Academic literature on the topic 'Modern wind turbine'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Modern wind turbine.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Modern wind turbine"
Dunlop, John. "Modern Wind Power Plant in Minnesota." Journal of Solar Energy Engineering 123, no. 3 (December 1, 2000): 179. http://dx.doi.org/10.1115/1.1374207.
Full textXin, Hai Sheng, Hai Jun Yue, and Qiao Li Han. "Study on Noise Characteristics of Concentrated Wind Energy Turbine." Advanced Materials Research 512-515 (May 2012): 778–81. http://dx.doi.org/10.4028/www.scientific.net/amr.512-515.778.
Full textOudah, Ali, Izzeldin I. Mohd, and A. Hameed. "Modern Control Techniques in Wind Turbine." International Journal of Hybrid Information Technology 7, no. 4 (July 31, 2014): 101–22. http://dx.doi.org/10.14257/ijhit.2014.7.4.10.
Full textMargaris, Ioannis D., Anca D. Hansen, Poul Sørensen, and Nikolaos D. Hatziargyriou. "Illustration of Modern Wind Turbine Ancillary Services." Energies 3, no. 6 (June 21, 2010): 1290–302. http://dx.doi.org/10.3390/en3061290.
Full textBalat, M. "A Review of Modern Wind Turbine Technology." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 31, no. 17 (October 9, 2009): 1561–72. http://dx.doi.org/10.1080/15567030802094045.
Full textSunder Selwyn, T., and R. Kesavan. "Reliability Analysis of Sub Assemblies for Wind Turbine at High Uncertain Wind." Advanced Materials Research 433-440 (January 2012): 1121–25. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.1121.
Full textPapi, Francesco, Lorenzo Cappugi, Simone Salvadori, Mauro Carnevale, and Alessandro Bianchini. "Uncertainty Quantification of the Effects of Blade Damage on the Actual Energy Production of Modern Wind Turbines." Energies 13, no. 15 (July 23, 2020): 3785. http://dx.doi.org/10.3390/en13153785.
Full textCastellani, Francesco, Luigi Garibaldi, Alessandro Paolo Daga, Davide Astolfi, and Francesco Natili. "Diagnosis of Faulty Wind Turbine Bearings Using Tower Vibration Measurements." Energies 13, no. 6 (March 20, 2020): 1474. http://dx.doi.org/10.3390/en13061474.
Full textKim, Hyungyu, Kwansu Kim, Carlo Bottasso, Filippo Campagnolo, and Insu Paek. "Wind Turbine Wake Characterization for Improvement of the Ainslie Eddy Viscosity Wake Model." Energies 11, no. 10 (October 19, 2018): 2823. http://dx.doi.org/10.3390/en11102823.
Full textDickler, Sebastian, Thorben Wintermeyer-Kallen, János Zierath, Reik Bockhahn, Dirk Machost, Thomas Konrad, and Dirk Abel. "Full-scale field test of a model predictive control system for a 3 MW wind turbine." Forschung im Ingenieurwesen 85, no. 2 (April 9, 2021): 313–23. http://dx.doi.org/10.1007/s10010-021-00467-w.
Full textDissertations / Theses on the topic "Modern wind turbine"
Chromec, Tomáš. "Aerodynamický návrh větrné turbíny pro zvolenou lokalitu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231651.
Full textAlnajjar, Mohammed [Verfasser]. "Control of Electrical Power Generation and Conversion on Aircraft and in Modern Wind Turbine / Mohammed Alnajjar." Aachen : Shaker, 2016. http://d-nb.info/1122545525/34.
Full textCorrêa, Leonardo Candido. "Emulação dos regimes permante e transitório das turbinas de eixo horizontal incluindo o modelo estático da turbina magnus." Universidade Federal de Santa Maria, 2014. http://repositorio.ufsm.br/handle/1/8552.
Full textThe lodgment of wind sites is in a visible growing demand not only in Brazil, but all over the world. The wind energy, even though consolidated, still hosts many scientific researches and industrial development in several areas such as control, power converter topologies and stability of grid connected wind turbines (WT). Due to the remarkable development of this technology in the market and the wind seasonality characteristics, it is difficult to study this power source in its operation field. Thus, a controlled environment for testing is desirable. This dissertation presents a topology of horizontal axis wind turbines (HAWT) emulator using a DC motor to provide an electrical generator the same torque that it would if it was driven by a typical WT. In addition to the static model, represented by the pitch angle and power coefficient, a dynamic model of HAWT is proposed in order to improve the representation of real turbines in the field, which allows characterizing the effect of wind shear, towering shadowing and turbine yaw. Furthermore, it permits emulating large inertia machines through smaller engines, by changing the torque imposed on the generator. The appealing motivation in this thesis is that the Magnus turbine emulation includes a relative new type of wind machine that possesses rotating cylinders instead of the traditional propeller blades in traditional HAWT. It is shown how these cylinders increase the available torque, then producing useful power even at lower wind speeds. Simulated and experimental results to evaluate the performance of the wind turbine emulator are presented. Both turbines are analyzed with and without MPPT. Finally the conclusions of this work are presented as well as new proposals for future works.
