To see the other types of publications on this topic, follow the link: Modern wind turbine.

Dissertations / Theses on the topic 'Modern wind turbine'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Modern wind turbine.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Chromec, Tomáš. "Aerodynamický návrh větrné turbíny pro zvolenou lokalitu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231651.

Full text
Abstract:
This master‘s thesis focuses on wind turbines. The first part describes the basic attributes of wind energy and wind turbines and is accompanied by a many images. The next section is a statistical processing of measured meteorological data from measuring stations of the Czech Hydrometeorological Institute. These data are then used for calculations of the blades of wind turbines. The calculations are carried by two different methods. The first method is called the blade element momentum theory, the second method is the theory of blade cascade. Using these methods are obtained by two different blades. The last section compares the two blades in terms of geometric and performance.
APA, Harvard, Vancouver, ISO, and other styles
2

Alnajjar, Mohammed [Verfasser]. "Control of Electrical Power Generation and Conversion on Aircraft and in Modern Wind Turbine / Mohammed Alnajjar." Aachen : Shaker, 2016. http://d-nb.info/1122545525/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Corrêa, Leonardo Candido. "Emulação dos regimes permante e transitório das turbinas de eixo horizontal incluindo o modelo estático da turbina magnus." Universidade Federal de Santa Maria, 2014. http://repositorio.ufsm.br/handle/1/8552.

Full text
Abstract:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
The lodgment of wind sites is in a visible growing demand not only in Brazil, but all over the world. The wind energy, even though consolidated, still hosts many scientific researches and industrial development in several areas such as control, power converter topologies and stability of grid connected wind turbines (WT). Due to the remarkable development of this technology in the market and the wind seasonality characteristics, it is difficult to study this power source in its operation field. Thus, a controlled environment for testing is desirable. This dissertation presents a topology of horizontal axis wind turbines (HAWT) emulator using a DC motor to provide an electrical generator the same torque that it would if it was driven by a typical WT. In addition to the static model, represented by the pitch angle and power coefficient, a dynamic model of HAWT is proposed in order to improve the representation of real turbines in the field, which allows characterizing the effect of wind shear, towering shadowing and turbine yaw. Furthermore, it permits emulating large inertia machines through smaller engines, by changing the torque imposed on the generator. The appealing motivation in this thesis is that the Magnus turbine emulation includes a relative new type of wind machine that possesses rotating cylinders instead of the traditional propeller blades in traditional HAWT. It is shown how these cylinders increase the available torque, then producing useful power even at lower wind speeds. Simulated and experimental results to evaluate the performance of the wind turbine emulator are presented. Both turbines are analyzed with and without MPPT. Finally the conclusions of this work are presented as well as new proposals for future works.
A instalação de parques eólicos tem se expandido não só no mundo, mas também no Brasil. A energia eólica, apesar de ser já bastante consolidada, ainda é palco para muitos trabalhos científicos e pesquisas na indústria nas áreas de controle, topologias de conversores de potência e estabilidade na conexão de aerogeradores com a rede. Devido a este fato junto com a sazonalidade do vento, torna-se difícil estudar esse tipo de fonte em seu âmbito de operação, sendo assim desejável um ambiente controlado para testes. Esta dissertação apresenta uma topologia para emulação de turbinas de eixo horizontal (HAWT) utilizando um motor de corrente contínua para acionar geradores com o mesmo torque que haveria caso estivessem acoplados a uma turbina real. Para melhor verossimilhança com as turbinas em campo, além do modelo estático composto pelo ângulo de passo das pás e o coeficiente de potência, propõe-se um modelo dinâmico para representar o efeito cortante do vento, o sombreamento da torre e o direcionamento da turbina em relação ao vento. Além do mais, o modelo proposto permite também a emulação de máquinas de grande inércia usando motores de menor porte, pela simples alteração do torque imposto ao gerador. O diferencial nesta dissertação consiste na possibilidade de emulação da turbina Magnus, que é um aerogerador que possui cilindros girantes no lugar das tradicionais pás presentes nas HAWT, que aumentam o torque disponível. Com isto, pode-se mostrar como a turbina Magnus pode gerar maior potência em baixas velocidades vento. São apresentados então os resultados simulados e experimentais avaliando o comportamento completo do emulador de turbinas eólicas. Ambas as turbinas são analisadas com e sem MPPT. Finalmente, são mostradas as conclusões do trabalho e as propostas para futuros trabalhos.
APA, Harvard, Vancouver, ISO, and other styles
4

Fernando, Mahamarakkalage Saman Udaya Kumar. "On the performance and wake aerodynamics of the Savonius wind turbine." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/27299.

Full text
Abstract:
The objective of the thesis is to establish methodology for development of a wind turbine, simple in design and easy to maintain, for possible application in developing countries. To that end the Savonius configuration is analyzed in detail both experimentally and analytically to lay a sound foundation for its performance evaluation. Following a brief review of relevant significant contributions in the field (Chapter I), an extensive wind tunnel test-program using scale models is described which assesses the relative influence of system parameters such as blade geometry, gap-size, overlap, aspect ratio, Reynolds number, blockage, etc., on the rotor output. The parametric study leads to an optimum configuration with an increase in efficiency by around 100% compared to the reported efficiency of ≈ 12 — 15%. Of particular interest is the blockage correction procedure which is vital for application of the wind tunnel results to a prototype design, and facilitates comparison of data obtained by investigators using different models and test facilities. With the design and performance results in hand, Chapters III — VI focus attention on analytical approaches to complement the test procedure. Using the concept of a central vortex, substantiated by a flow visualization study, Chapter III develops a semi-empirical approach to predict the rotor performance using measured stationary blade pressure data. The objective here is to provide a simple yet reliable design tool which can replace dynamical testing with a significant saving in time, effort, and cost. The simple approach promises to be quite effective in predicting the rotor performance, even in the presence of blockage, and should prove useful at least in the preliminary design stages. Chapter IV describes in detail a relatively more sophisticated and rigorous Boundary Element Approach using the Discrete Vortex Model. The method attempts to represent the complex unsteady flow field with separating shear layers in a realistic fashion consistent with the available computational tools. Important steps in the numerical analysis of this challenging problem are discussed at some length in Chapter V and a performance evaluation algorithm established. Of considerable importance is the effect of computational parameters such as number of elements representing the rotor blade, time-step size, location of the nascent vortices, etc., on the accuracy of results and the associated cost. Results obtained using the Discrete Vortex Model are presented and discussed in Chapter VI, for both stationary as well as rotating Savonius configurations. A detailed parametric study provides fundamental information concerning the starting and dynamic torque time histories, power coefficient, evolution of the wake, Strouhal number, etc. A comparison with the flow visualization and wind tunnel test data (Chapter II) shows remarkable correlation suggesting considerable promise for the approach. The thesis ends with concluding remarks and a few suggestions concerning possible future research in the area.
Applied Science, Faculty of
Mechanical Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
5

Bi, Ran. "Interpretation to wind turbine generator faults and an improved condition monitoring technique based on normal behaviour models for wind turbine generator systems." Thesis, Glasgow Caledonian University, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.700993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Renström, Joakim. "Modelling of ice throws from wind turbines." Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-251292.

