Academic literature on the topic 'Modelo t de Student'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Modelo t de Student.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Modelo t de Student"
Thomaz, Paulo Siga, Viviane Leite Dias de Mattos, Luiz Ricardo Nakamura, Andréa Cristina Konrath, and Gérson Dos Santos Nunes. "Modelos GARCH em ações financeiras: um estudo de caso." Exacta 18, no. 3 (July 10, 2020): 626–48. http://dx.doi.org/10.5585/exactaep.v18n3.10921.
Full textHernández García, Melva. "Cultura organizacional y habilidades gerenciales de los directores y profesores, en una asociación educativa." Paidagogo 2, no. 1 (June 6, 2020): 3–25. http://dx.doi.org/10.52936/p.v2i1.22.
Full textSales, Francisco Das Chagas Vieira, José Antonio Aleixo da Silva, Rinaldo Luiz Caraciolo Ferreira, and Fernando Henrique de Lima Gadelha. "AJUSTES DE MODELOS VOLUMÉTRICOS PARA O CLONE Eucalyptus grandis x E. urophylla CULTIVADOS NO AGRESTE DE PERNAMBUCO." FLORESTA 45, no. 4 (October 16, 2015): 663. http://dx.doi.org/10.5380/rf.v45i4.37594.
Full textNugroho, Didit Budi, Agus Priyono, and Bambang Susanto. "SKEW NORMAL AND SKEW STUDENT-T DISTRIBUTIONS ON GARCH(1,1) MODEL." MEDIA STATISTIKA 14, no. 1 (April 16, 2021): 21–32. http://dx.doi.org/10.14710/medstat.14.1.21-32.
Full textPrado, Naimara V. do, Miguel A. Uribe-Opazo, Manuel Galea, and Rosangela A. B. Assumpção. "Influência local em um modelo espacial linear da produtividade da soja utilizando distribuição t-Student." Engenharia Agrícola 33, no. 5 (October 2013): 1003–16. http://dx.doi.org/10.1590/s0100-69162013000500012.
Full textLoschi, Rosangela H., Pilar L. Iglesias, and Reinaldo B. Arellano-Valle. "Predictivistic characterizations of multivariate student-t models." Journal of Multivariate Analysis 85, no. 1 (April 2003): 10–23. http://dx.doi.org/10.1016/s0047-259x(02)00034-9.
Full textNguyen, Hang T., and Ian T. Nabney. "Variational inference for Student-t MLP models." Neurocomputing 73, no. 16-18 (October 2010): 2989–97. http://dx.doi.org/10.1016/j.neucom.2010.07.009.
Full textValencia Salazar, Edilberto, Segundo Edilberto Vergara Medrano, Luis Carbajal García, and Manuel Jesús Sánchez Chero. "Aplicación del modelo 4MAT y su influencia en el rendimiento académico de cinemática en estudiantes universitarios." Revista Científica UNTRM: Ciencias Sociales y Humanidades 2, no. 2 (February 17, 2020): 55. http://dx.doi.org/10.25127/rcsh.20192.530.
Full textBasso-Aránguiz, Matilde, Mario Bravo-Molina, Antonella Castro-Riquelme, and César Moraga-Contreras. "Propuesta de modelo tecnológico para Flipped Classroom (T-FliC) en educación superior." Revista Electrónica Educare 22, no. 2 (February 15, 2018): 1. http://dx.doi.org/10.15359/ree.22-2.2.
Full textPamplona, Edgar, Clóvis Fiirst, Nelson Hein, and Vinícius Costa da Silva Zonatto. "Desempenho do Modelo Arma na Previsão das Receitas Orçamentárias dos Municípios do Estado do Paraná." Administração Pública e Gestão Social 11, no. 1 (January 1, 2019): 92–103. http://dx.doi.org/10.21118/apgs.v11i1.1487.
Full textDissertations / Theses on the topic "Modelo t de Student"
Lopes, Jocely Nascimento. "Misturas de distribuições T de student assimétricas." Universidade Federal do Amazonas, 2008. http://tede.ufam.edu.br/handle/tede/5226.
