Academic literature on the topic 'MODELO DE LOTKA-VOLTERRA'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'MODELO DE LOTKA-VOLTERRA.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "MODELO DE LOTKA-VOLTERRA"
Segarra, Jaime. "MÉTODOS NUMÉRICOS RUNGE-KUTTA Y ADAMS BASHFORTH-MOULTON EN MATHEMATICA." Revista Ingeniería, Matemáticas y Ciencias de la Información 7, no. 14 (July 15, 2020): 13–32. http://dx.doi.org/10.21017/rimci.2020.v7.n14.a81.
Full textAmaya Cedrón, Luis Andrés. "Modelo de Lotka - Volterra en la biomatemática Solución de sistema depredador-presa." Ciencias 4, no. 4 (December 28, 2020): 99–110. http://dx.doi.org/10.33326/27066320.2020.4.991.
Full textNoronha, Viviane De Lima, and Rosana Da Paz Ferreira. "ESTUDO DE UM MODELO MATEMÁTICO APLICADO AO CONTROLE BIOLÓGICO DA Ceratitis capitata (WIEDEMANN) (DIPTERA: TEPHRITIDAE) PELO Diachasmimorpha longicaudata (ASHMEAD) (HYMENOPTERA: BRACONIDAE) NA FRUTICULTURA BRASILEIRA." Revista Eletrônica Perspectivas da Ciência e Tecnologia - ISSN: 1984-5693 9, Único (November 8, 2017): 2. http://dx.doi.org/10.22407/1984-5693.2017.v9.p.2-25.
Full textMontaño Arias, Noé Manuel, and Juan Manuel Sánchez-Yañez. "Nitrification in tropical soils linked to microbial competition: a model based on Lotka-Volterra theory." Ecosistemas 23, no. 3 (December 23, 2014): 98–104. http://dx.doi.org/10.7818/ecos.2014.23-3.13.
Full textDa Silva, Welber Faustino, and Orlando Dos Santos Pereira. "Análise quantitativa do crescimento populacional da cidade de Seropédica-RJ sob a influência dos estudantes da Universidade Federal Rural do Rio de Janeiro." Revista Eletrônica TECCEN 9, no. 1 (October 3, 2016): 03. http://dx.doi.org/10.21727/teccen.v9i1.204.
Full textDa Silva, Welber Faustino, and Orlando Dos Santos Pereira. "Análise Quantitativa do Crescimento Populacional da Cidade de Seropédica-RJ sob a Influência dos Estudantes da Universidade Federal Rural do Rio de Janeiro." Revista Eletrônica TECCEN 9, no. 1 (June 30, 2016): 03. http://dx.doi.org/10.21727/teccen.v9i1.782.
Full textSalazar-Villegas, Alejandro, Viviana Morillo-López, Álvaro Morales-Aramburo, and Marco Márquez-Godoy. "Evaluación de la dinámica de población de bacterias magnetotácticas (MTBs) en medios naturales y enriquecidos, comparación con resultados teóricos obtenidos a partir del modelo de competencia de Lotka-Volterra." Respuestas 14, no. 1 (May 5, 2016): 40–49. http://dx.doi.org/10.22463/0122820x.524.
Full textLIAN, BAOSHENG, and SHIGENG HU. "STOCHASTIC DELAY GILPIN–AYALA COMPETITION MODELS." Stochastics and Dynamics 06, no. 04 (December 2006): 561–76. http://dx.doi.org/10.1142/s0219493706001888.
Full textNurrohman, Reza Kusuma, Ardiansyah Ardiansyah, and Bayu Dwi Apri Nugroho. "Lotka Volterra Model Simulation for Rice-field Rat and Tyto Alba Owls in Sumpiuh District, Banyumas Regency, Central Java." agriTECH 39, no. 4 (November 5, 2019): 323. http://dx.doi.org/10.22146/agritech.46456.
