Academic literature on the topic 'Models arima'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Models arima.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Models arima"
ALKALI, MUSA ABUBAKAR. "ASSESSING THE FORECASTING PERFORMANCE OF ARIMA AND ARIMAX MODELS OF RESIDENTIAL PRICES IN ABUJA NIGERIA." Asia Proceedings of Social Sciences 4, no. 1 (April 17, 2019): 4–6. http://dx.doi.org/10.31580/apss.v4i1.528.
Full textMarriott, John, and Paul Newbold. "Bayesian Comparison of ARIMA and Stationary ARMA Models." International Statistical Review / Revue Internationale de Statistique 66, no. 3 (December 1998): 323. http://dx.doi.org/10.2307/1403520.
Full textMarriott, John, and Paul Newbold. "Bayesian Comparison of ARIMA and Stationary ARMA Models." International Statistical Review 66, no. 3 (December 1998): 323–36. http://dx.doi.org/10.1111/j.1751-5823.1998.tb00376.x.
Full textAdekanmbi et al.,, Adekanmbi et al ,. "ARIMA and ARIMAX Stochastic Models for Fertility in Nigeria." International Journal of Mathematics and Computer Applications Research 7, no. 5 (2017): 1–20. http://dx.doi.org/10.24247/ijmcaroct20171.
Full textWang, S., L. L. Liu, L. K. Huang, Y. Z. Yang, and H. Peng. "PERFORMANCE EVALUATION OF IONOSPHERIC TEC FORECASTING MODELS USING GPS OBSERVATIONS AT DIFFERENT LATITUDES." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3/W10 (February 8, 2020): 1175–82. http://dx.doi.org/10.5194/isprs-archives-xlii-3-w10-1175-2020.
Full textDekleva, J., and N. Rožić. "Forecasting: Arima or Kalman Models." IFAC Proceedings Volumes 18, no. 5 (July 1985): 649–56. http://dx.doi.org/10.1016/s1474-6670(17)60634-7.
Full textWu, Chien Ho. "ARIMA Models are Clicks Away." Applied Mechanics and Materials 411-414 (September 2013): 1129–33. http://dx.doi.org/10.4028/www.scientific.net/amm.411-414.1129.
Full textSnyder, Ralph D., J. Keith Ord, and Anne B. Koehler. "Prediction Intervals for ARIMA Models." Journal of Business & Economic Statistics 19, no. 2 (April 2001): 217–25. http://dx.doi.org/10.1198/073500101316970430.
Full textKumar, Manish, and M. Thenmozhi. "Forecasting stock index returns using ARIMA-SVM, ARIMA-ANN, and ARIMA-random forest hybrid models." International Journal of Banking, Accounting and Finance 5, no. 3 (2014): 284. http://dx.doi.org/10.1504/ijbaaf.2014.064307.
Full textPektaş, Ali Osman, and H. Kerem Cigizoglu. "ANN hybrid model versus ARIMA and ARIMAX models of runoff coefficient." Journal of Hydrology 500 (September 2013): 21–36. http://dx.doi.org/10.1016/j.jhydrol.2013.07.020.
Full textDissertations / Theses on the topic "Models arima"
Örneholm, Filip. "Anomaly Detection in Seasonal ARIMA Models." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-388503.
Full textIsbister, Tim. "Anomaly detection on social media using ARIMA models." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-269189.
Full textUppling, Hugo, and Adam Eriksson. "Single and multiple step forecasting of solar power production: applying and evaluating potential models." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-384340.
Full textHolens, Gordon Anthony. "Forecasting and selling futures using ARIMA models and a neural network." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq23343.pdf.
Full textMiquelluti, Daniel Lima. "Métodos alternativos de previsão de safras agrícolas." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-06042015-153838/.
Full textThe agriculture is, historically, one of Brazil\'s economic pillars, and despite having it\'s importance diminished with the development of the industry and services it still is responsible for giving dynamism to the country inland\'s economy, ensuring food security, controlling inflation and assisting in the formation of monetary reserves. In this context the agricultural crops exercise great influence in the behaviour of the sector and agricultural market balance. Diverse crop forecast methods were developed, most of them being growth simulation models, however, recently the statistical models are being used due to its capability of forecasting early when compared to the other models. In the present thesis two of these methologies were evaluated, ARIMA and Dynamic Linear Models, utilizing both classical and bayesian inference. The forecast accuracy, difficulties in the implementation and computational power were some of the caracteristics utilized to assess model efficiency. The methodologies were applied to Soy production data of Mamborê-PR, in the 1980-2013 period, also noting that planted area (ha) and cumulative precipitation (mm) were auxiliary variables in the dynamic regression. The ARIMA(2,1,0) reparametrized in the DLM form and adjusted through maximum likelihood generated the best forecasts, folowed by the ARIMA(2,1,0) without reparametrization.