Full text
Abstract:
As the wind energy sector expands into areas with colder climate, the problem with ice throw will increase. Due to a rotor diameter of more than 120 meters for a typical modern turbine with an effect of 3.3 MW, the separated ice fragment will get a high initial velocity, and therefore, they will also be thrown a long distance. Ice throw might therefore be a large safety risk for the people, who are staying in surrounding areas to wind turbines. A ballistic ice throw model has been developed to be able to investigate how far the ice fragments can be thrown from a wind turbine. The work was divided into two parts, one sensitivity analysis and one real case study. In the sensitivity analysis, the influence of eight important parameters was investigated. The results from this part show that changes in the parameters initial radius and angle position, and mass and shape of the ice fragments have a significant influence on the throwing distance both lateral and downwind. The wind speed has only a significant influence on the downwind throwing distance, but this is quite large. A maximum throwing distance of 239 meters downwind the wind turbine was achieved with U=20 m/s, r=55 m and θ=45°. While including the lift force, a maximum downwind distance of 350 meter was achieved. However, the uncertainties about the shape of the ice fragment make these results quite uncertain. In the real case study, ice throws were simulated by letting the ice throw model run with modeled meteorological data for a wind farm in northern Sweden. The wind farm consists of 60 wind turbines, and the probability for that an ice fragment will land in a square of 1*1m was calculated around each turbine. To be able to calculate this probability, a Monte Carlo analysis was necessary in which a large number of ice fragments were separated. The result shows a large correlation between the landing positions of the ice fragments and the wind direction. Due to the fact that the wind farm is located in a complex terrain, the shape and density of the probability field vary among different parts of the farm. Especially in the southern part of the wind farm, the probability field will have the highest density and largest extension to the northeast of the turbines due to a prevailing wind direction during ice throw events from southwest.
När vindkraftssektorn expanderar till områden med ett kallare klimat, kommer problemet med nedisade vindkraftverk och iskast att öka. Moderna vindkraftverk kan ha en typisk effekt på 3.3 MW och en rotordiameter på över 120 meter, vilket resulterar i att de ivägkastade isbitarna skulle kunna få en initialhastighet på 90 m/s. Det skulle även resultera i att isbitarna kastas iväg en lång sträcka från kraftverket, vilket i kombination med den höga initialhastigheten skulle kunna bli en stor säkerhetsrisk för de personer som vistas i områdena närmast runt vindkraftverken. En ballisisk iskastmodel utvecklades för att beräkna hur långt från vinkraftverket isbitarna kan kastas. Arbetet delades upp i två delar, en känslighetsanalys och en verklig fallstudie. I känslighetsanalysen undersöktes åtta viktiga parametrars inflytande på iskastet. Resultatet från den visar på att ändringar i parametrarna isbitens massa och form samt seperations positionen på bladet och bladets vinkel hade störst inverkan på kastlängden. En maximal kastlängd nedströms vindkraftverket på 239 meter erhölls för U=20m/s, θ=45° och r=55m. När lyftkraften inkluderades ökade kastlängden nedströms till 350 meter, dock är osäkerheten i isbitarnas form stor, vilket gör dessa resultat osäkra. I den verkliga fallstudien simulerades iskast genom att iskastmodellen kördes med modellerad meteorologisk data från en vindkraftspark i norra Svergie. Vinkraftsparken innehöll 60 turbiner och sannolikheten för att en isbit ska landa i en ruta på 1*1m beräknades runt varje turbin. För att kunna beräkna sannolikheten användes en Monte Carlo analys där ett stort antal isbitar skickades iväg. Resultatet visade på att korrelationen var stor mellan sannolikheten för att en isbit ska landa i en ruta på 1 m² och vindriktningen. Eftersom vindkraftsparken var belägen i ett område med en komplex terräng varierade formen och intensiteten på sannolikhetsområdena mellan olika delar av parken. Speciellt i parkens södra del är sannolikhetsområdet för vindkraftsverken mer utbrett i nordostlig riktning på grund av att sydvästliga vindar är vanligast då iskast förekommer.
APA, Harvard, Vancouver, ISO, and other styles
7

Kazlova, Ala, and Bettina Ullmann. "When Wind Goes Vertical: : Can a start-up company make use of its born global potential to revolutionize the wind turbine industry?" Thesis, Linnéuniversitetet, Ekonomihögskolan, ELNU, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-6605.

Full text
Abstract:
The 21st century would be a nightmare for Don Quijote: thousands of windmills are installed all over the globe and the number will increase tremendously over the next years. If climate change was an issue in the early 17th century, Don Quijote might have specialized in fighting nuclear or fossil fuel power plants. The change in power production is clearly pronounced, and it inspires the market to respond immediately. Numerous wind turbine manufacturers emerge, developing one technological innovation after another. The trend clearly goes in one direction: horizontal axis wind turbines in all possible variations. However, there are a few companies that do not follow the mainstream – they swim against the current and introduce new concepts, with the potential to set new standards in the industry. Nevertheless, the question whether these companies can establish operations and survive in an industry dominated by large multinational corporations arises. If these companies want to become recognized, they need to compete on an international scale from the outset – they become born globals. This master’s thesis investigates the preconditions under which an innovative start-up company can become born global in the wind turbine industry. For that, distinctive resources and capabilities of such companies, as well as key success factors for the industry are defined. Furthermore, enhancing or restricting parameters lying within company’s environment – in particular, within its networks – are discovered. These findings are based on and supported by the case study of an innovative vertical axis wind turbine manufacturer. In addition, the influence of this company’s university spin-off origin is investigated.
APA, Harvard, Vancouver, ISO, and other styles
8

Werngren, Simon. "Comparison of different machine learning models for wind turbine power predictions." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-362332.

Full text
Abstract:
The goal of this project is to compare different machine learning algorithms ability to predict wind power output 48 hours in advance from earlier power data and meteorological wind speed predictions. Three different models were tested, two autoregressive integrated moving average (ARIMA) models one with exogenous regressors one without and one simple LSTM neural net model. It was found that the ARIMA model with exogenous regressors was the most accurate while also beingrelatively easy to interpret and at 1h 45min 32s had a comparatively short training time. The LSTM was less accurate, harder to interpretand took 14h 3min 5s to train. However the LSTM only took 32.7s to create predictions once the model was trained compared to the 33min13.7s it took for the ARIMA model with exogenous regressors to deploy.Because of this fast deployment time the LSTM might be preferable in certain situations. The ARIMA model without exogenous regressors was significantly less accurate than the other two without significantly improving on the other ARIMA model in any way
APA, Harvard, Vancouver, ISO, and other styles
9

Bolin, Karl. "Wind Turbine Noise and Natural Sounds : Masking, Propagation and Modeling." Doctoral thesis, KTH, MWL Marcus Wallenberg Laboratoriet, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10434.

Full text
Abstract:
Wind turbines are an environmentally friendly and sustainable power source. Unfortunately, the noise impact can cause deteriorated living conditions for nearby residents. The audibility of wind turbine sound is influenced by ambient sound. This thesis deals with some aspects of noise from wind turbines. Ambient sounds influence the audibility of wind turbine noise. Models for assessing two commonly occurring natural ambient sounds namely vegetation sound and sound from breaking waves are presented in paper A and B. A sound propagation algorithm has been compared to long range measurementsof sound propagation in paper C. Psycho-acoustic tests evaluating the threshold and partial loudness of wind turbine noise when mixed with natural ambient sounds have been performed. These are accounted for in paper D. The main scientific contributions are the following.Paper A: A semi-empiric prediction model for vegetation sound is proposed. This model uses up-to-date simulations of wind profiles and turbulent wind fields to estimate sound from vegetation. The fluctuations due to turbulence are satisfactory estimated by the model. Predictions of vegetation sound also show good agreement to measured spectra. Paper B: A set of measurements of air-borne sound from breaking waves are reported. From these measurements a prediction method of sound from breaking waves is proposed. Third octave spectra from breaking waves are shown to depend on breaker type. Satisfactory agreement between predictions and measurements has been achieved. Paper C: Long range sound propagation over a sea surface was investigated. Measurements of sound transmission were coordinated with local meteorological measurements. A sound propagation algorithm has been compared to the measured sound transmission. Satisfactory agreement between measurements and predictions were achieved when turbulence were taken into consideration in the computations. Paper D: The paper investigates the interaction between wind turbine noise and natural ambient noise. Two loudness models overestimate the masking from two psychoacoustic tests. The wind turbine noise is completely concealed when the ambient sound level (A-weighed) is around 10 dB higher than the wind turbine noise level. Wind turbine noise and ambient noise were presented simultaneously at the same A-weighed sound level. The subjects then perceived the loudness of the wind turbine noise as 5 dB lower than if heard alone. Keywords: Wind turbine noise, masking, ambient noise, long range sound propagation
QC 20100705
APA, Harvard, Vancouver, ISO, and other styles
10