Full textKLOEDEN, P. E., and C. PÖTZSCHE. "DYNAMICS OF MODIFIED PREDATOR-PREY MODELS." International Journal of Bifurcation and Chaos 20, no. 09 (September 2010): 2657–69. http://dx.doi.org/10.1142/s0218127410027271.
Full textDissertations / Theses on the topic "MODELO DE LOTKA-VOLTERRA"
Azevedo, Franciane Silva de. "Modelo de competição de Lotka-Volterra com difusão apliacado a fragmentos de florestas bidimensionais /." São Paulo, 2008. http://hdl.handle.net/11449/132530.
Full textBanca: Fernando Fagundes Ferreira
Banca: Gustavo Camelo Neto
Resumo: Este trabalho estuda equações de reação de difusão em domínios finitos com vista a aplicações no estudo do efeito de fragmentação de florestas sobre a dinâmica de populaçõs de espécies. Referimo-nos a habitats de tamanho finito como sendo habitats insulares. A imensa quantidade de dados observacionais relacionados às espécies biológicas presentes em ilhas ou fragmentos de florestas motiva este estudo. Mais especificamente, este trabalho tem como objetivo modelar a dinâmica de interaçãao espacial entre espécies invasoras e espécies nativas de palmeiras, em fragmentos de floresta amazônica, mostrando que os menores fragmentos são mais suscetíveis a espécies invasoras que os fragmentos maiores. O modelo apresentado é um sistema de equações de competição de Lotka-Volterra, com difusão
Abstract: The present work studies reaction-diffusion equations in finite domains, in view of application to the modeling of the effects of fragmentation on the dynamics of biological species. We refer to finite habitats as being insular habitats. The great amount of observational data related to biological species in islands or forest fragments motivates this work. More specifically, this work has as its objective to model the dynamics of the spatial interaction between invader and native species of palm trees in fragments of the Amazon Forest, showing that the smaller fragments are more vulnerable to the invader species than larger fragments. The mathematical model is a system of Lotka-Volterra equations with diffusion
Mestre
GUTIERREZ, GOMEZ GABRIELA. "RELACIÓN CAPITAL-TRABAJO EN EL MODELO DE LOTKA-VOLTERRA. CASO MEXICANO, 2000-2015." Tesis de Licenciatura, UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO, 2017. http://hdl.handle.net/20.500.11799/68005.
Full textAzevedo, Franciane Silva de [UNESP]. "Modelo de competição de Lotka-Volterra com difusão apliacado a fragmentos de florestas bidimensionais." Universidade Estadual Paulista (UNESP), 2008. http://hdl.handle.net/11449/132530.
Full textAlvarez, Robinson Franco. "Dinâmica de gliomas e possíveis tratamentos." reponame:Repositório Institucional da UFABC, 2016.
Find full textDissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Física, 2016.
Neste trabalho se estudaram aspectos básicos relacionados com a dinâmica de células cancerígenas do tipo B-Linfoma BCL1 e de gliomas fazendo ênfases neste último caso. O trabalho se iniciou revisando alguns modelos populacionais do câncer inspirados nos trabalhos de Lotka e Volterra o qual oferecem uma descrição muito simples da interação entre o câncer (presa) e o sistema imunológico (caçador). Posteriormente é revisado um modelo global espaço-temporal baseado nas equações de Fisher-Kolmogorov-Petrovsky- Piskounov (FKPP) [1] o qual permitiu aclarar a dicotomia entre proliferação e motilidade associada fortemente ao crescimento tumoral e à invasividade, respectivamente, das células cancerosas. A partir do modelo FKPP também se fez um estudo computacional mais detalhado aplicando diferentes protocolos de tratamentos para analisar seus efeitos sobre o crescimento e desenvolvimento de gliomas. O estudo sugere que um tratamento com maior tempo entre cada dose poderia ser mais ótimo do que um tratamento mais agressivo. Propõe-se também um modelo populacional local do câncer em que se tem em conta o caráter policlonal das células cancerígenas e as interações destas com o sistema imunológico natural e especifico. Neste último modelo se consegui apreciar fenômenos como dormancy state (estado de latência) e escape phase (fase de escape) para valores dos parâmetros correspondentes ao câncer de tipo B-Linfoma BCL1 [2] o qual explica os fenômenos de imunoedição e escape da imunovigilância [3] o qual poderia permitir propor novos protocolos de tratamentos mais apropriados.Depois se fez uma reparametrização do modelo baseado em algumas características mais próprias das células tumorais do tipo glioma e assumindo presença de imunodeficiência com o que se obtém coexistências oscilatórias periódicas tanto da população tumoral assim como das células do sistema imunológico o qual poderia explicar os casos clínicos de remissão e posterior reincidência tumoral. Finalmente se obtiveram baixo certas condições, uma dinâmica caótica na população tumoral o qual poderia explicar os casos clínicos em que se apresentam falta de controlabilidade da doença sobre tudo em pessoas idosas ou com algum quadro clinico que envolve alguma deficiência no funcionamento normal do sistema imunológico.