Full textApproved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-09-30T13:46:06Z (GMT) No. of bitstreams: 1 Dissertação - Jocely Lopes.pdf: 2989672 bytes, checksum: 6e22a80fdd1f21213e48a66c75d7c923 (MD5)
Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-09-30T13:46:22Z (GMT) No. of bitstreams: 1 Dissertação - Jocely Lopes.pdf: 2989672 bytes, checksum: 6e22a80fdd1f21213e48a66c75d7c923 (MD5)
Made available in DSpace on 2016-09-30T13:46:22Z (GMT). No. of bitstreams: 1 Dissertação - Jocely Lopes.pdf: 2989672 bytes, checksum: 6e22a80fdd1f21213e48a66c75d7c923 (MD5) Previous issue date: 2008-12-22
Não informada
In this work we consider the estimation of parameters of a nite mixture of skew Student-t distributions, via EM algorithm. The main goals of this dissertation is to show a detailed description of the EM algorithm applied to this model and to evaluate the consistency of the estimator. A data set concerning the Gross Domestic Product per capita (Human Development Report), previously studied in the related literature, is analyzed.
Este trabalho trata do problema de estimar parâmetros de uma mistura nita de densidades t-assimétricas. Como ferramenta para a estimação foi usado o algoritmo EM. Foi avaliada a consistência desses estimadores e realizado um experimento de aplicação da teoria desenvolvida para uma modelagem com dados reais utilizando um conjunto analisado anteriormente na literatura, relativo ao PIB per capita. Os objetivos centrais desse trabalho são apresentar uma descrição detalhada do método de estimação, via algoritmo EM, dos parâmetros do modelo nito de mistura de densidades t-assimétricas e avaliar através de um estudo de simulação se o estimador obtido é consistente.
Cintra, Flávia Maria Ravagnani Neves. "Aplicação do modelo t-student para análise dos resultados de ensaios de proficiência." Universidade de São Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-03012018-171250/.
Full textThe proficiency essays by interlaboratorial comparison have been an important mechanism to control the consistency of the measurements of the laboratories. Government institutions, such as INMETRO, have used such mechanisms to monitor the quality of the laboratories services supplied by the Laboratories Brazilian Network (RBL) and by the Calibration Brazilian Network (RBC). Currently. the statistical methods used to analyze the results of the Proficiency Essays are described in technical norms, like the ISO/IEC Guide 43-1. Recently, Leão, Aoki and Silva (2002) proposed a regression method to test the laboratories ability, using the multivariate normal distribution to fit the data and to establish statistical tests. Like in measurements the presence of extreme values is constant, we are modelling the data using the multivariate t-student distribution, to accommodate such extreme values. In this model, we are interested in estimating the degrees of freedom and the tendency parameter of the laboratory measurement relating to the reference value, since the laboratories are using similar measurements systems to measure the same item, with standard deviation determined by a calibration process. We are finding the maximum likelihood and moments estimators for these two parameters and are developing a test to evaluate the laboratories measurements consistency. At the end, we are analyzing the obtained data for the REMESP (São Paulo Metrology Network) in the electrical area, where we are measuring the digital multimeter DC tension.
Paczkowski, Remi. "Monte Carlo Examination of Static and Dynamic Student t Regression Models." Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/38691.
Full textPh. D.
Rama, Vishal. "Estimating stochastic volatility models with student-t distributed errors." Master's thesis, Faculty of Science, 2020. http://hdl.handle.net/11427/32390.
Full textBusato, Erick Andrade. "Função de acoplamento t-Student assimetrica : modelagem de dependencia assimetrica." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/305857.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-12T14:00:24Z (GMT). No. of bitstreams: 1 Busato_ErickAndrade_M.pdf: 4413458 bytes, checksum: b9c4c39b4639c19e685bae736fc86c4f (MD5) Previous issue date: 2008
Resumo: A família de distribuições t-Student Assimétrica, construída a partir da mistura em média e variância da distribuição normal multivariada com a distribuição Inversa Gama possui propriedades desejáveis de flexibilidade para as mais diversas formas de assimetria. Essas propriedades são exploradas na construção de funções de acoplamento que possuem dependência assimétrica. Neste trabalho são estudadas as características e propriedades da distribuição t-Student Assimétrica e a construção da respectiva função de acoplamento, fazendo-se uma apresentação de diferentes estruturas de dependência que pode originar, incluindo assimetrias da dependência nas caudas. São apresentados métodos de estimação de parâmetros das funções de acoplamento, com aplicações até a terceira dimensão da cópula. Essa função de acoplamento é utilizada para compor um modelo ARMA-GARCHCópula com marginais de distribuição t-Student Assimétrica, que será ajustado para os logretornos de preços do Petróleo e da Gasolina, e log-retornos do Índice de Óleo AMEX, buscando o melhor ajuste, principalmente, para a dependência nas caudas das distribuições de preços. Esse modelo será comparado, através de medidas de Valor em Risco e AIC, além de outras medidas de bondade de ajuste, com o modelo de Função de Acoplamento t-Student Simétrico.