Carpenter, Laura E. "The Design and Experimental Investigation of Novel Double-blade Wind Turbine Models Inspired by Houck's Concept." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1482494647404864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Melius, Matthew Scott. "Identification of Markov Processes within a Wind Turbine Array Boundary Layer." PDXScholar, 2013. https://pdxscholar.library.pdx.edu/open_access_etds/1422.

Full text
Abstract:
The Markovianity within a wind turbine array boundary layer is explored for data taken in a wind tunnel containing a model wind turbine array. A stochastic analysis of the data is carried out using Markov chain theory. The data were obtained via hot-wire anemometry thus providing point velocity statistics. The theory of Markovian processes is applied to obtain a statistical description of longitudinal velocity increments inside the turbine wake using conditional probability density functions. It is found that two and three point conditional probability density functions are similar for scale differences larger than the Taylor micro-scale. This result is quantified by use of the Wilcoxon rank-sum test which verifies that this relationship holds independent of initial scale selection outside of the near-wake region behind a wind turbine. Furthermore, at the locations which demonstrate Markovian properties there is a well defined inertial sub-range which follows Kolmogorv's -5/3 scaling behavior. Results indicate an existence of Markovian properties at scales on the order of the Taylor micro-scale, λ for most locations in the wake. The exception being directly behind the tips of the rotor and the hub where the complex turbulent interactions characteristic of the near-wake demonstrate influence upon the Markov process. The presence of a Markov process in the remaining locations leads to characterization of the multi-point statistics of the wind turbine wakes using the most recent states of the flow.
APA, Harvard, Vancouver, ISO, and other styles
12

Scott, Ryan. "Characterizing Tilt Effects on Wind Plants." PDXScholar, 2019. https://pdxscholar.library.pdx.edu/open_access_etds/5035.

Full text
Abstract:
Tilting the nacelle of a wind turbine modifies entrainment into the wind plant and impacts total efficiency. Extreme angles can produce flying and crashing wakes where the wake either disrupts entertainment from the undisturbed flow above or is decimated on the ground. The effect of tilt angle on downstream wake behavior was investigated in a series of wind tunnel experiments. Scale model turbines with a hub height and diameter of 12 cm were arranged in a Cartesian array comprised of four rows of three turbines each. Nacelle tilt was varied in the third row from -15° to 15° in chosen 5° increments. Stereo PIV measurements of the instantaneous velocity field were recorded at four locations for each angle. Tilted wakes are described in terms of the average streamwise velocity field, wall-normal velocity field, Reynolds stresses, and mean vertical transport of kinetic energy. Conditional sampling is used to quantify the importance of sweep vs. ejection events and thus downwards vs. upwards momentum transfer. Additionally, wake center displacement and changes in net power are presented and compared to existing models. The results demonstrate large variations in wake velocity and vertical displacement with enhanced vertical energy and momentum transfer for negative tilt angles. Simulation models accurately predict wake deflection while analytic models deviate considerably highlighting the difficulties in describing tilt phenomena. Negative angles successfully produce crashing wakes and improve the availability of kinetic energy thereby improving the power output of the wind plant.
APA, Harvard, Vancouver, ISO, and other styles
13

Benjanirat, Sarun. "Computational studies of the horizontal axis wind turbines in high wind speed condition using advanced turbulence models." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-08222006-145334/.

Full text
Abstract:
Thesis (Ph. D.)--Aerospace Engineering, Georgia Institute of Technology, 2007.
Samual V. Shelton, Committee Member ; P.K. Yeung, Committee Member ; Lakshmi N. Sankar, Committee Chair ; Stephen Ruffin, Committee Member ; Marilyn Smith, Committee Member.
APA, Harvard, Vancouver, ISO, and other styles
14

Mockute, Agota [Verfasser]. "Suitability of Wave Loading Models for Offshore Wind Turbine Monopiles in Rough Seas / Agota Mockute." Düren : Shaker, 2020. http://d-nb.info/1217164081/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sayed, Mohamed [Verfasser]. "Analysis of Engineering Models by CFD-based aeroelastic Simulations of Wind Turbine Blades / Mohamed Sayed." München : Verlag Dr. Hut, 2019. http://d-nb.info/1181514517/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Barnaud, Félix. "Influence of advanced unsteady aerodynamic models on the aeroelastic response of an offshore wind turbine." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMIR31.