In this work we studied basic aspects of the dynamics of cancer cell type B-Lymphoma BCL1 and gliomas making strong emphasis in the latter case. We start reviewing some population models of cancer inspired in the work¿s of Lotka and Volterra, which offers a very simple description of the interaction between cancer (prey) and the immune system (Hunter). Subsequently revise a global model space-time based on the equations of Fisher-Kolmogorov-Petrovsky-Piskounov (FKPP) [1] which allowed elucidating the dichotomy between proliferation and strongly associated motility to tumor growth and invasiveness, respectively, of cancer cells. From the FKPP model also made a more detailed computer study applying different treatment protocols to analyze their effects on the growth and development of gliomas. The study suggests that treatment with longer time between each dose could be more optimal than a more aggressive treatment. Is studied also a local population cancer model that takes into account the polyclonal nature of cancer cells, and these interactions with the natural and specific immune system. In the latter model is able to appreciate phenomena as dormancy state and escape phase for values of parameters corresponding to lymphoma cancer BCL1 [2] which explains the phenomena of immunoediting and tumor escape immuno-surveillance [3] allowing elucidating treatments protocols more appropriate. A re-parameterization was made based on some features of tumor cells glioma type and assuming presence of immunodeficiency with that obtained coexistences periodic oscillatory both tumor populations as well as the immune system cells which could explain the clinical cases of remission and subsequent tumor recurrence. Finally obtained under certain conditions, a chaotic dynamics in tumor population which could explain the clinical cases that present lack of controllability of the disease on all in elderly or with some clinical picture involving some deficiency in the normal functioning of the immune system.
Balbín, Arias Julio José. "Formación de patrones inducidos por un flujo de corte en el modelo de Lotka-Volterra modificado." Master's thesis, Pontificia Universidad Católica del Perú, 2017. http://tesis.pucp.edu.pe/repositorio/handle/123456789/8504.
Full textTesis
Vérri, Juliano Aparecido. "Estabilidade global e bifurcação de Hopf em um modelo de HIV baseado em sistemas do tipo Lotka-Volterra /." Presidente Prudente, 2013. http://hdl.handle.net/11449/94327.
