Contents
Academic literature on the topic 'Modélisation mécatronique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Modélisation mécatronique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Modélisation mécatronique"
Forget, Florent. "Modélisation et contrôle d'actionneurs pour la robotique humanoïde." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30342.
Full textHumanoid robotics actuation and control is complex as this field has specific needs. This involves the design of advanced mechatronic constructions. In this thesis, we focused on the humanoid robots actuation and paid particular attention to systems with good compliance capabilities. Compliance refers to the ability of the system to adapt to its environment by adopting a flexible behaviour. This feature is particularly sought after for human-robot interactions and to make contacts between the robot and its environment smoother. We studied two systems in detail : the first is a system based on Mckibben's artificial pneumatic muscles and the second is an electric cable driven actuator with flexibility. We have developed and implemented a control architecture for the control of both systems. The interest of this architecture lies in its generic nature and in its use within a model predictive control scheme. We then studied the thermal behaviour of an actuator in order to exploit the full potential of this system while ensuring its integrity. Finally, we have carried out developments to improve the joint torque control of the humanoid robot Talos
Hubert, Arnaud. "Contribution à la modélisation des systèmes mécatroniques et micro-mécatroniques." Phd thesis, Université de Franche-Comté, 2010. http://tel.archives-ouvertes.fr/tel-00573375.
Full textDemri, Amel. "Contribution à l'évaluation de la fiabilité d'un système mécatronique par modélisation fonctionnelle et dysfonctionnelle." Phd thesis, Université d'Angers, 2009. http://tel.archives-ouvertes.fr/tel-00467277.
Full textCharlot, Jean-François. "Logistique de la modélisation en conception de systèmes multi-technologiques." Bordeaux 1, 2005. http://www.theses.fr/2005BOR13118.
Full textLy, Rith. "Modélisation multi-physique d'actionneurs piézoélectriques et essais d'assistance au forgeage." Thesis, Metz, 2010. http://www.theses.fr/2010METZ015S/document.
Full textThe work presented concerns the modelling of piezoelectric actuators used as a generator of mechanical vibrations for assistance in shaping bulk materials. The multilayer actuator is set in clamped-free mode and only the direction of longitudinal displacement is considered in the context of this research. The modelling is based on the application of Hamilton principle to establish the equations of motion of the global system. The analytic approach uses a modal composition to solve the equations of operation of the piezoelectric actuator. A transfer function of Multiple-Input Multi-Output (MIMO) systems permits the analysis of the responses in time and frequency domains. The difficulty of the analytical model is to recalculate all the modal data when the boundary conditions are changed. A finite element approach placed along the longitudinal direction of the actuator is also developed. Compared to the analytical model, a study of the accuracy of finite element model function of the number of elements is performed. The two models developed are then coupled to a simplified analytical model of the forging process based on viscoplastic laws in order to model the entire process subject to mechanical vibrations. The main advantage of this model lies in the ability to analyze and optimize the entire process actuator. A comparison between the finite element simulations under Forge2008®, the coupling model and experimental tests is presented. During testing, the piezoelectric actuator fed by Pulse Width Modulated voltage inverter vibrates the lower die at amplitudes ranging from 0 to 80 um and frequencies between 10 and 130Hz. The comparison of experimental results and simulations in the case of upsetting process is encouraging. The modelling of the behaviours of the experimental device constitutes a basic element of a future design tool of vibrating mechanical devices
Ben, messaoud Yethreb. "Modélisation analytique du couplage multi-physique magnétique-thermique dans la phase de préconception d'un système mécatronique." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLC079/document.
Full textDuring the design phase, the different engineering teams make multiple FE simulations dealing with various physical behaviours in order to ensure both verification and validation.However, the unsatisfactory results lead to late changes and hence to long iterations and increasing costs.In order to tackle this problem, it is essential to take into account the geometrical and multi-physical constraints in the complex system architecture since the conceptual design phase.In fact, a process called SAMOS is developed aiming at selecting the most adequate 3D multi-physical architecture while ensuring an efficient collaboration between the engineering teams. Moreover, this framework is based on two SysML extensions which allow the enrichment of the architecture with geometrical and multi-physical data.Furthermore, this thesis focuses on magnetic constraints and magnetic-thermal coupling.Since this phase does not support long FE simulations, the analytical models based on simplified geometries are sufficient to provide satisfactory approximate results.In this context, different analytical models are studied and validated through FE simulations and measures for several cases such as NdFeB permanent magnets. Indeed, the temperature rise does not only decrease the remanent flux density but is able also to cause irreversible losses. In fact, once we go back to the initial temperature, the characteristics of the magnet are modified. The different factors impacting the demagnetization process are discussed.Besides, the temperature impact on brushless motors’ performances is studied since this device represents a complex mechatronic system
Miladi, Chaabane Mariem. "Modélisation géométrique et mécanique pour les systèmes mécatroniques." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2014. http://www.theses.fr/2014ECAP0004/document.