A instalação de parques eólicos tem se expandido não só no mundo, mas também no Brasil. A energia eólica, apesar de ser já bastante consolidada, ainda é palco para muitos trabalhos científicos e pesquisas na indústria nas áreas de controle, topologias de conversores de potência e estabilidade na conexão de aerogeradores com a rede. Devido a este fato junto com a sazonalidade do vento, torna-se difícil estudar esse tipo de fonte em seu âmbito de operação, sendo assim desejável um ambiente controlado para testes. Esta dissertação apresenta uma topologia para emulação de turbinas de eixo horizontal (HAWT) utilizando um motor de corrente contínua para acionar geradores com o mesmo torque que haveria caso estivessem acoplados a uma turbina real. Para melhor verossimilhança com as turbinas em campo, além do modelo estático composto pelo ângulo de passo das pás e o coeficiente de potência, propõe-se um modelo dinâmico para representar o efeito cortante do vento, o sombreamento da torre e o direcionamento da turbina em relação ao vento. Além do mais, o modelo proposto permite também a emulação de máquinas de grande inércia usando motores de menor porte, pela simples alteração do torque imposto ao gerador. O diferencial nesta dissertação consiste na possibilidade de emulação da turbina Magnus, que é um aerogerador que possui cilindros girantes no lugar das tradicionais pás presentes nas HAWT, que aumentam o torque disponível. Com isto, pode-se mostrar como a turbina Magnus pode gerar maior potência em baixas velocidades vento. São apresentados então os resultados simulados e experimentais avaliando o comportamento completo do emulador de turbinas eólicas. Ambas as turbinas são analisadas com e sem MPPT. Finalmente, são mostradas as conclusões do trabalho e as propostas para futuros trabalhos.
Fernando, Mahamarakkalage Saman Udaya Kumar. "On the performance and wake aerodynamics of the Savonius wind turbine." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/27299.
Full textApplied Science, Faculty of
Mechanical Engineering, Department of
Graduate
Bi, Ran. "Interpretation to wind turbine generator faults and an improved condition monitoring technique based on normal behaviour models for wind turbine generator systems." Thesis, Glasgow Caledonian University, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.700993.
Full textRenström, Joakim. "Modelling of ice throws from wind turbines." Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-251292.
Full textNär vindkraftssektorn expanderar till områden med ett kallare klimat, kommer problemet med nedisade vindkraftverk och iskast att öka. Moderna vindkraftverk kan ha en typisk effekt på 3.3 MW och en rotordiameter på över 120 meter, vilket resulterar i att de ivägkastade isbitarna skulle kunna få en initialhastighet på 90 m/s. Det skulle även resultera i att isbitarna kastas iväg en lång sträcka från kraftverket, vilket i kombination med den höga initialhastigheten skulle kunna bli en stor säkerhetsrisk för de personer som vistas i områdena närmast runt vindkraftverken. En ballisisk iskastmodel utvecklades för att beräkna hur långt från vinkraftverket isbitarna kan kastas. Arbetet delades upp i två delar, en känslighetsanalys och en verklig fallstudie. I känslighetsanalysen undersöktes åtta viktiga parametrars inflytande på iskastet. Resultatet från den visar på att ändringar i parametrarna isbitens massa och form samt seperations positionen på bladet och bladets vinkel hade störst inverkan på kastlängden. En maximal kastlängd nedströms vindkraftverket på 239 meter erhölls för U=20m/s, θ=45° och r=55m. När lyftkraften inkluderades ökade kastlängden nedströms till 350 meter, dock är osäkerheten i isbitarnas form stor, vilket gör dessa resultat osäkra. I den verkliga fallstudien simulerades iskast genom att iskastmodellen kördes med modellerad meteorologisk data från en vindkraftspark i norra Svergie. Vinkraftsparken innehöll 60 turbiner och sannolikheten för att en isbit ska landa i en ruta på 1*1m beräknades runt varje turbin. För att kunna beräkna sannolikheten användes en Monte Carlo analys där ett stort antal isbitar skickades iväg. Resultatet visade på att korrelationen var stor mellan sannolikheten för att en isbit ska landa i en ruta på 1 m² och vindriktningen. Eftersom vindkraftsparken var belägen i ett område med en komplex terräng varierade formen och intensiteten på sannolikhetsområdena mellan olika delar av parken. Speciellt i parkens södra del är sannolikhetsområdet för vindkraftsverken mer utbrett i nordostlig riktning på grund av att sydvästliga vindar är vanligast då iskast förekommer.