Full textBanca: Luis Fernando de Osório Mello
Banca: Vanessa Avansini Botta Pirani
Resumo: Nesta dissertação fazemos um estudo de modelos biológicos do tipo Lotka-Volterra, utilizando como ferramenta principal a teoria qualitativa das equações diferenciais ordinárias. Abordamos, no plano e no espaço, alguns modelos do tipo predador-presa. Analisamos os comportamentos das soluções sob a variação dos parâmetros e tratamos com detalhes a bifurcação de Hopf, que dá origem a uma órbita periódica isolada (ciclo limite). Estudamos também um teorema devido a Li e Muldowney [16] sobre a estabilidade global de um ponto de equilíbrio para um sistema x˙ = f(x), x ∈ Rn. Aplicamos este resultado no estudo de um modelo de HIV tridimensional, provando a estabilidade global de um ponto de equilíbrio, para certos valores dos parâmetros. Para o mesmo modelo, verificamos a ocorrência de uma dupla bifurcação de Hopf, que leva ao surgimento e posterior desaparecimento de um ciclo limite, ao variarmos um dos parâmetros envolvidos no sistema. As bifurcações de Hopf ocorrem simultaneamente à perda de estabilidade global do ponto de equilíbrio
Abstract: In this work we present a study of biological models of Lotka-Volterra type, using as main tool the qualitative theory of ordinary differential equations. We analyze some two and three dimensional predator-prey models. The behavior of the solutions are studied under the variation of parameters and it is shown that a Hopf bifurcation occurs, leading to the creation of an isolated periodic orbit (limit cycle). We also study a theorem due to Li and Muldowney [16] about the global stability of an equilibrium point of a system x˙ = f(x), x ∈ Rn. We apply this result in the analysis of a three dimensional model of HIV with treatment, showing the global stability of an equilibrium point, for certain parameter values. For the same model, we prove the occurrence of two Hopf bifurcations, leading to the birth and subsequent death of a limit cycle, when we vary one of the parameters of the model. The Hopf bifurcations occurs simultaneously to the lack of global stability of the equilibrium point
Mestre
Vérri, Juliano Aparecido [UNESP]. "Estabilidade global e bifurcação de Hopf em um modelo de HIV baseado em sistemas do tipo Lotka-Volterra." Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/94327.
Full textNesta dissertação fazemos um estudo de modelos biológicos do tipo Lotka-Volterra, utilizando como ferramenta principal a teoria qualitativa das equações diferenciais ordinárias. Abordamos, no plano e no espaço, alguns modelos do tipo predador-presa. Analisamos os comportamentos das soluções sob a variação dos parâmetros e tratamos com detalhes a bifurcação de Hopf, que dá origem a uma órbita periódica isolada (ciclo limite). Estudamos também um teorema devido a Li e Muldowney [16] sobre a estabilidade global de um ponto de equilíbrio para um sistema x˙ = f(x), x ∈ Rn. Aplicamos este resultado no estudo de um modelo de HIV tridimensional, provando a estabilidade global de um ponto de equilíbrio, para certos valores dos parâmetros. Para o mesmo modelo, verificamos a ocorrência de uma dupla bifurcação de Hopf, que leva ao surgimento e posterior desaparecimento de um ciclo limite, ao variarmos um dos parâmetros envolvidos no sistema. As bifurcações de Hopf ocorrem simultaneamente à perda de estabilidade global do ponto de equilíbrio
In this work we present a study of biological models of Lotka-Volterra type, using as main tool the qualitative theory of ordinary differential equations. We analyze some two and three dimensional predator-prey models. The behavior of the solutions are studied under the variation of parameters and it is shown that a Hopf bifurcation occurs, leading to the creation of an isolated periodic orbit (limit cycle). We also study a theorem due to Li and Muldowney [16] about the global stability of an equilibrium point of a system x˙ = f(x), x ∈ Rn. We apply this result in the analysis of a three dimensional model of HIV with treatment, showing the global stability of an equilibrium point, for certain parameter values. For the same model, we prove the occurrence of two Hopf bifurcations, leading to the birth and subsequent death of a limit cycle, when we vary one of the parameters of the model. The Hopf bifurcations occurs simultaneously to the lack of global stability of the equilibrium point
Griebeler, Marcelo de Carvalho. "Ensaios em política e desenvolvimento econômico." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2013. http://hdl.handle.net/10183/87327.