Full text
Abstract:
Les éoliennes offshore modernes ont atteint ces dernières années de très grandes dimensions, qui ne cessent d’augmenter en vue de diminuer les coûts de production de l’électricité. Des designs innovants sont alors nécessaires afin d’améliorer les performances aérodynamiques et de réduire les charges structurelles. Les outils de l’état de l’art tels que la théorie de l’élément de pale couplée à la méthode de la quantité de mouvement (BEMT en anglais), utilisés pour la prédiction des charges et performances des rotors, ont été conçus pour des rotors de plus faibles dimensions et dans des conditions standards d’utilisation. Des conditions particulières comme les cas de désalignement du rotor par rapport à l’axe du vent sont a priori hors du domaine de validité des outils de l'état de l'art. Le but de cette thèse est d'étudier des modèles aérodynamiques plus poussés et de les comparer avec les outils de l'état de l'art sur des cas spécifiques. Les écoulements instationnaires sont particulièrement intéressants puisque difficiles à simuler avec les méthodes standards. Ainsi, un code de méthode des panneaux prenant en compte les phénomènes visqueux tels que le décrochage dynamique est comparé à un code BEMT dans des conditions de vent réalistes et avec un fort désalignement du rotor. Les calculs sont réalisés dans le cadre d'un couplage aéro-servo-élastique de manière à être le plus représentatif possible des calculs de chargement effectués dans l'industrie et nécessaires pour la certification des machines. L'impact du modèle de décrochage dynamique est étudié avec les deux méthodes, pour des cas de chargement extrêmes et en fatigue avec désalignement du rotor. Des différences ont été observées entre les deux méthodes et avec plusieurs paramétrisations du modèle de décrochage dynamique. De plus, la prise en compte du couplage servo-élastique modifie les observations faites sur les comparaisons aérodynamiques. De plus, les angles d'attaque observés sur les pales en cas de fort désalignement sont très élevés. L'écoulement autour de profils dans ces conditions est dominé par des effets visqueux non capturés par les méthodes des panneaux ou de BEMT mais modélisés via des modèles semi-empiriques. Des modèles alternatifs doivent donc être utilisés pour mieux prédire de tels phénomènes. Dans la seconde partie de cette thèse l'écoulement autour de profils aérodynamiques d'éoliennes, plus épais que dans l'aéronautique, est étudié à l'aide de Simulation aux Grandes Échelles avec loi de paroi. Plusieurs cas d'écoulement attachés et détachés sont simulés, pour des profils fixes et oscillants. De très grands angles d'attaque sont également simulés, jusqu'à 90°, à un nombre de Reynolds réaliste. Dans les cas attachés et très fortement détachés, la Simulation aux Grandes Échelles avec loi de paroi est capable de capturer correctement l'écoulement avec des maillages peu raffinés. Cependant les cas proches du décrochage se sont révélés plus difficiles à obtenir, et nécessitent des maillages très fins même en utilisant des lois de paroi adéquates. Enfin, des cas oscillants avec fréquence réduite élevée sont également étudiés et comparés avec d'autres modèles. La Simulation aux Grandes Échelles est alors particulièrement adaptée et donne des résultats prometteurs
The size of modern offshore wind turbine rotors has reached very large dimensions and keeps increasing in order to reduce the cost of electricity. More challenging designs are thus needed to improve the aerodynamic performances and reduce the structural loads. The state-of-the-art tools such as Blade Element Momentum Theory (BEMT) used to predict the loads and performances of wind turbines have been designed for much smaller rotors in standard operating conditions. Load cases in specific conditions such as yaw misalignment are a priori out of the validity range for such tools. The goal of the thesis is to investigate more advanced aerodynamic models in order to assess the differences in load predictions compared to state-of-the-art tools. In particular, this work focuses on unsteady flows which represent a challenge for engineering tools. For this purpose, a panel method code including viscous effects such as dynamic stall is compared to a BEMT code in realistic wind conditions with large yaw misalignment. The calculations are performed in the framework of aero-servo-elasto coupling in order to be represen¬tative of the load calculations performed in industry following certification standards. The impact of the dynamic stall model is investigated in particular for both BEMT and panel method, for extreme and fatigue loading in cases of yaw misalignment. Differences have been observed between both codes and for several parametrizations of dynamic stall model. In addition, it has been noticed that including the servo-elasto coupling changes a lot the observations regarding aerodynamic loading. Large angles of at¬tack are observed on wind turbine blades in yaw misalignment cases, and the flow around blade sections in such conditions is particularly affected by viscous effects such as dynamic stall or vortex shedding which are not inherently solved by panel methods nor BEMT but modeled with semi-empirical models. Alternative models such as Large Eddy Simulation (LES) that would capture these effects have to be considered. Wall-modeled LES (WMLES) is thus used in the second part of this thesis to investigate the flow around wind turbine dedicated airfoils, much thicker than airfoils used in aeronautics. Several cases are simulated, for attached and detached flows and in steady or oscillating cases. Angles of attack up to 90° are investigated at realistic Reynolds number. It appears that WMLES is able to capture correctly the main flow features in attached conditions and at very high angle of attack with coarse meshes. However, the near stall cases are more challenging to capture even with appropriate wall laws and require very fine meshes to be correctly solved. A comparison is also performed for motions with high reduced frequency and compared to other models, revealing the promising capacities of WMLES in such cases
APA, Harvard, Vancouver, ISO, and other styles
17

Mockutė, Agota [Verfasser]. "Suitability of Wave Loading Models for Offshore Wind Turbine Monopiles in Rough Seas / Agota Mockute." Düren : Shaker, 2020. http://nbn-resolving.de/urn:nbn:de:101:1-2020090605232739927321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

HEKİM, MEHMET ÇAĞRI. "WAKE EFFECT IMPACTS ON THE ENERGY PRODUCTION OF THREE WIND TURBINES IN CLOSE CONFIGURATION." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-256007.

Full text
Abstract:
With the rapid expansion of offshore wind power capacity in the world in the last decade, innovative offshore solutions are designed in order to meet the upcoming power capacity installations. As in all other energy sectors, offshore wind power has certain conditions that have to be met to increase the efficacy of the outcome.In this thesis, wake effect impact on the production results of Hexicon AB’s innovative floating and rotating offshore wind power platform project with 3 turbines located in the southern part of Sweden are analyzed through the application of “Analytical wake models” and the “Actuator Disc method”, with the help of WindSim.The results of Analytical models and Actuator Disc method were found to be independent of one another. Even though analytical wake models did not find any wake effect impact among the turbines, the results can be considered as logical. However, the Actuator Disc method created unexpected results which might stem from the WindSim – AD combination. It is therefore recommended to further explore these scenarios with other (more) advanced simulation tools.
APA, Harvard, Vancouver, ISO, and other styles
19

Radulovic, Luka. "Influence of advanced load simulation models on fatigue design of jackets for offshore wind turbines." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/6369/.

Full text
Abstract:
Constant developments in the field of offshore wind energy have increased the range of water depths at which wind farms are planned to be installed. Therefore, in addition to monopile support structures suitable in shallow waters (up to 30 m), different types of support structures, able to withstand severe sea conditions at the greater water depths, have been developed. For water depths above 30 m, the jacket is one of the preferred support types. Jacket represents a lightweight support structure, which, in combination with complex nature of environmental loads, is prone to highly dynamic behavior. As a consequence, high stresses with great variability in time can be observed in all structural members. The highest concentration of stresses occurs in joints due to their nature (structural discontinuities) and due to the existence of notches along the welds present in the joints. This makes them the weakest elements of the jacket in terms of fatigue. In the numerical modeling of jackets for offshore wind turbines, a reduction of local stresses at the chord-brace joints, and consequently an optimization of the model, can be achieved by implementing joint flexibility in the chord-brace joints. Therefore, in this work, the influence of joint flexibility on the fatigue damage in chord-brace joints of a numerical jacket model, subjected to advanced load simulations, is studied.
APA, Harvard, Vancouver, ISO, and other styles
20

Hamilton, Nicholas Michael. "Anisotropy of the Reynolds Stress Tensor in the Wakes of Counter-Rotating Wind Turbine Arrays." PDXScholar, 2014. https://pdxscholar.library.pdx.edu/open_access_etds/1848.

Full text
Abstract:
A wind turbine array was constructed in the wind tunnel at Portland State University in a standard Cartesian arrangement. Configurations of the turbine array were tested with rotor blades set to rotate in either a clockwise or counter-clockwise sense. Measurements of velocity were made with stereo particle-image velocimetry. Mean statistics of velocities and Reynolds stresses clearly show the effect of direction of rotation of rotor blades for both entrance and exit row turbines. Rotational sense of the turbine blades is visible in the mean spanwise velocity W and the Reynolds shear stress -[macron over vw]. The normalized anisotropy tensor was decomposed yielding invariants [lowercase eta] and [lowercase xi], which are plotted onto the Lumley triangle. Invariants of the normalized Reynolds stress anisotropy tensor indicate that distinct characters of turbulence exist in regions of the wake following the nacelle and the rotor blade tips. Eigendecomposition of the tensor yields principle components and corresponding coordinate system transformations. Characteristic spheroids are composed with the eigenvalues from the decomposition yielding shapes predicted by the Lumley triangle. Rotation of the coordinate system defined by the eigenvectors demonstrates streamwise trends, especially trailing the top rotor tip and below the hub of the rotors. Direction of rotation of rotor blades is evidenced in the orientation of characteristic spheroids according to principle axes. The characteristic spheroids of the anisotropy tensor and their relate alignments varies between cases clearly seen in the inflows to exit row turbines. There the normalized Reynolds stress anisotropy tensor shows cumulative effects of the rotational sense of upstream turbines. Comparison between the invariants of the Reynolds stress anisotropy tensor and terms from the mean mechanical energy equation indicate a correlation between the degree of anisotropy and the regions of the wind turbine wakes where turbulence kinetic energy is produced. The flux of kinetic energy into the momentum-deficit area of the wake from above the canopy is associated with prolate characteristic spheroids. Flux upward into the wake from below the rotor area is associate with oblate characteristic spheroids. Turbulence in the region of the flow directly following the nacelle of the wind turbines demonstrates more isotropy compared to the regions following the rotor blades. The power and power coefficients for wind turbines indicate that flow structures on the order of magnitude of the spanwise turbine spacing that increase turbine efficiency depending on particular array configuration.
APA, Harvard, Vancouver, ISO, and other styles
21

Crawford, C. A. "Advanced engineering models for wind turbines with application to the design of a coning rotor concept." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598134.

