Poiseuille Systems." Defect and Diffusion Forum 390 (January 2019): 125–32. http://dx.doi.org/10.4028/www.scientific.net/ddf.390.125.
Full textChung, Yongmann M., and Paul G. Tucker. "Assessment of Periodic Flow Assumption for Unsteady Heat Transfer in Grooved Channels." Journal of Heat Transfer 126, no. 6 (2004): 1044–47. http://dx.doi.org/10.1115/1.1833371.
Full textPinson, F., O. Gregoire, M. Quintard, M. Prat, and O. Simonin. "Modeling of turbulent heat transfer and thermal dispersion for flows in flat plate heat exchangers." International Journal of Heat and Mass Transfer 50, no. 7-8 (2007): 1500–1515. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.08.033.
Full textFairuzov, Yuri V., and Hector Arvizu. "Numerical Solution for Transient Conjugate Two-Phase Heat Transfer With Heat Generation in the Pipe Wall." Journal of Heat Transfer 124, no. 6 (2002): 1213–18. http://dx.doi.org/10.1115/1.1470170.
Full textAskarova, A. S., S. A. Bolegenova, S. A. Bolegenova, V. Yu Maximov, and M. T. Beketayeva. "Modeling of Heat Mass Transfer in High-Temperature Reacting Flows with Combustion." High Temperature 56, no. 5 (2018): 738–43. http://dx.doi.org/10.1134/s0018151x1805005x.
Full textCooper, Phillip S., James W. Leach, and Joseph N. Sinodis. "Modeling Fluid Flows and Heat Transfer in Industrial Processes Using Gothic Software." Energy Engineering 101, no. 5 (2004): 7–31. http://dx.doi.org/10.1080/01998590409509276.
Full textLi, J., G. M. Campbell, and A. S. Mujumdar. "Discrete Modeling and Suggested Measurement of Heat Transfer in Gas–Solids Flows." Drying Technology 21, no. 6 (2003): 979–94. http://dx.doi.org/10.1081/drt-120021851.
Full textChoi, Yun-Ho. "Numerical modeling of heat and mass diffusion in compressible low speed flows." KSME International Journal 12, no. 5 (1998): 988–98. http://dx.doi.org/10.1007/bf02945566.
Full textMuto, Daiki, Yu Daimon, Hideyo Negishi, and Taro Shimizu. "Wall modeling of turbulent methane/oxygen reacting flows for predicting heat transfer." International Journal of Heat and Fluid Flow 87 (February 2021): 108755. http://dx.doi.org/10.1016/j.ijheatfluidflow.2020.108755.
Full textZhang, Yudong, Aiguo Xu, Feng Chen, Chuandong Lin, and Zon-Han Wei. "Non-equilibrium characteristics of mass and heat transfers in the slip flow." AIP Advances 12, no. 3 (2022): 035347. http://dx.doi.org/10.1063/5.0086400.
Full textUlybyshev, S. K., and B. A. Staroverov. "Imitation model of heat flows distribution in building heating control system." Vestnik IGEU, no. 2 (April 30, 2021): 70–79. http://dx.doi.org/10.17588/2072-2672.2021.2.070-079.
Full textMerala, Raymond, Mont Hubbard, and Takashi Miyano. "Modeling and Simulation of a Supercharger." Journal of Dynamic Systems, Measurement, and Control 110, no. 3 (1988): 316–23. http://dx.doi.org/10.1115/1.3152688.
Full textAlessandri, Angelo, Patrizia Bagnerini, Roberto Cianci, and Roberto Revetria. "Modeling and Estimation of Thermal Flows Based on Transport and Balance Equations." Advances in Mathematical Physics 2020 (February 1, 2020): 1–10. http://dx.doi.org/10.1155/2020/9621308.
Full textNagano, Y., and C. Kim. "A Two-Equation Model for Heat Transport in Wall Turbulent Shear Flows." Journal of Heat Transfer 110, no. 3 (1988): 583–89. http://dx.doi.org/10.1115/1.3250532.
Full textShahbakhsh, Arash, and Astrid Nieße. "Modeling multimodal energy systems." at - Automatisierungstechnik 67, no. 11 (2019): 893–903. http://dx.doi.org/10.1515/auto-2019-0063.
Full textМартыненко, С. И. "On the approximation error in the problems of conjugate convective heat transfer." Numerical Methods and Programming (Vychislitel'nye Metody i Programmirovanie), no. 4 (September 10, 2019): 438–43. http://dx.doi.org/10.26089/nummet.v20r438.
Full textMeziou, Amine, Zurwa Khan, Taoufik Wassar, Matthew A. Franchek, Reza Tafreshi, and Karolos Grigoriadis. "Dynamic Modeling of Two-Phase Gas/Liquid Flow in Pipelines." SPE Journal 24, no. 05 (2019): 2239–63. http://dx.doi.org/10.2118/194213-pa.
Full textFarakhov, T. M., and A. G. Laptev. "Modeling of temperature profiles and efficiency of heat transfer equipment with intensifiers." Power engineering: research, equipment, technology 22, no. 2 (2020): 12–18. http://dx.doi.org/10.30724/1998-9903-2020-22-1-12-18.
Full textNarain, A. "Modeling of Interfacial Shear for Gas Liquid Flows in Annular Film Condensation." Journal of Applied Mechanics 63, no. 2 (1996): 529–38. http://dx.doi.org/10.1115/1.2788900.