SILVA, Areli Mesquita da. "Estudo de modelos ARIMA com variáveis angulares para utilização na perfuração de poços petrolíferos." Universidade Federal de Campina Grande, 2007. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1184.
Full textMade available in DSpace on 2018-07-16T19:54:29Z (GMT). No. of bitstreams: 1 ARELI MESQUITA DA SILVA - DISSERTAÇÃO PPGMAT 2007..pdf: 701919 bytes, checksum: 78ea7b65513f1fe6d83acdb4f3030b43 (MD5) Previous issue date: 2007-07
Séries temporais envolvendo dados angulares aparecem nas mais diversas áreas do conhecimento. Por exemplo, na perfuração de um poço petrolífero direcional, o deslocamento da broca de perfuração, ao longo da trajetória do poço, pode ser considerado uma realização de uma série temporal de dados angulares. Um dos interesses, neste contexto, consiste em realizar previsões de posicionamentos futuros da broca de perfuração, as quais darão mais apoio ao engenheiro de petróleo na tomada de decisão de quando e como interferir na trajetória de um poço, de modo que este siga o curso planejado. Neste trabalho, estudamos algumas classes de modelos que podem ser utilizados para a modelagem desse tipo de série.
Time series involving angular data appear in many diverse areas of scientific knowledge. For example, in the drilling of a directional oil well, the displacement of the drill, along the path of the well, can be considered as an angular data time series. One of the objectives, in this context, consists in carrying out forecasts of the future positions of the drill, which will give more support to the petroleum engineer in the decision-making of when and how interfere in the path of a well, so that this follows the planned course. In this work, we study some classes of models that can be utilized for the modeling of that kind of series.
Campos, Celso Vilela Chaves. "Previsão da arrecadação de receitas federais: aplicações de modelos de séries temporais para o estado de São Paulo." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/96/96131/tde-12052009-150243/.
Full textThe main objective of this work is to offer alternative methods for federal tax revenue forecasting, based on methodologies of time series, inclusively with the use of explanatory variables, which reflect the influence of the macroeconomic scenario in the tax collection, for the purpose of improving the accuracy of revenues forecasting. Therefore, there were applied the methodologies of univariate dynamic models, multivariate, namely, Transfer Function, Vector Autoregression (VAR), VAR with error correction (VEC), Simultaneous Equations, and Structural Models. The work has a regional scope and it is limited to the analysis of three series of monthly tax collection of the Import Duty, the Income Tax Law over Legal Entities Revenue and the Contribution for the Social Security Financing Cofins, under the jurisdiction of the state of São Paulo in the period from 2000 to 2007. The results of the forecasts from the models above were compared with each other, with the ARIMA moulding and with the indicators method, currently used by the Secretaria da Receita Federal do Brasil (RFB) to annual foresee of the tax collection, through the root mean square error of approximation (RMSE). The average reduction of RMSE was 42% compared to the error committed by the method of indicators and 35% of the ARIMA model, besides the drastic reduction in the annual forecast error. The use of time-series methodologies to forecast the collection of federal revenues has proved to be a viable alternative to the method of indicators, contributing for more accurate predictions, becoming a safe support tool for the managers decision making process.
Santos, Alan Vasconcelos. "AnÃlise de modelos de sÃries temporais para a previsÃo mensal do imposto de renda." Universidade Federal do CearÃ, 2003. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=1463.
Full textO presente trabalho objetiva realizar previsÃes mensais da sÃrie do imposto de renda para o perÃodo de 2002. A metodologia empregada para alcanÃar essa finalidade consiste na utilizaÃÃo da tÃcnica de combinaÃÃo de previsÃes. Especificamente, combinam-se os resultados de previsÃo advindos de trÃs mÃtodos diferentes: tÃcnica do alisamento exponencial, metodologia de Box-Jenkins (modelos ARIMA) e modelos vetoriais de correÃÃo de erro. Obtida a previsÃo final, compara-se este resultado com os valores reais observados da sÃrie do imposto de renda para o ano de 2002 a fim de verificar o desempenho e a acurÃcia do modelo.