Full textThis thesis consists of three essays. In the first one, we show in our basic model that economies consisted exclusively by producers and parasites may fall into poverty traps, assuming that both groups behave according to the dynamics of Lotka-Volterra. However, the introduction of an upper bound on the output growth and expectations for the agents excludes the result of trap in its multiple equilibria. Our conclusion, nevertheless, is similiar for both studied models: improved protection of property rights by the state can mitigate the poverty trap possibility in the basic model, and affect the stability of equilibria in the modified one, making that economic outcomes with higher output become stable. In the second essay, we obtain conditions under which the central bank's loss function is strictly convex in four different states of the economy: booming economy, recession, high inflation and high output. Moreover, we found that when inaction and output are linear functions of monetary policy instruments, convexity is guaranteed for any of the four states mentioned. When we extend our analysis to the case of many instruments, we found that only linearity is not sufficient to guarantee the shape of loss function. Our results also provide conditions under which there exists dependence between instruments of monetary policy. Finally, the third essay studies the ination targeting regimes, in which agents can influence the monetary policy through market expectations reported to the central bank. Monetary authority, in its turn, should formulate the monetary policy considering that this influence may be used for the benefit of agents themselves. We model this strategic relationship as a sequential game between a representative financial institution and the central bank. We show that when the monetary authority chooses only the level of interest rates, there is a potential inflationary bias in the economy. This bias is solved when the money supply becomes a second instrument of policy. In addition, we show that to impose penalty on the worse predictor institutions may also be an efficient anchoring expectations mechanism.
Alzahrani, Ebraheem. "Travelling waves in Lotka-Volterra competition models." Thesis, University of Dundee, 2011. https://discovery.dundee.ac.uk/en/studentTheses/1e432558-a3eb-40ee-81ae-4f0af74718d0.
Full textChen, Sheng. "Population dynamics of stochastic lattice Lotka-Volterra models." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/82038.
Full textPh. D.
Books on the topic "MODELO DE LOTKA-VOLTERRA"
Global dynamical properties of Lotka-Volterra systems. Singapore: World Scientific, 1996.
Find full textUNESCO. Working Group on Systems Analysis. Meeting. Lotka-Volterra-approach to cooperation and competition in dynamic systems: Proceedings of the 5th Meeting of UNESCO's Working Group on System Theory held on the Wartburg, Eisenach (GDR), March 5-9, 1984. Berlin: Akademie-Verlag, 1985.
Find full textNoronha, Viviane de Lima, Rosana da Paz Ferreira, Carlos Eduardo de Souza Rodrigues, and Tainara Miranda Campos. Modelagem matemática do controle biológicoda mosca-das-frutas por parasitoide na fruticultura brasileira. Brazil Publishing, 2020. http://dx.doi.org/10.31012/978-65-87836-20-1.
Full textFigdor, Carrie. Cases. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198809524.003.0003.
Full textIannelli, Mimmo, and Andrea Pugliese. An Introduction to Mathematical Population Dynamics: Along the trail of Volterra and Lotka. Springer, 2014.
Find full textBook chapters on the topic "MODELO DE LOTKA-VOLTERRA"
Yagi, Atsushi. "Lotka–Volterra Competition Model with Cross-Diffusion." In Springer Monographs in Mathematics, 487–526. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04631-5_15.
Full textXu, Yong, Song Zhu, and Shigeng Hu. "A Stochastic Lotka-Volterra Model with Variable Delay." In Advances in Soft Computing, 91–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01216-7_10.
Full textKnuuttila, Tarja, and Andrea Loettgers. "Contrasting Cases: The Lotka-Volterra Model Times Three." In Boston Studies in the Philosophy and History of Science, 151–78. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30229-4_8.
Full textCoppex, François, Michel Droz, and Adam Lipowski. "Lotka-Volterra Model of Macro-Evolution on Dynamical Networks." In Computational Science - ICCS 2004, 742–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-25944-2_96.
Full textLiu, Honghao, Jian He, and Xuebo Chen. "Research on Enterprise Monopoly Based on Lotka-Volterra Model." In Human Systems Engineering and Design II, 1018–22. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27928-8_151.
Full textFergola, P., and C. Tenneriello. "Lotka-Volterra Models: Partial Stability and Partial Ultimate Bounded-Ness." In Biomathematics and Related Computational Problems, 283–94. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2975-3_26.