Kazlova, Ala, and Bettina Ullmann. "When Wind Goes Vertical: : Can a start-up company make use of its born global potential to revolutionize the wind turbine industry?" Thesis, Linnéuniversitetet, Ekonomihögskolan, ELNU, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-6605.
Full textWerngren, Simon. "Comparison of different machine learning models for wind turbine power predictions." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-362332.
Full textBolin, Karl. "Wind Turbine Noise and Natural Sounds : Masking, Propagation and Modeling." Doctoral thesis, KTH, MWL Marcus Wallenberg Laboratoriet, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10434.
Full textQC 20100705
Carpenter, Laura E. "The Design and Experimental Investigation of Novel Double-blade Wind Turbine Models Inspired by Houck's Concept." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1482494647404864.
Full textBooks on the topic "Modern wind turbine"
Klein, William E. Model 0A wind turbine generator FMEA. [Washington, D.C: National Aeronautics and Space Administration, 1989.
Find full textMuyeen, S. M. Stability augmentation of a grid-connected wind farm. London: Springer, 2009.
Find full textMuyeen, S. M. Stability augmentation of a grid-connected wind farm. London: Springer, 2009.
Find full textDoubly fed induction machine: Modeling and control for wind energy generation applications. Hoboken, NJ: IEEE Press, 2011.
Find full textR, Lalli Vincent, United States. National Aeronautics and Space Administration., and United States. Dept. of Energy. Wind/Ocean Technologies Division., eds. Model 0A wind turbine generator FMEA. [Washington, D.C: National Aeronautics and Space Administration, 1989.
Find full textChen, Zhe, and Frede Blaabjerg. Power Electronics for Modern Wind Turbines (Synthesis Lectures on Power Electronics). Morgan & Claypool Publishers, 2006.
Find full textLubosny, Zbigniew. Wind Turbine Operation in Electric Power Systems: Advanced Modeling. Springer Berlin Heidelberg, 2010.
Find full textWind Turbine Operation in Electric Power Systems: Advanced Modeling (Power Systems). Springer, 2003.
Find full textHartin, John R. Evaluation of horizontal axis wind turbine blade loads using unsteady aerodynamics. 1989.
Find full textSharif-Razi, Ali-Reza. Discrete-time blade pitch control for wind turbine torque regulation with digitally simulated random turbulence excitation. 1986.
Find full textBook chapters on the topic "Modern wind turbine"
Zhao, Haoran, and Qiuwei Wu. "Clustering-based Wind Turbine Generator Model Linearization." In Modeling and Modern Control of Wind Power, 117–32. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119236382.ch6.
Full textChi, Yongning, Chao Liu, Xinshou Tian, Lei Shi, and Haiyan Tang. "Modeling of Full-scale Converter Wind Turbine Generator." In Modeling and Modern Control of Wind Power, 85–115. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119236382.ch5.
Full textKanaby, Gary. "Manufacturing Challenges for the Modern Wind Turbine Rotor." In Experimental Mechanics on Emerging Energy Systems and Materials, Volume 5, 129–47. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9798-2_17.
Full textPoljak, D., and D. Čavka. "Electromagnetic Compatibility Aspects of Wind Turbine Analysis and Design." In Properties and Characterization of Modern Materials, 345–69. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1602-8_29.
Full textBaloh, Robert W., and Robert E. Bartholomew. "Modern-Day Acoustical Scares: From ‘The Hum’ to ‘Wind Turbine Syndrome’." In Havana Syndrome, 107–27. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40746-9_7.
Full textSlew, K. Lee, M. Miller, A. Fereidooni, P. Tawagi, G. El-Hage, M. Hou, and E. Matida. "A Dual-Rotor Horizontal Axis Wind Turbine In-House Code (DR_HAWT)." In Mathematical and Computational Approaches in Advancing Modern Science and Engineering, 493–503. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30379-6_45.
Full textKinne, Marko, Ronald Schneider, and Sebastian Thöns. "Reconstructing Stress Resultants in Wind Turbine Towers Based on Strain Measurements." In Lecture Notes in Mechanical Engineering, 224–35. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77256-7_18.
Full textNgouani, M. M. Siewe, Yong Kang Chen, R. Day, and O. David-West. "Low-Speed Aerodynamic Analysis Using Four Different Turbulent Models of Solver of a Wind Turbine Shroud." In Springer Proceedings in Energy, 149–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_19.
Full textAkhmatov, Vladislav. "Full-Scale Verification of Dynamic Wind Turbine Models." In Wind Power in Power Systems, 603–27. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470012684.ch27.
Full textAkhmatov, Vladislav. "Full-Scale Verification of Dynamic Wind Turbine Models." In Wind Power in Power Systems, 865–89. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781119941842.ch38.