Full text
Abstract:
The primary theoretical contribution of this work is an enhanced Blade Element Momentum (BEM) method. Utilizing vortex theory to model induction, computationally efficient corrections are derived that are key in more accurately predicting performance for coned rotors. The theory is extended to include wake expansion, dynamic inflow, and yawed conditions, as well as considering centrifugal and radial-flow induced stall-delay. The theory is favourably validated against Computational Fluid Dynamics (CFD) and experimental results for both real and idealized rotors. BLADEDTM was to be modified with the enhanced BEM method for dynamic analyses. To support these analyses, a beam sectional model and Finite Element Method (FEM) approach to the generalized centrifugally stiffened beam problem were implemented. Ultimately, the linear structural theory in current codes precluded accurate predictions at large flap angles. In lieu of a fully non-linear flexible-body simulation, a rigid-body dynamic model of the system was developed. The coupled aerodynamic and structural models were then used to analyse steady-state and dynamic operation, including optimal control schedules. Parametric optimization studies were used to examine the interplay between design variables for the coning rotor, relative to a reference conventional machine. Increased blade length, shape and airfoil choice were found to be tightly coupled, yielding energy gains of 10-30% over conventional rotors. Airfoil choice and control mechanism were found critical to limiting torque and thrust. The fundamental non-linear open-loop dynamics were also examined, including flap and edgewise damping behaviour. Low-Frequency Noise (LFN) was computed with a properly implemented physics-based model, to quantify sensitivity to design and operational parameters. The current work is a preliminary, but critical step, in proving the worth of the coning rotor. Controlled design and an accurate flexible-body code will be required for full load-set simulations, to affect detailed component design and costing. Ultimately, prototype testing will be needed to validate the complicated stalling behaviour of the coning rotor.
APA, Harvard, Vancouver, ISO, and other styles
22

Hamilton, Nicholas Michael. "Wake Character in the Wind Turbine Array: (Dis-)Organization, Spatial and Dynamic Evolution and Low-dimensional Modeling." PDXScholar, 2016. http://pdxscholar.library.pdx.edu/open_access_etds/3084.

Full text
Abstract:
To maximize the effectiveness of the rapidly increasing capacity of installed wind energy resources, new models must be developed that are capable of more nuanced control of each wind turbine so that each device is more responsive to inflow events. Models used to plan wind turbine arrays and control behavior of devices within the farm currently make questionable estimates of the incoming atmospheric flow and update turbine configurations infrequently. As a result, wind turbines often operate at diminished capacities, especially in arrays where wind turbine wakes interact and inflow conditions are far from ideal. New turbine control and wake prediction models must be developed to tune individual devices and make accurate power predictions. To that end, wind tunnel experiments are conducted detailing the turbulent flow in the wake of a wind turbine in a model-scale array. The proper orthogonal decomposition (POD) is applied to characterize the spatial evolution of structures in the wake. Mode bases from distinct downstream locations are reconciled through a secondary decomposition, called double proper orthogonal decomposition (DPOD), indicating that modes of common rank in the wake share an ordered set of sub-modal projections whose organization delineates underlying wake structures and spatial evolution. The doubly truncated basis of sub-modal structures represents a reduction to 0.015% of the total degrees of freedom of the wind turbine wake. Low-order representations of the Reynolds stress tensor are made using only the most dominant DPOD modes, corrected to account for energy excluded from the truncated basis with a tensor of constant coefficients defined to rescale the low-order representation of the stresses to match the original statistics. Data from the wind turbine wake are contrasted against simulation data from a fully-developed channel flow, illuminating a range of anisotropic states of turbulence. Complexity of flow descriptions resulting from truncated POD bases is suppressed in severe basis truncations, exaggerating anisotropy of the modeled flow and, in extreme cases, can lead to the loss of three dimensionality. Constant corrections to the low-order descriptions of the Reynolds stress tensor reduce the root-mean-square error between low-order descriptions of the flow and the full statistics as much as 40% and, in some cases, reintroduce three-dimensionality to severe truncations of POD bases. Low-dimensional models are constructed by coupling the evolution of the dynamic mode coefficients through their respective time derivatives and successfully account for non-linear mode interaction. Deviation between time derivatives of mode coefficients and their least-squares fit is amplified in numerical integration of the system, leading to unstable long-time solutions. Periodic recalibration of the dynamical system is undertaken by limiting the integration time and using a virtual sensor upstream of the wind turbine actuator disk in to read the effective inflow velocity. A series of open-loop transfer functions are designed to inform the low-order dynamical system of the flow incident to the wind turbine rotor. Validation data shows that the model tuned to the inflow reproduces dynamic mode coefficients with little to no error given a sufficiently small interval between instances of recalibration. The reduced-order model makes accurate predictions of the wake when informed of turbulent inflow events. The modeling scheme represents a viable path for continuous time feedback and control that may be used to selectively tune a wind turbine in the effort to maximize power output of large wind farms.
APA, Harvard, Vancouver, ISO, and other styles
23

Luz, José Leandro Rosales. "Análise numérica do desempenho da turbina eólica de eixo horizontal NREL UAE Phase VI." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2012. http://hdl.handle.net/10183/79827.

Full text
Abstract:
O presente trabalho realiza um estudo do desempenho aerodinâmico da turbina eólica de duas pás e 10 m de diâmetro da UAE Phase VI, testada pelo NREL no túnel de vento NASA Ames, através do uso de dinâmica dos fluidos computacional (CFD). Para tanto são apresentados conceitos fundamentais para análise da performance do aerogerador, a metodologia aplicada para a análise numérica e os resultados obtidos. O modelo geométrico da turbina foi inserido em ambiente computacional num domínio com as mesmas dimensões da seção de testes do túnel de vento. A esse domínio foi empregada uma malha de elementos tetraédricos. A modelagem numérica e as simulações foram efetuadas através do código comercial ANSYS FLUENT 13.0 e utilizaram as equações médias de Reynolds e modelos de turbulência k  SST e Spalart-Allmaras. A turbina simulada possui ângulo de giro (yaw) e de cone de 0°. Os casos simulados foram de turbina com ângulos de passo das pás de 0° e 3°, para velocidades de ar na entrada do domínio de 5 m/s, 7 m/s e 9 m/s. As simulações foram feitas em regime transiente utilizando o método de malha móvel. Dados provenientes da simulação numérica são comparados aos dados experimentais de empuxo, torque e potência, divulgados pelo laboratório. Os modelos de turbulência testados apresentaram boa concordância com os resultados experimentais de empuxo. O torque e a potência foram bem previstos para velocidades de entrada do domínio baixas, mas foram subdimensionados para velocidades mais altas. A separação da camada limite foi prevista por ambos os modelos. Na comparação com resultados obtidos com outros autores para o mesmo caso, o início de descolamento da camada limite se deu antes do previsto. A metodologia adotada nas simulações numéricas realizadas mostrou-se adequada e representativa nas análises desse estudo.
This study makes a CFD analysis of the aerodynamic performance of the NREL UAE Phase VI two-bladed wind turbine, which have been tested in the NASA Ames wind tunnel. Fundamental concepts on the evaluation of turbine performance, the applied methodology for the numerical analysis and the results are presented. A numerical model has been inserted in a computational environment that has the same dimensions as the real wind tunnel section, and a tetrahedral mesh has been created to fill this domain. Numerical modeling and the simulations have been performed using the ANSYS FLUENT 13.0 commercial code, making use of the RANS equations and the k  SST and Spalart-Allmaras turbulence models. The simulated turbine has 0 degrees of cone and yaw angle. Simulations were performed in unsteady state using the moving mesh technique. Results are compared to experimental data regarding to thrust, torque and power. The k  SST and Spalart-Allmaras turbulence models have shown good agreement with experimental values of thrust. Torque and power have been adequately predicted to lower free flow velocities, but have been underpredicted to higher velocities. Separation of the boundary layer has been adequately predicted by both models, but the beginning of the separation occurred earlier than expected in comparison with results of other authors to the same case. The methodology used in the numerical simulations proved to be adequate and representative in this study.
APA, Harvard, Vancouver, ISO, and other styles
24