Full textStevens, M. Henry H. "An Introduction to Food Webs, and Lessons from Lotka–Volterra Models." In A Primer of Ecology with R, 211–26. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-89882-7_7.
Full textGrigorenko, Nikolai L., Evgenii N. Khailov, Anna D. Klimenkova, and Andrei Korobeinikov. "Program and Positional Control Strategies for the Lotka–Volterra Competition Model." In Lecture Notes in Control and Information Sciences - Proceedings, 39–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42831-0_4.
Full textKorytowski, Daniel A., and Hal L. Smith. "A Special Class of Lotka–Volterra Models of Bacteria-Virus Infection Networks." In Applied Analysis in Biological and Physical Sciences, 113–19. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-3640-5_7.
Full textLooijen, Rick C. "The Reduction of the Lotka/Volterra Competition Model to Modern Niche Theory." In Holism and Reductionism in Biology and Ecology, 221–51. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9560-5_10.
Full textConference papers on the topic "MODELO DE LOTKA-VOLTERRA"
Abreu, Anderson Inácio Salata de, Elenice Weber Stiegelmeier, and Michele Cristina Valentino. "Análise do modelo clássico Lotka - Volterra." In III CMAC-SE - Congresso de Matemática Aplicada e Computacional Sudeste. SBMAC, 2015. http://dx.doi.org/10.5540/03.2015.003.02.0003.
Full textFiori, Angelo Fernando, Luana Fransozi, Antonio Carlos Valdiero, and Luiz Antonio Rasia. "Análise do ponto de equilíbrio no modelo Lotka-Volterra." In CMAC Sul – Congresso de Matemática Aplicada e Computacional. SBMAC, 2014. http://dx.doi.org/10.5540/03.2014.002.01.0082.
Full textNguyen-Van, Triet, and Noriyuki Hori. "A Discrete-Time Model for Lotka-Volterra Equations With Preserved Stability of Equilibria." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63049.
Full textZhang, Guanglu, Daniel A. McAdams, Milad Mohammadi Darani, and Venkatesh Shankar. "Product Performance Evolution Prediction by Lotka-Volterra Equations." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67369.
Full textHongxia Li. "Numerical analysis of the Lotka-Volterra model." In 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6001882.
Full textEnatsu, Yoichi, Alberto Cabada, Eduardo Liz, and Juan J. Nieto. "Permanence for multi-species nonautonomous Lotka-Volterra cooperative systems." In MATHEMATICAL MODELS IN ENGINEERING, BIOLOGY AND MEDICINE: International Conference on Boundary Value Problems: Mathematical Models in Engineering, Biology and Medicine. AIP, 2009. http://dx.doi.org/10.1063/1.3142923.
Full textFaria, Teresa, Alberto Cabada, Eduardo Liz, and Juan J. Nieto. "Global Stability and Singularities for Lotka-Volterra Systems with Delays." In MATHEMATICAL MODELS IN ENGINEERING, BIOLOGY AND MEDICINE: International Conference on Boundary Value Problems: Mathematical Models in Engineering, Biology and Medicine. AIP, 2009. http://dx.doi.org/10.1063/1.3142926.
Full textGray, W. Steven, Luis A. Duffaut Espinosa, and Kurusch Ebrahimi-Fard. "Analytic left inversion of multivariable Lotka-Volterra models." In 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015. http://dx.doi.org/10.1109/cdc.2015.7403239.
Full textHovsepian, Karen, Peter Anselmo, and Subhasish Mazumdar. "Supervised Inductive Learning with Lotka-Volterra Derived Models." In 2008 Eighth IEEE International Conference on Data Mining (ICDM). IEEE, 2008. http://dx.doi.org/10.1109/icdm.2008.108.
Full textGray, W. Steven, Luis A. Duffaut Espinosa, and Kurusch Ebrahimi-Fard. "Analytic left inversion of SISO Lotka-Volterra models." In 2015 49th Annual Conference on Information Sciences and Systems (CISS). IEEE, 2015. http://dx.doi.org/10.1109/ciss.2015.7086852.
Full text