Full textAkin, Serhat. "Mathematical Modeling of Steam Assisted Gravity Drainage." SPE Reservoir Evaluation & Engineering 8, no. 05 (2005): 372–76. http://dx.doi.org/10.2118/86963-pa.
Full textLoshkarev, V. A. "Diagnostics and Modeling of Heat Transfer in High-Enthalpy Gas Flows with Local Heat Sources and Sinks." Heat Transfer Research 33, no. 7-8 (2002): 11. http://dx.doi.org/10.1615/heattransres.v33.i7-8.120.
Full textObukhov, A. G., and L. I. Maksimov. "Calculation of gas flow rates in concentrated fire vortices." Oil and Gas Studies, no. 5 (November 17, 2019): 108–14. http://dx.doi.org/10.31660/0445-0108-2019-5-108-114.
Full textKaul, Upender K., and Raymond P. Shreeve. "Full Viscous Modeling in Generalized Coordinates of Heat Conducting Flows in Rotating Systems." Journal of Thermophysics and Heat Transfer 11, no. 2 (1997): 320. http://dx.doi.org/10.2514/2.6245.
Full textNagano, Y., H. Hattori, and K. Abe. "Modeling the turbulent heat and momentum transfer in flows under different thermal conditions." Fluid Dynamics Research 20, no. 1-6 (1997): 127–42. http://dx.doi.org/10.1016/s0169-5983(96)00049-4.
Full textYAMAMOTO, Atsushi, Shigeo KIMURA, Nobuyoshi KOMATSU, Takahiro KIWATA, Takaaki KONO, and Masahiro GOTO. "1313 Numerical Modeling of the Heat Exchanger Performance placed in Running Water Flows." Proceedings of Conference of Hokuriku-Shinetsu Branch 2016.53 (2016): _1313–1_—_1313–5_. http://dx.doi.org/10.1299/jsmehs.2016.53._1313-1_.
Full textKaul, Upender K., and Raymond P. Shreeve. "Full viscous modeling in generalized coordinates of heat conducting flows in rotating systems." Journal of Thermophysics and Heat Transfer 10, no. 4 (1996): 621–26. http://dx.doi.org/10.2514/3.838.
Full textFranca, Fernando A., Antonio C. Bannwart, Ricardo M. T. Camargo, and Marcelo A. L. Gonçalves. "Mechanistic Modeling of the Convective Heat Transfer Coefficient in Gas-Liquid Intermittent Flows." Heat Transfer Engineering 29, no. 12 (2008): 984–98. http://dx.doi.org/10.1080/01457630802241091.
Full textITAZU, Yoshihiro, and Yasutaka NAGANO. "RNG Modeling of Turbulent Heat Flux and Its Application to Wall Shear Flows." JSME International Journal Series B 41, no. 3 (1998): 657–65. http://dx.doi.org/10.1299/jsmeb.41.657.
Full textDombard, J., B. Leveugle, L. Selle, J. Reveillon, T. Poinsot, and Y. D’Angelo. "Modeling heat transfer in dilute two-phase flows using the Mesoscopic Eulerian Formalism." International Journal of Heat and Mass Transfer 55, no. 5-6 (2012): 1486–95. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.10.050.
Full textJohnson, Evan F., İlker Tarı, and Derek Baker. "Modeling heat exchangers with an open source DEM-based code for granular flows." Solar Energy 228 (November 2021): 374–86. http://dx.doi.org/10.1016/j.solener.2021.09.067.
Full textRassamakin, B. M., V. A. Rogachyov, V. I. Khominich, Yu V. Petrov, and S. M. Khayrnasov. "Experimental modeling of heat modes of small space vehicles and their external heat flows. I. TVK-2.5 heat vacuum plant." Kosmìčna nauka ì tehnologìâ 8, no. 1 (2002): 37–41. http://dx.doi.org/10.15407/knit2002.01.037.
Full textMehdi-Nejad, V., J. Mostaghimi, and S. Chandra. "Modelling heat transfer in two-fluid interfacial flows." International Journal for Numerical Methods in Engineering 61, no. 7 (2004): 1028–48. http://dx.doi.org/10.1002/nme.1101.
Full textHanjalic´, K., I. Hadzˇic´, and S. Jakirlic´. "Modeling Turbulent Wall Flows Subjected to Strong Pressure Variations." Journal of Fluids Engineering 121, no. 1 (1999): 57–64. http://dx.doi.org/10.1115/1.2822011.
Full textSpall, Robert E., Eugen Nisipeanu, and Adam Richards. "Assessment of a Second-Moment Closure Model for Strongly Heated Internal Gas Flows." Journal of Heat Transfer 129, no. 12 (2007): 1719–22. http://dx.doi.org/10.1115/1.2768098.
Full textTaler, Dawid, Jan Taler, and Katarzyna Wrona. "Transient behavior of a plate-fin-and-tube heat exchanger taking into account different heat transfer coefficients on the individual tube rows." E3S Web of Conferences 137 (2019): 01036. http://dx.doi.org/10.1051/e3sconf/201913701036.
Full textTarasov, George, Konstantin Gyrnik, and Denis Leontev. "Parallel Algorithm for Modeling of Dynamic Processes in Porous Media." Advanced Materials Research 1040 (September 2014): 559–64. http://dx.doi.org/10.4028/www.scientific.net/amr.1040.559.
Full text