Ochs, David S. "Design of detailed models for use in fast aeroelastic simulations of permanent-magnet direct-drive wind turbines." Thesis, Kansas State University, 2012. http://hdl.handle.net/2097/15042.

Full text
Abstract:
Master of Science
Department of Electrical and Computer Engineering
Ruth Douglas Miller
This thesis presents the design of two models for permanent-magnet direct-drive wind turbines. The models are of a 10 kW and a 5 MW wind turbine, which are representative of residential scale and commercial scale turbines respectively. The models include aerodynamic and mechanical simulations through the FAST software, as well as concurrent electrical simulations through the SimPowerSystems toolbox for MATLAB/Simulink. The aim is to provide wind turbine designers and researchers with a comprehensive simulation tool that they can use to design and test many different aspects of a wind turbine. The particular novelty of these models is their high level of detail in electromechanical simulations. For each model, a generator speed controller was designed in a reference frame attached to the generator’s rotor, and was executed with a 3-phase active rectifier using space-vector pulse-width modulation. Also for each model, active and reactive power controllers were designed in a reference frame synchronous with the grid, and were executed with a 3-phase inverter using space-vector pulse-width modulation. Additionally, a blade pitch controller was designed for the 5 MW model. Validation of the models was carried out in the MATLAB/Simulink environment with satisfactory results.
APA, Harvard, Vancouver, ISO, and other styles
25

Hagen, Torbjørn Ruud. "Numerical Simulations of Flow Past a Truss Tower with an Evaluation of Tower Shadow Models for Wind Turbines." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-13726.

Full text
Abstract:
The performance of steady-state tower shadow models for a wind turbine truss tower have been evaluated. The Reynolds-Averaged-Navier-Stokes (RANS) approach, in conjunction with the $k-omega$ Shear-Stress-Transport (SST) model, was used to simulate transient flows past cross sections of a truss tower. The objective was to compare numerical results with Powles', Blevins' and Schlichting's tower shadow models and evaluate their performance on a multimember structure. Parameters for each model have been estimated. It will be shown that the RANS model was able to reproduce realistic results when used in transient simulations on high Reynolds number flows (supercritical regime). The importance of considering unsteady motion when calculating the turbulence intensity, using RANS with transient simulations, will be explained. The multimember extension used for the tower shadow models reproduces the mean velocity profiles quite well, and by using a suitable estimation method, global parameters were found for all models. Additionally, turbulent inflow has been implemented with a user-defined function in Fluent. The results have been evaluated, and show that such such sophisticated inflow modeling is not necessary to predict realistic mean velocity profiles.
APA, Harvard, Vancouver, ISO, and other styles
26

Zhu, Wenjin. "Maintenance of monitored systems with multiple deterioration mechanisms in dynamic environments : application to wind turbines." Thesis, Troyes, 2014. http://www.theses.fr/2014TROY0005/document.

Full text
Abstract:
Les travaux présentés contribuent à la modélisation stochastique de la maintenance de systèmes mono- ou multi-composants à détériorations et à modes de défaillances multiples en environnement dynamique. Dans ce cadre, les contributions portent d'une part sur la modélisation des processus de défaillance, et d'autre part sur la proposition de structures de décision de maintenance intégrant les différents types d'information de surveillance en ligne disponible sur le système (état de détérioration mesuré ou reconstruit, état de l'environnement, ...) et le développement des modèles mathématiques d'évaluation associés. Les modèles de détérioration et de défaillances proposés pour les systèmes mono-composants permettent de rendre compte de sources de détérioration multiples (chocs et détérioration graduelle) et d'intégrer les effets de l'environnement sur la dégradation. Pour les systèmes multi-composants, on insiste sur les risques concurrents, indépendants ou dépendants et sur l'intégration de l'environnement. Les modèles de maintenance développés sont adaptés aux modèles de détérioration proposés et permettent de prendre en compte la contribution de chaque source de détérioration dans la décision de maintenance, ou d'intégrer de l'information de surveillance indirecte dans la décision, ou encore de combiner plusieurs types d'actions de maintenance. Dans chaque cas, on montre comment les modèles développés répondent aux problématiques de la maintenance de turbines et de parcs éoliens
The thesis contributes to stochastic maintenance modeling of single or multi-components deteriorating systems with several failure modes evolving in a dynamic environment. In one hand, the failure process modeling is addressed and in the other hand, the thesis proposes maintenance decision rules taking into account available on-line monitoring information (system state, deterioration level, environmental conditions …) and develops mathematical models to measure the performances of the latter decision rules.In the framework of single component systems, the proposed deterioration and failure models take into account several deterioration causes (chocks and wear) and also the impact of environmental conditions on the deterioration. For multi-components systems, the competing risk models are considered and the dependencies and the impact of the environmental conditions are also studied. The proposed maintenance models are suitable for deterioration models and permit to consider different deterioration causes and to analyze the impact of the monitoring on the performances of the maintenance policies. For each case, the interest and applicability of models are analyzed through the example of wind turbine and wind turbine farm maintenance
APA, Harvard, Vancouver, ISO, and other styles
27

Ben, Hassine Seif. "Multipath and receiver models for assessing the VOR bearing error : application to wind farms." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30047.