The main objective of this work was to generate predictions, at a monthly frequency, from 1990 to 2001, of income tax revenue. The methodology used was the one of forecast combining. Specifically, exponential smoothing, an ARIMA and VAR with error correction models were pooled to obtain final prediction. Ex-post forecast errors were used to test the performance of the model. Results indicated that combining performs better than individual models, and errors are in an acceptable interval for this type of prediction.
Werngren, Simon. "Comparison of different machine learning models for wind turbine power predictions." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-362332.
Full textSans, Fuentes Carles. "Markov Decision Processes and ARIMA models to analyze and predict Ice Hockey player’s performance." Thesis, Linköpings universitet, Statistik och maskininlärning, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-154349.
Full textBooks on the topic "Models arima"
Meyler, Aidan. Forecasting Irish inflation using ARIMA models. Dublin: Central Bank of Ireland, Economic Analysis, Research and Publications Department, 1998.
Find full textFritzer, Friedrich. Forecasting Austrian HICP and its components using VAR and ARIMA models. Wien: Oesterreichische Nationalbank, 2002.
Find full textYŏ, Un-bang. Sŭngpŏp kyejŏl ARIMA mohyŏng ŭi kujo sikpyŏl pangbŏp. Sŏul Tʻŭkpyŏlsi: Hang̕uk Kaebal Yŏng̕uwŏn, 1985.
Find full textReid, Abigail-Kate, and Nick Allum. Learn About Time Series ARIMA Models in Stata With Data From the USDA Feed Grains Database (1876–2015). 1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom: SAGE Publications, Ltd., 2020. http://dx.doi.org/10.4135/9781529710281.
Full textReid, Abigail-Kate, and Nick Allum. Learn About Time Series ARIMA Models in Stata With Data From the NOAA Global Climate at a Glance (1910–2015). 1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom: SAGE Publications, Ltd., 2020. http://dx.doi.org/10.4135/9781529710380.
Full textChoi, ByoungSeon. ARMA Model Identification. New York, NY: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4613-9745-8.
Full textShimizu, Kenichi. Bootstrapping Stationary ARMA-GARCH Models. Wiesbaden: Vieweg+Teubner, 2010. http://dx.doi.org/10.1007/978-3-8348-9778-7.
Full textservice), SpringerLink (Online, ed. Bootstrapping Stationary ARMA-GARCH Models. Wiesbaden: Vieweg+Teubner Verlag / Springer Fachmedien Wiesbaden GmbH, Wiesbaden, 2010.
Find full textBook chapters on the topic "Models arima"
Shumway, Robert H., and David S. Stoffer. "ARIMA Models." In Time Series: A Data Analysis Approach Using R, 99–128. Boca Raton : CRC Press, Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429273285-5.
Full textHarvey, A. C. "Arima Models." In The New Palgrave Dictionary of Economics, 414–16. London: Palgrave Macmillan UK, 2018. http://dx.doi.org/10.1057/978-1-349-95189-5_533.
Full textShumway, Robert H., and David S. Stoffer. "ARIMA Models." In Springer Texts in Statistics, 83–171. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7865-3_3.
Full textHarvey, A. C. "ARIMA Models." In Time Series and Statistics, 22–24. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-20865-4_2.
Full textHarvey, A. C. "Arima Models." In The New Palgrave Dictionary of Economics, 1–3. London: Palgrave Macmillan UK, 1987. http://dx.doi.org/10.1057/978-1-349-95121-5_533-1.
Full textShumway, Robert H., and David S. Stoffer. "ARIMA Models." In Springer Texts in Statistics, 75–163. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52452-8_3.
Full textFranke, Jürgen, Wolfgang Karl Härdle, and Christian Matthias Hafner. "ARIMA Time Series Models." In Universitext, 237–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54539-9_12.
Full textBorak, Szymon, Wolfgang Karl Härdle, and Brenda López Cabrera. "ARIMA Time Series Models." In Statistics of Financial Markets, 135–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11134-1_12.
Full textFranke, Jürgen, Wolfgang Karl Härdle, and Christian Matthias Hafner. "ARIMA Time Series Models." In Statistics of Financial Markets, 255–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16521-4_12.
Full textBorak, Szymon, Wolfgang Karl Härdle, and Brenda López-Cabrera. "ARIMA Time Series Models." In Universitext, 143–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33929-5_12.
Full textConference papers on the topic "Models arima"
Colak, Ilhami, Mehmet Yesilbudak, Naci Genc, and Ramazan Bayindir. "Multi-period Prediction of Solar Radiation Using ARMA and ARIMA Models." In 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA). IEEE, 2015. http://dx.doi.org/10.1109/icmla.2015.33.