Abstract: The Skewed t-Student distribution family, constructed upon the multivariate normal mixture distribution, known as mean-variance mixture, composed with the Inverse-Gamma distribution, has many desirable flexibility properties for many distribution asymmetry structures. These properties are explored by constructing copula functions with asymmetric dependence. In this work the properties and characteristics of the Skewed t-Student distribution and the construction of a respective copula function are studied, presenting different dependence structures that the copula function generates, including tail dependence asymmetry. Parameter estimation methods are presented for the copula, with applications up to the 3rd dimension. This copula function is used to compose an ARMAGARCH- Copula model with Skewed t-Student marginal distribution that is adjusted to logreturns of Petroleum and Gasoline prices and log-returns of the AMEX Oil Index, emphasizing the return's tail distribution. The model will be compared, by the means of the VaR (Value at Risk) and Akaike's Information Criterion, along with other Goodness-of-fit measures, with models based on the Symmetric t-Student Copula.
Mestrado
Mestre em Estatística
Rahman, Azizur. "Bayesian prediction distributions for some linear models under student-t errors." University of Southern Queensland, Faculty of Sciences, 2007. http://eprints.usq.edu.au/archive/00003581/.
Full textAssumpção, Rosangela Aparecida Botinha. "Influência local em modelos geoestatísticos T-Student com aplicações a dados agrícolas." Universidade Estadual do Oeste do Parana, 2010. http://tede.unioeste.br:8080/tede/handle/tede/374.
Full textThe presence of inconsistent observations make it improper to consider the gaussian process, as it is found in the literature. This process should be replaced by models of the symmetric distribution classes, such as the t-student distribution, which incorporates additional parameters to reduce the influence of inconsistent points. This work has developed the EM algorithm for estimating the structure of the spatial dependence of the parameters and of the spatial linear model, assuming that the process shows t-student n-varied distribution. This distribution has the degree of freedom v as the additional parameter, which has been considered to be fixed in this research. Techniques to diagnose influence are used after the estimation of parameters, in order to assess the quality of the adjustment of the model by the assumptions made and for the robustness of the results of the estimates when there are disturbances in the model or data. In the present work, diagnostic techniques for the assessment of local influence in linear spatial models have been developed, considering the process with t-student n-varied distribution. The usual diagnostic technique evaluates the withdrawing of the likelihood rate by the function of the likelihood logarithm. In this proposal, in addition to considering the usual technique, we use the withdrawing of the likelihood by Q-displacement of the complete likelihood. The application of the usual technique and of the one proposed here are illustrated through the analyses of both simulated and real data, provenient of agricultural experiments.
A presença de observações discrepantes torna imprópria a análise do processo gaussiano, sendo assim, como é encontrado na literatura, esse processo deve ser substituído por modelos da classe das distribuições simétricas, tal como a distribuição t-student, que incorpora parâmetros adicionais para reduzir a influência dos pontos discrepantes. Neste trabalho, assumiu-se que o processo apresenta distribuição t-student n-variada. Essa distribuição tem como parâmetro adicional o grau de liberdade v, que aqui considerou-se fixo. Dessa forma, desenvolveu-se o algoritmo EM e o algoritmo de NR para a estimação dos parâmetros da estrutura de dependência espacial e do modelo espacial linear. Após a estimação dos parâmetros, utilizou-se duas técnicas de diagnósticos de influência local, ambas com o intuito de avaliar a qualidade do ajuste do modelo pelas suposições feitas e pela robustez dos resultados das estimativas quando há perturbações no modelo ou nos dados. A primeira técnica, denominada "usual", já utilizada por diversos autores, avalia o afastamento da verossimilhança pela função do logaritmo da verossimilhança e a segunda técnica que aqui apresentamos propõe a análise de influência local pelo Q-afastamento da função de verossimilhança para dados completos. Essas técnicas permitiram verificar a influência no afastamento da verossimilhança, na matriz de covariância, no preditor linear e nos valores preditos por meio da análise gráfica. Para ilustrar a aplicação da técnica usual e da nossa proposta, realizou-se a análise de dados simulados e dados reais provenientes de experimentos agrícolas.