Full text
Abstract:
L'implémentation des éoliennes à proximité des systèmes VOR (VHF Omnidirectional Range) est une préoccupation importante pour l'aviation civile. Les éoliennes constituent une source de multitrajets qui peuvent produire des erreurs sur l'information d'azimut estimée par le récepteur d'avion. Dans la littérature, l'erreur VOR est calculée à partir de paramètres multitrajets en utilisant l'expression analytique proposée par Odunaiya et Quinet. Dans cette thèse de doctorat, nous avons développé un modèle d'un récepteur IQ numérique qui peut reproduire la réponse d'un récepteur VOR lorsque les multitrajets varient dans le temps tout au long d'une trajectoire réaliste d'avion. Le Chapitre 1 présente les principes de base des systèmes : VOR conventionnel (VORC) et VOR Doppler (VORD). Le phénomène de multitrajets générés par les éoliennes à proximité des stations VOR est détaillé en présentant ses paramètres et certaines méthodes de modélisation associées qui existent dans la littérature. Un aperçu des récepteurs VOR est présenté en décrivant la structure classique d'un récepteur VOR et les étapes du traitement du signal appliquées afin d'extraire l'information d'azimut. Les expressions de l'erreur VOR proposées par Odunaiya et Quinet pour les systèmes VORC et VORD sont données et illustrées. Dans le Chapitre 2, nous présentons notre modèle de récepteur IQ numérique. Un générateur de séries temporelles au long d'une trajectoire réaliste d'avion est présenté. Un critère échantillonnage est également proposé pour être sûr de capturer toutes les variations de multitrajets dans l'espace. Le modèle de récepteur IQ numérique est détaillé en décrivant ses composantes. Afin d'analyser l'effet et dynamique de multitrajets sur le récepteur VOR, un test d'illustration est donné en comparant la réponse du modèle avec l'expression d'Odunaiya. Dans le Chapitre 3, le comportement de notre modèle de récepteur IQ numérique est analysé en le comparant avec un récepteur de calibration (R&S EVS300) à l'aide de deux mesures de laboratoire. La première mesure est effectuée dans la bande des fréquences VHF en traitant un multitrajet canonique. La seconde mesure est effectuée en utilisant des signaux en bande de base IQ générées à partir d'une simulation d'un scénario complexe. Les résultats des mesures montrent un bon accord entre les récepteurs. Une analyse critique de récepteur VOR est présentée dans le Chapitre 4. Pour le VORC, nous présentons une méthode permettant de déterminer le domaine de validité de l'expression statique d'Odunaiya afin de calculer l'erreur VOR. Pour le VORD, nous montrons que l'erreur VOR est sensible au type de démodulateur FM en développant et en validant une expression alternative de l'erreur Doppler analytique qui est cohérente avec notre démodulateur FM. Enfin, nous évaluons l'analyse de Bredemeyer qui indique que l'effet et des multitrajets sur le signal de référence doit être pris en compte dans le calcul de l'erreur VORD. Dans le Chapitre 5, nous proposons un modèle statistique d'erreur VOR dont les seuls paramètres sont les positions de l'avion et de l'éolienne et les autres paramètres suivent des distributions statistiques. Ce modèle permet de réduire le temps de simulation électromagnétique. Tout d'abord, nous déterminons les distributions statistiques associées aux paramètres multitrajets. Ensuite, la distribution statistique associée à l'erreur VOR est déduite. Enfin, nous effectuons des simulations de Monte Carlo pour évaluer les paramètres des distributions statistiques
The implementation of wind turbines close to VHF Omnidirectional Range (VOR) systems is an important concern for civil aviation. The wind turbines constitute a source of multipath that can yield bearing errors in the azimuth estimated by aircraft receivers. In the literature, the bearing error is computed from the multipath characteristics by means of the analytic expression proposed by Odunaiya and Quinet. In this PhD thesis, we have developed a digital IQ receiver model which can reproduce the response of a VOR receiver when the multipath change in time along a realistic aircraft trajectory. In Chapter 1, the basic principle of the Conventional VOR (CVOR) and Doppler VOR (DVOR) is pre-sented. The multipath phenomenon generated by the wind turbines in the vicinity of VOR stations is detailed by presenting its parameters and some associated modeling methods that exist in the literature. An overview of the VOR receivers is presented by describing the standard structure of a VOR receiver and the signal processing steps to extract the azimuth information. The analytical expressions proposed by Odunaiya and Quinet for the CVOR and DVOR systems are given and illustrated. In Chapter 2, we present our digital IQ receiver model. A time series generator along a realistic aircraft trajectory is presented. A sampling criterion is also proposed to be sure to capture all the multipath variations in space. The digital IQ receiver model is detailed by describing its components. In order to analyze the effect of multipath dynamics on the VOR receiver, an illustration test is given by comparing the receiver model response with the Odunaiya expression. In Chapter 3, the behavior of our digital IQ receiver model is analyzed by comparing with a calibration receiver (R&S EVS300) from two laboratory measurements. The first one is performed in the VHF frequency band for one canonical multipath. The second one is performed using baseband IQ signals in a complex scenario. The measurements results are shown a good agreement between receivers. A CVOR and DVOR analysis are given in Chapter 4. For CVOR, we present a method to determine the validity domain of the static Odunaiya expression for computing the bearing error. For DVOR, we show that the bearing error is sensitive to the type of FM demodulator by developing and validating an alternative expression of the analytic Doppler error which is consistent with our FM demodulator. Finally, we evaluate the analysis of Bredemeyer which indicates that the effect of multipath on the reference signal must be considered in the DVOR error computation. In Chapter 5, we propose a statistical model for the bearing error with which the only parameters are the aircraft and wind turbine positions and the other parameters follow statistical distributions. This model allows to reduce the electromagnetic simulation time. Firstly, we determine the statistical distributions associated with the multipath parameters. Secondly, the statistical distribution associated with the bearing error is deduced. Finally, we perform Monte Carlo simulations to assess the parameters of the statistical distributions
APA, Harvard, Vancouver, ISO, and other styles
28

Beganovic, Nejra Verfasser], and Dirk [Akademischer Betreuer] [Söffker. "Structural Health Monitoring of Wind Turbine Systems : Data-based Lifetime Models Development for Integration into Control Systems / Nejra Beganovic ; Betreuer: Dirk Söffker." Duisburg, 2017. http://d-nb.info/1127527703/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Marten, David [Verfasser], Christian Oliver [Akademischer Betreuer] Paschereit, Christian Oliver [Gutachter] Paschereit, Jens [Gutachter] Fortmann, and Athanasios [Gutachter] Barlas. "QBlade: a modern tool for the aeroelastic simulation of wind turbines / David Marten ; Gutachter: Christian Oliver Paschereit, Jens Fortmann, Athanasios Barlas ; Betreuer: Christian Oliver Paschereit." Berlin : Technische Universität Berlin, 2020. http://d-nb.info/1220774472/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Guimarães, da Silva Jôse Lorena. "Computational sound propagation models: An analysis of the models Nord2000, CONCAWE, and ISO 9613-2 for sound propagation from a wind farm." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-331752.

Full text
Abstract:
The recent goals from some countries to become renewable energy based and reduce carbon dioxide emissions have caused the wind industry to grow. Together, the size of the wind farms and the noise emission have grown, while the noise emission regulations have to be fulfilled. Numerical simulations based on engineering approaches are in many cases a fast alternative that may supplement actual sound measurements at the site on question. However, the sound propagation models have many assumptions and estimations, as different variants can affect the resulting sound propagation. The accuracy of the sound propagation models Nord2000, CONCAWE, and ISO 9613-2 are investigated in this research by comparing the predicted to the measured sound pressure levels from a wind farm in northern Sweden. Different parameters were investigated in each model, as wind speed and direction, roughness length, ground class, temperature gradient, and receiver height. The computational calculations were run on SoundPLAN software for a single point, the nearby dwelling. For the different parameters investigated, the settings were defined and inputted in the software, and the calculations were run. The equivalent sound pressure level results from the computational models were compared to the equivalent sound pressure level of the sound measurements filtered from background noise. The results indicate that the model ISO 9613-2 did not perform well for the specific site conditions at the wind farm. On the other hand, the CONCAWE and Nord2000 showed high accuracy, for downwind conditions at 8 m/s. For upwind conditions at 8 m/s, Nord2000 is more accurate, as the refraction of the sound rays are better calculated on this model. For the variants investigated on the Nord2000 model, the results that better approximate to the sound levels of the sound measurements are the roughness length 0.3, ground class D, and temperature gradient  0.05 K/m. Thus, these settings would be recommended for calculations with Nord2000 for noise assessment in a permit process.
APA, Harvard, Vancouver, ISO, and other styles
31

Shan, Martin [Verfasser]. "Load Reducing Control for Wind Turbines: Load Estimation and Higher Level Controller Tuning based on Disturbance Spectra and Linear Models / Martin Shan." Kassel : Universitätsbibliothek Kassel, 2017. http://d-nb.info/1154972496/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Fernandes, Marcos Paulo Gomes. "CalibraÃÃo do Modelo de TurbulÃncia k-ω SST para Turbinas EÃlicas de Pequeno Porte AtravÃs de AvaliaÃÃo NumÃrica e Experimental." Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=9378.