Full textConference papers on the topic "Modern wind turbine"
Wright, Alan D., and Mark J. Balas. "Design of Modern Controls for the Controlled Advanced Research Turbine (CART)." In ASME 2003 Wind Energy Symposium. ASMEDC, 2003. http://dx.doi.org/10.1115/wind2003-1041.
Full textZahle, Frederik, and Niels Sørensen. "Overset Grid Flow Simulation on a Modern Wind Turbine." In 26th AIAA Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-6727.
Full textChen, Jincheng, Feng Wang, and Kim A. Stelson. "A Novel Digitalized Hydrostatic Drive Solution for Modern Wind Turbine." In ASME/BATH 2017 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fpmc2017-4352.
Full textAndrzej, Jaderko, and Baran Janusz. "Laboratory setup with squirrel-cage motors for wind turbine emulation." In 2018 Applications of Electromagnetics in Modern Techniques and Medicine (PTZE). IEEE, 2018. http://dx.doi.org/10.1109/ptze.2018.8503145.
Full textGolnary, Farshad, and Hamed Moradi. "Nonlinear pitch control of a large scale wind turbine by considering aerodynamic behavior of wind." In 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST). IEEE, 2020. http://dx.doi.org/10.1109/mocast49295.2020.9200303.
Full textReese, Lymon C., and Shin-Tower Wang. "Design of Foundations for a Wind Turbine Employing Modern Principles." In Symposium Honoring Dr. John H. Schmertmann for His Contributions to Civil Engineering at Research to Practice in Geotechnical Engineering Congress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40962(325)10.
Full textBeniuga, Razvan, Oana Beniuga, and Dragos Machidon. "Assessment of DFIG wind turbine overvoltage protection system for grid stability." In 2019 8th International Conference on Modern Power Systems (MPS). IEEE, 2019. http://dx.doi.org/10.1109/mps.2019.8759781.
Full textKrzysztof, Wrobel, Tomczewski Krzysztof, Sliwinski Artur, and Tomczewski Andrzej. "The Impact of a Wind Turbine Characteristics on the Annual Energy Performance at Given Wind Speed Distribution." In 2018 Applications of Electromagnetics in Modern Techniques and Medicine (PTZE). IEEE, 2018. http://dx.doi.org/10.1109/ptze.2018.8503230.
Full textLees, Paul, Leigh Zalusky, Ian Couchman, and Brian Joergensen. "Analysis of modern wind turbine dynamics with active aerodynamic Blown Wing Technology control system." In 2018 Applied Aerodynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-3825.
Full textSayenko, Yuriy, and Andrii Molchan. "Analysis of Wind Turbine Impacts on Power Quality Taking into Account the Variable Nature of Wind Flow." In 2019 IEEE International Conference on Modern Electrical and Energy Systems (MEES). IEEE, 2019. http://dx.doi.org/10.1109/mees.2019.8896487.
Full textReports on the topic "Modern wind turbine"
Wright, A. D. Modern Control Design for Flexible Wind Turbines. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/15011696.
Full textVan Buren, Kendra L., Mark G. Mollineaux, Francois M. Hemez, and Darby J. Luscher. Developing Simplified Models of Wind Turbine Blades. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1053548.
Full textSingh, Mohit, and Surya Santoso. Dynamic Models for Wind Turbines and Wind Power Plants. Office of Scientific and Technical Information (OSTI), October 2011. http://dx.doi.org/10.2172/1028524.
Full textFingersh, L., M. Hand, and A. Laxson. Wind Turbine Design Cost and Scaling Model. Office of Scientific and Technical Information (OSTI), December 2006. http://dx.doi.org/10.2172/897434.
Full textBortolotti, Pietro, Derek S. Berry, Robynne Murray, Evan Gaertner, Dale S. Jenne, Rick R. Damiani, Garrett E. Barter, and Katherine L. Dykes. A Detailed Wind Turbine Blade Cost Model. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1529217.
Full textTangler, J., and G. Bir. Evaluation of RCAS Inflow Models for Wind Turbine Analysis. Office of Scientific and Technical Information (OSTI), February 2004. http://dx.doi.org/10.2172/15006904.
Full textPowell, D. C., and J. R. Connell. Model for simulating rotational data for wind turbine applications. Office of Scientific and Technical Information (OSTI), April 1986. http://dx.doi.org/10.2172/5509076.
Full textResor, Brian. Definition of a 5MW/61.5m wind turbine blade reference model. Office of Scientific and Technical Information (OSTI), April 2013. http://dx.doi.org/10.2172/1095962.
Full textRobert Zavadil, Vadim Zheglov, Yuriy Kazachkov, Bo Gong, Juan Sanchez, and Jun Li. Documentation, User Support, and Verification of Wind Turbine and Plant Models. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1051403.
Full textDeLucia, Dominic. A Parametric Study on Power Variation for Model Wind Turbine Arrays. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.1120.
Full text