Souza, Aline Campos Reis de. "Modelos de regressão linear heteroscedásticos com erros t-Student : uma abordagem bayesiana objetiva." Universidade Federal de São Carlos, 2016. https://repositorio.ufscar.br/handle/ufscar/7540.
Full textApproved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-27T19:59:56Z (GMT) No. of bitstreams: 1 DissACRS.pdf: 1390452 bytes, checksum: a5365fdbf745228c0174f2643b3f7267 (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-27T20:00:01Z (GMT) No. of bitstreams: 1 DissACRS.pdf: 1390452 bytes, checksum: a5365fdbf745228c0174f2643b3f7267 (MD5)
Made available in DSpace on 2016-09-27T20:00:08Z (GMT). No. of bitstreams: 1 DissACRS.pdf: 1390452 bytes, checksum: a5365fdbf745228c0174f2643b3f7267 (MD5) Previous issue date: 2016-02-18
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
In this work , we present an extension of the objective bayesian analysis made in Fonseca et al. (2008), based on Je reys priors for linear regression models with Student t errors, for which we consider the heteroscedasticity assumption. We show that the posterior distribution generated by the proposed Je reys prior, is proper. Through simulation study , we analyzed the frequentist properties of the bayesian estimators obtained. Then we tested the robustness of the model through disturbances in the response variable by comparing its performance with those obtained under another prior distributions proposed in the literature. Finally, a real data set is used to analyze the performance of the proposed model . We detected possible in uential points through the Kullback -Leibler divergence measure, and used the selection model criterias EAIC, EBIC, DIC and LPML in order to compare the models.
Neste trabalho, apresentamos uma extensão da análise bayesiana objetiva feita em Fonseca et al. (2008), baseada nas distribuicões a priori de Je reys para o modelo de regressão linear com erros t-Student, para os quais consideramos a suposicão de heteoscedasticidade. Mostramos que a distribuiçãoo a posteriori dos parâmetros do modelo regressão gerada pela distribuição a priori e própria. Através de um estudo de simulação, avaliamos as propriedades frequentistas dos estimadores bayesianos e comparamos os resultados com outras distribuições a priori encontradas na literatura. Além disso, uma análise de diagnóstico baseada na medida de divergência Kullback-Leiber e desenvolvida com analidade de estudar a robustez das estimativas na presença de observações atípicas. Finalmente, um conjunto de dados reais e utilizado para o ajuste do modelo proposto.
Matos, Larissa Avila 1987. "Modelos lineares e não lineares de efeitos mistos para respostas censuradas usando as distribuições normal e t-Student multivariadas." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306684.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-20T06:44:43Z (GMT). No. of bitstreams: 1 Matos_LarissaAvila_M.pdf: 2008810 bytes, checksum: 0aee0c4f4bbf58ba67490d26cdd300ba (MD5) Previous issue date: 2012
Resumo: Modelos mistos são geralmente usados para representar dados longitudinais ou de medidas repetidas. Uma complicação adicional surge quando a resposta é censurada, por exemplo, devido aos limites de quantificação do ensaio utilizado. Distribuições normais para os efeitos aleatórios e os erros residuais são geralmente assumidas, mas tais pressupostos fazem as inferências vulneráveis, 'a presença de outliers. Motivados por uma preocupação da sensibilidade para potenciais outliers ou dados com caudas mais pesadas do que a normal, pretendemos desenvolver nessa dissertação, inferência para modelos lineares e não lineares de efeito misto censurados (NLMEC / LMEC) com base na distribui ção t- Student multivariada, sendo uma alternativa flexível ao uso da distribuição normal correspondente. Propomos um algoritmo ECM para computar as estimativas de máxima verossimilhança para os NLMEC / LMEC. Este algoritmo utiliza expressões fechadas no passo-E, que se baseia em fórmulas para a média e a variância de uma distribui ção t-multivariada truncada. O algoritmo proposto é implementado, pacote tlmec do R. Também propomos aqui um algoritmo ECM exato para os modelos lineares e não lineares de efeito misto censurados, com base na distribuição normal multivariada, que nos permite desenvolver análise de influência local para modelos de efeito misto com base na esperança condicional da função log-verossilhança dos dados completos. Os procedimentos desenvolvidos são ilustrados com a análise longitudinal da carga viral do HIV, apresentada em dois estudos recentes sobre a AIDS