Full textThis thesis focuses on the application of a topological approach for the modeling of mechatronic systems. This approach makes it possible to separate the topology and the physics in order to have a unified representation model for all the physics of mechatronic systems. The developed topological approach is coded in the MGS language (General System Model). This language includes new types of values called topological collections. Topological collections allow the representation of the state of a dynamic system and they are manipulated by transformations. In this approach, the topological collections are used to present the topology of the studied system that is to say the interconnection law of its components and transformations are used to specify the local behavior law of each of these components. First of all, this topological approach is applied to planar and space bar structures and then generalized to planar and space beam structures. Finally, it is extended to the modeling of complex mechanical systems by studying the case of piezoelectric structures (piezoelectric stack and piezoelectric truss structure) and the case of a single stage spur gear. Since this work achieved good reliable results, it would be interesting to extend this approach to more complex mechatronic systems by integrating computers and automatic
Ben, Said Amrani Nabil. "Evaluation de la fiabilité d’un système mécatronique en phase de développement." Thesis, Angers, 2019. http://www.theses.fr/2019ANGE0024.
Full textReliability analysis of mechatronic systems is one of the most dynamic fields of research. This analysismust be conducted during the design phase, in order to model and to design safe and reliable systems.After presenting some concepts of mechatronic systems and of dependability and reliability, we presentan overview of existing approaches (quantitatives and qualitatives) for the reliability assessment and wehighlight the perspectives to develop. The criticality of mechatronic systems is due, on one hand, to multi-domain combination (mechanical, electronic, software), and, on the other hand, to their different functionaland dysfunctional aspects (hybrid, dynamic, reconfigurable and interactive). Therefore, new approaches fordependability assessment should be developped. We propose a methodology for reliability assessment inthe design phase of a mechatronic system, by taking into account multi-domain interactions and by usingmodeling tools such as Petri Nets and Dynamic Bayesian Networks. Our approach also takes into accountepistemic uncertainties (uncertainties of model and of parameters) by using an evidential network adaptedto our model. Our methodology was applied to the reliability assessment of an "intelligent actuator" fromPack’Aero
Lozada, José. "Modélisation, contrôle haptique et nouvelles réalisation de claviers musicaux." Palaiseau, Ecole polytechnique, 2007. http://www.theses.fr/2007EPXX0041.
Full textThe traditional acoustic piano action mechanism is composed of many different parts of wood, wool felt, leather, metal, and steel-springs. These parts form a multi-degree-of freedom system that transmits energy from the player to the hammer. In return, the action mechanism generates a specific tactile rendering that is felt by the pianist during playing. The haptic feedback is essential for a precise control of timing and loudness. The action mechanisms used in numerical pianos are much simpler and therefore provide a poor haptic feedback. In the last few years, many developments have been carried out by keyboard manufacturers in order to improve the feeling of touch of their products. Most of these systems are not actively controlled and are based on simplified models of the dynamical behaviour of traditional pianos. According to users, improvements are still required in terms of size, performance and realism of the device. Active systems capable of reproducing the dynamics of traditional piano have been developed as laboratory prototypes and commercial products. They are based on simplified models or pre-recorded dynamics that do not satisfactorily match the dynamical behaviour of the traditional piano key. Moreover, the size of these systems often based on electromagnetic actuators is not suitable for an industrial keyboard implementation. The resistant force provided by the traditional piano action mechanism varies from 0. 5 N (the minimum force that initiates key motion), to 15 N (at fortissimo nuance). Extensive measurements of the kinematics of a grand piano action mechanism indicate that the duration of the key motion varies from 20 to 250 ms depending on the nuance whereas the key velocity varies from 0. 1 m. S−1 to 0. 6 m. S−1. The main objective of this research work is to develop a novel digital keyboard capable of reproducing the behaviour of a grand piano action mechanism. It is composed of two main parts. First, the dynamics of traditional piano is studied, then the design and the control of a novel haptic interface based on magneto-rheological fluids are presented. The dynamic model of the traditional piano action mechanism presented in this thesis takes into account the six degrees of freedom of the system under the hypothesis of rigid bodies. It is completed by the contacts and rotational links elementary models. A set of experimental procedures is used to identify the parameters of the model. Finally, a numerical simulation using Matlab/Simulink is presented. The modelling and the identification of an original operation mode for MR fluids is presented and used for the design of the haptic interface for musical keyboards. An analytical model of the interface key is built and used to develop the control law. The mechatronic model is numerically simulated and compared to the real behaviour of the interface. Finally a real time control loop coupled to a virtual model is used to command the interface (for instance the dynamical model of the traditional piano)
Naud, Olivier. "Modélisation hybride pour la supervision de systèmes mécatroniques : application à la stabilité en pente de machines mobiles." Toulouse, INSA, 2003. http://www.theses.fr/2003ISAT0003.
Full textWe present a design approach for supervision-oriented hybrid models of mechatronic devices. We chose to express the qualitative states taken by such systems in the guise of a finite automaton. We proposed a method to build the automaton from an essentially continuous model. This method relies on our so-called half-causal graph which represents the algebraic and differential complexity of the continuous model. This diagram uses the causal semantics of the bond-graph, which is based on the effort-flow duality. It is annotated with intervals on the variables. Semantic values are attached to these intervals, which we call modalities. We distinguish, in particular, structural modalities, which correspond to limit conditions or changes in the continuous model, and functionnal modalities, which provide the qualitative information on the usage and monitoring. So as to validate this approach, we applied it to the modeling of the bogies of a forest machine. The goal was to prevent the machine from overturning on slopes. Simulations of the whole machine dynamics proved that the discrete model we obtained was very representative of the changes of the instability risk