Full textLiu, Kai, Xi Zhang, and YangQuan Chen. "An Evaluation of ARFIMA Programs." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67483.
Full textAji, Bimo Satrio, Indwiarti, and Aniq Atiqi Rohmawati. "Forecasting Number of COVID-19 Cases in Indonesia with ARIMA and ARIMAX Models." In 2021 9th International Conference on Information and Communication Technology (ICoICT). IEEE, 2021. http://dx.doi.org/10.1109/icoict52021.2021.9527453.
Full textBehera, Aiswarya Priyadarsini, Mahendra Kumar Gaurisaria, Siddharth Swarup Rautaray, and Manjusha Pandey. "Predicting Future Call Volume Using ARIMA Models." In 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE, 2021. http://dx.doi.org/10.1109/iciccs51141.2021.9432314.
Full textNazarko, J., A. Jurczuk, and W. Zalewski. "ARIMA models in load modelling with clustering approach." In 2005 IEEE Russia Power Tech. IEEE, 2005. http://dx.doi.org/10.1109/ptc.2005.4524719.
Full textPolprasert, Jirawadee, Vu Anh Hanh Nguyen, and Surapon Nathanael Charoensook. "Forecasting Models for Hydropower Production Using ARIMA Method." In 2021 9th International Electrical Engineering Congress (iEECON). IEEE, 2021. http://dx.doi.org/10.1109/ieecon51072.2021.9440293.
Full textWagner, Shannon M., and John B. Ferris. "Reduced Order ARIMA Models of 2-D Terrain Profiles Using Singular Value Decomposition." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43388.
Full textMaraval, Augustín. "Automatic Identification of Regression-ARIMA Models with Program TSW." In 23rd European Conference on Modelling and Simulation. ECMS, 2009. http://dx.doi.org/10.7148/2009-0005-0008.
Full textNichiforov, Cristina, Iulia Stamatescu, Ioana Fagarasan, and Grigore Stamatescu. "Energy consumption forecasting using ARIMA and neural network models." In 2017 5th International Symposium on Electrical and Electronics Engineering (ISEEE). IEEE, 2017. http://dx.doi.org/10.1109/iseee.2017.8170657.
Full textGao, Zihao. "Stock Price Prediction With ARIMA and Deep Learning Models." In 2021 IEEE 6th International Conference on Big Data Analytics (ICBDA). IEEE, 2021. http://dx.doi.org/10.1109/icbda51983.2021.9403037.
Full textReports on the topic "Models arima"
Cook, Steve. Visual identification of ARIMA models. Bristol, UK: The Economics Network, January 2016. http://dx.doi.org/10.53593/n2817a.
Full textMikosch, Thomas, Tamar Gadrich, Claudia Kluppelberg, and Robert J. Adler. Parameter Estimation for ARMA Models with Infinite Variance Innovations. Fort Belvoir, VA: Defense Technical Information Center, December 1993. http://dx.doi.org/10.21236/ada275125.
Full textCarriere, R., and R. L. Moses. High Resolution Radar Target Modeling Using ARMA (Autoregressive Moving Average)Models. Fort Belvoir, VA: Defense Technical Information Center, April 1989. http://dx.doi.org/10.21236/ada218212.
Full textAuthor, Not Given. SIERRA Multimechanics Module: Aria User Manual Version 4.44. Office of Scientific and Technical Information (OSTI), April 2017. http://dx.doi.org/10.2172/1365495.
Full textSierra Thermal/Fluid Team. SIERRA Multimechanics Module: Aria User Manual Version 4.46. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1397140.
Full textNotz, Patrick K., Samuel Ramirez Subia, Matthew M. Hopkins, Harry K. Moffat, David R. Noble, and Tolulope O. Okusanya. SIERRA Multimechanics Module: Aria User Manual – Version 4.40. Office of Scientific and Technical Information (OSTI), May 2016. http://dx.doi.org/10.2172/1262728.
Full textAuthor, Not Given. SIERRA Multimechanics Module: Aria User Manual Version 4.42. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1431033.
Full textSierra Thermal Fluid Development Team and Sierra Thermal Fluid Development Team. SIERRA Multimechanics Module: Aria Verification Manual - Version 4.54. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1570565.
Full textSierra Thermal Fluid Development Team and Sierra Thermal Fluid Development Team. SIERRA Multimechanics Module: Aria User Manual - Version 4.54. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1570564.
Full textLamb, Justin. SIERRA Multimechanics Module: Aria User Manual - Version 4.52. Office of Scientific and Technical Information (OSTI), April 2019. http://dx.doi.org/10.2172/1762073.
Full text