Abstract: Mixed models are commonly used to represent longitudinal or repeated measures data. An additional complication arises when the response is censored, for example, due to limits of quantification of the assay used. Normal distributions for random effects and residual errors are usually assumed, but such assumptions make inferences vulnerable to the presence of outliers. Motivated by a concern of sensitivity to potential outliers or data with tails longer-than-normal, we aim to develop in this dissertation inference for linear and nonlinear mixed effects models with censored response (NLMEC/LMEC) based on the multivariate Student-t distribution, being a flexible alternative to the use of the corresponding normal distribution. We propose an ECM algorithm for computing the maximum likelihood estimates for NLMEC/LMEC. This algorithm uses closed-form expressions at the E-step, which relies on formulas for the mean and variance of a truncated multivariate-t distribution. The proposed algorithm is implemented in the R package tlmec. We also propose here an exact ECM algorithm for linear and nonlinear mixed effects models with censored response based on the multivariate normal distribution, which enable us to developed local influence analysis for mixed effects models on the basis of the conditional expectation of the complete-data log-likelihood function. The developed procedures are illustrated with two case studies, involving the analysis of longitudinal HIV viral load in two recent AIDS studies
Mestrado
Estatistica
Mestre em Estatística
Mazviona, Batsirai Winmore. "Volatility forecasting using Double-Markov switching GARCH models under skewed Student-t distribution." Master's thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/12344.
Full textThis thesis focuses on forecasting the volatility of daily returns using a double Markov switching GARCH model with a skewed Student-t error distribution. The model was applied to individual shares obtained from the Johannesburg Stock Exchange (JSE). The Bayesian approach which uses Markov Chain Monte Carlo was used to estimate the unknown parameters in the model. The double Markov switching GARCH model was compared to a GARCH(1,1) model. Value at risk thresholds and violations ratios were computed leading to the ranking of the GARCH and double Markov switching GARCH models. The results showed that double Markov switching GARCH model performs similarly to the GARCH model based on the ranking technique employed in this thesis.
Books on the topic "Modelo t de Student"
Bilodeau, M. Stein estimation under elliptical distribution, power of F-tests under student-T distribution and tests of correlation in USR models. [Toronto]: [s.n.], 1986.
Find full textTrejos, Alfredo. Modelo T: Antología personal, 1999-2009. Guatemala: Catafixia, 2010.
Find full textRausch, Monica. Henry Ford y el automóvil Modelo T. Milwaukee, WI: Weekly Reader Early Learning Library, 2007.
Find full textAhsanullah, Mohammad, B. M. Golam Kibria, and Mohammad Shakil. Normal and Student´s t Distributions and Their Applications. Paris: Atlantis Press, 2014. http://dx.doi.org/10.2991/978-94-6239-061-4.
Full textCeuster, Marc de. Diagnostic checking of estimation with a Student-t error density. Antwerpen: Universiteit Antwerpen, 1992.
Find full textLu, Qiaoping. Medienkompetenz von Studierenden an chinesischen Hochschulen. Wiesbaden: VS, Verl. fu r Sozialwiss., 2008.
Find full textBilodeau, Martin R. Stein estimation under elliptical distribution, power of F-tests under student-T distribution and tests of correlation in Sur models. 1986.
Find full textBallman, Terry L., Bill VanPatten, and James F. Lee. Student Audiocassette Program t/a Vistazos. McGraw-Hill Humanities/Social Sciences/Languages, 2001.
Find full textBook chapters on the topic "Modelo t de Student"
Kobayashi, Taisuke. "Variational Deep Embedding with Regularized Student-t Mixture Model." In Lecture Notes in Computer Science, 443–55. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30508-6_36.
Full textMohammad-Djafari, Ali. "Variational Bayesian Approximation Method for Classification and Clustering with a Mixture of Student-t Model." In Lecture Notes in Computer Science, 723–31. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25040-3_77.
Full textFrost, Irasianty. "Beispiel: Student-t-Test." In essentials, 13–15. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-16258-0_4.
Full textAhsanullah, Mohammad, B. M. Golam Kibria, and Mohammad Shakil. "Student’s $$t$$ t Distribution." In Normal and Student´s t Distributions and Their Applications, 51–62. Paris: Atlantis Press, 2014. http://dx.doi.org/10.2991/978-94-6239-061-4_3.
Full textTowndrow, Phillip Alexander, and Galyna Kogut. "Student T. Rushing, Busy, Crowded." In Studies in Singapore Education: Research, Innovation & Practice, 111–17. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8727-6_11.
Full textGrigelionis, Bronius. "Student-Lévy Processes." In Student’s t-Distribution and Related Stochastic Processes, 41–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31146-8_4.
Full textGrigelionis, Bronius. "Student Diffusion Processes." In Student’s t-Distribution and Related Stochastic Processes, 57–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31146-8_6.
Full textGrigelionis, Bronius. "Student OU-Type Processes." In Student’s t-Distribution and Related Stochastic Processes, 51–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31146-8_5.
Full textLi, Xiaoyan, and Jinwen Ma. "Non-central Student-t Mixture of Student-t Processes for Robust Regression and Prediction." In Intelligent Computing Theories and Application, 499–511. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84522-3_41.
Full textAhsanullah, Mohammad, B. M. Golam Kibria, and Mohammad Shakil. "Product of the Normal and Student’s $$t$$ t Densities." In Normal and Student´s t Distributions and Their Applications, 103–11. Paris: Atlantis Press, 2014. http://dx.doi.org/10.2991/978-94-6239-061-4_7.
Full textConference papers on the topic "Modelo t de Student"
Takahashi, Hiroshi, Tomoharu Iwata, Yuki Yamanaka, Masanori Yamada, and Satoshi Yagi. "Student-t Variational Autoencoder for Robust Density Estimation." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/374.
Full textMousazadeh, Saman, and Mahmood Karimi. "Parameter Estimation for Student-t ARCH Model using MDL Criterion." In 2007 IEEE International Conference on Signal Processing and Communications. IEEE, 2007. http://dx.doi.org/10.1109/icspc.2007.4728379.
Full textKukovec, Rok, Špela Pečnik, Iztok Fister Jr., and Sašo Karakatič. "Adversarial Image Perturbation with a Genetic Algorithm." In 7th Student Computer Science Research Conference. University of Maribor Press, 2021. http://dx.doi.org/10.18690/978-961-286-516-0.6.
Full textBoenninghoff, Benedikt, Steffen Zeiler, Robert Nickel, and Dorothea Kolossa. "Variational Autoencoder with Embedded Student-t Mixture Model for Authorship Attribution." In Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg, PA, USA: International Committee on Computational Linguistics, 2020. http://dx.doi.org/10.18653/v1/2020.coling-main.45.
Full textBoenninghoff, Benedikt, Steffen Zeiler, Robert Nickel, and Dorothea Kolossa. "Variational Autoencoder with Embedded Student-t Mixture Model for Authorship Attribution." In Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg, PA, USA: International Committee on Computational Linguistics, 2020. http://dx.doi.org/10.18653/v1/2020.coling-main.45.
Full textCiancarini, Paolo, Caroline Dos, and Sara Zuppiroli. "A double comparative study: Process models and student skills." In 2013 IEEE 26th Conference on Software Engineering Education and Training - (CSEE&T). IEEE, 2013. http://dx.doi.org/10.1109/cseet.2013.6595250.
Full textNugroho, Didit Budi, and Bambang Susanto. "Volatility modeling for IDR exchange rate through APARCH model with student-t distribution." In THE 4TH INTERNATIONAL CONFERENCE ON RESEARCH, IMPLEMENTATION, AND EDUCATION OF MATHEMATICS AND SCIENCE (4TH ICRIEMS): Research and Education for Developing Scientific Attitude in Sciences And Mathematics. Author(s), 2017. http://dx.doi.org/10.1063/1.4995120.
Full textAzevedo, Caio L. N., and Helio S. Migon. "Bayesian inference in an item response theory model with a generalized student t link function." In XI BRAZILIAN MEETING ON BAYESIAN STATISTICS: EBEB 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4759588.
Full textBerinšterová, Marianna, Miroslava Bozogáňová, Monika Magdová, Jana Kapová, and Katarína Fuchsová. "PROCRASTINATION AND SELF-CONCEPT IN MORE/LESS CONSCIENTIOUS STUDENTS." In International Psychological Applications Conference and Trends. inScience Press, 2021. http://dx.doi.org/10.36315/2021inpact034.
Full textXiao, Angran, Gaffar Gailani, and Shaojin Zhang. "Assessing the Educational Effectiveness of a System Engineering Software in Capstone Design Projects." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87640.
Full text