Full text
Abstract:
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior
No presente trabalho foi realizada a investigaÃÃo numÃrica e experimental do desempenho aerodinÃmico de dois aerogeradores tripà de pequeno porte com 3 m de diÃmetro. Os perfis aerodinÃmicos utilizados, NACA 0012 (simÃtrico) e NACA 4412 (cambado), foram projetados para aplicaÃÃes em baixas velocidades, como à o caso de turbinas eÃlicas de eixo horizontal. Os aerogeradores foram construÃdos e testados no LaboratÃrio de Energia Solar e GÃs Natural - UFC. Isto permitiu a determinaÃÃo das curvas de desempenho dos mesmos, possibilitando a comparaÃÃo posterior com os resultados da anÃlise numÃrica. A fim de calibrar o modelo de turbulÃncia k-ω SST para aplicaÃÃo em turbinas eÃlicas de pequeno porte, foram realizadas simulaÃÃes numÃricas utilizando o pacote de CFD OpenFOAM, versÃo 1.7.1. Os resultados numÃricos e experimentais foram comparados, de tal forma que, a partir da variaÃÃo de parÃmetros como intensidade de turbulÃncia, comprimento caracterÃstico turbulento e β* (constante de calibraÃÃo do modelo), pode-se concluir que os resultados numÃricos foram pouco sensÃveis aos dois primeiros parÃmetros, enquanto a variaÃÃo de β* impactou de forma significativa os resultados numÃricos. A mudanÃa do aerofÃlio nÃo alterou o valor de β* que melhor ajustou o resultado. Isto, alÃm do sucesso do processo de calibraÃÃo, indica que a cambagem nÃo influenciou na calibraÃÃo do modelo de turbulÃncia, o que à muito positivo, pois permite uma avaliaÃÃo de cenÃrios diferentes, tal como pÃs projetadas com outros perfis aerodinÃmicos.
In this work it was performed a numerical and experimental investigation of the aerodynamic performance of two small three-bladed wind turbines with diameter of 3m. The airfoils used, NACA 0012 (symmetrical) e NACA 4412 (unsymmetrical), were designed for low speed applications, such as the horizontal axis wind turbines. The wind turbines were built and tested at the Solar Energy and Natural Gas Laboratory âUFC. This allowed the attainment of the performance curves, enabling the comparison between the results of the numerical analysis. In order to calibrate the turbulence model k-ω SST to applications in small wind turbines, it was performed numerical simulations using the open source package for CFD solutions OpenFOAM, version 1.7.1. The numerical and experimental results were compared, in a way that, from the variation of parameters such as turbulence intensity, characteristic length and β* (calibration constant), it can be concluded that the numerical results were little sensitive to the first two parameters, while the variation of β* impacted significantly the numerical results. The change of airfoil did not modify the value of β* that best adjusted the result. This, beyond the success of the calibration process, indicates that the camber did not affect the calibration of the turbulence model, which is very positive because it allows an evaluation of different scenarios, such as blades designed with other airfoils.
APA, Harvard, Vancouver, ISO, and other styles
33

Gruber, Vilson. "Modelo de sistema para aquisição e monitoração de dados remotos utilizando sensores e redes de celular 3G aplicado em um pequeno aerogerador." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2010. http://hdl.handle.net/10183/147962.

Full text
Abstract:
Esta Tese apresenta o desenvolvimento de um modelo de sistema capaz de monitorar, adquirir, armazenar e transmitir dados remotamente utilizando diversos sensores e rede de celulares 3G para ser aplicada no projeto de pequenos aerogeradores, tendo como meta gerar um produto que apresente boa relação custo/eficiência, com emprego de materiais e processos de manufatura adaptados à realidade mundial. É apresentado um novo modelo de sistema para aquisição de dados, baseado na integração das novas tecnologias da informação e comunicação e de técnicas de processamento analógico e digital de sinais, visando estudar o desempenho de parâmetros gerados em um pequeno aerogerador de bancada. Através deste modelo será possível monitorar continuamente, dentro dos intervalos previstos de amostragem, a ocorrência de mudanças dos parâmetros analisados através de sensores instalados no aerogerador. Os resultados das análises destes sensores podem ser adquiridos e transmitidos remotamente através da Rede 3G, diretamente para uma sala de operações ou ainda ser disponibilizada na WEB através das novas tecnologias e mídias sociais. As informações aqui estudadas mostram resultados que podem ser úteis para qualquer segmento do mercado e para todas as áreas científicas, econômicas e ambientais, que queiram conhecer e aplicar o modelo de um sistema de aquisição e monitoração de dados para o gerenciamento de aerogeradores de pequeno porte. Apesar de no experimento ter sido utilizado variáveis de um aerogerador, são mostradas outras aplicações possíveis de aquisição de dados, monitoramento e experimentos remotos utilizando-se o canal de comunicação celular 3G e a integração das novas tecnologias de informação e comunicação.
This thesis presents the development of model system that can monitor, acquire, store and transmit data remotely using various sensors and 3G cellular network to be applied in the design of small wind turbines, aiming to generate a product that presents a cost-efficient through use of materials and manufacturing processes adapted to the reality world. It presented a new model system for data acquisition based on the integration of new information technologies and communication and processing techniques of analog and digital signals, to study the performance of parameters generated in a small wind turbine bench and remote. Through this model will be possible to monitor continuously, within the ranges provided for sampling, the occurrence of changes of parameters measured by sensors installed in the turbine. The results of analysis of these sensors can be acquired and transmitted remotely via the 3G network, directly to an operating room or be available on the Web with new technologies and social media. The information studied here show results that may be useful for any market segment and for all scientific, economic and environmental issues, willing to learn and apply the model of an acquisition system and data monitoring for management of small wind turbines. Although the experiment has been used variables of a wind turbine, are shown other possible applications of data acquisition, remote monitoring and experiments using the 3G mobile communication channel and the integration of new information technologies and communication.
APA, Harvard, Vancouver, ISO, and other styles
34

Prueter, Phillip Edward. "A Study of the Mechanical Design and Gear Tooth Root Strains in Flexible Pin, Multi-Stage, Planetary Wind Turbine Gear Trains Using Three Dimensional Finite Element/Contact Mechanics Models and Experiments." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1313372765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Longo, Riccardo. "Advanced turbulence models for the simulation of air pollutants dispersion in urban area." Doctoral thesis, Universite Libre de Bruxelles, 2020. https://dipot.ulb.ac.be/dspace/bitstream/2013/312254/3/thesis.pdf.

Full text
Abstract:
NOWADAYS, a number of studies keep on demonstrating the existence of a strong relation between high concentrations of particulate matter (PM) and the prevalence of human morbidity and mortality. Large particles can be filtered in the nose or in the throat, while fine particles (about10 micrometer) can settle in the bronchi and lungs, leading to more serious consequences. According to Karagulian et al. the major sources of urban air pollution are traffic (25%), combustion and agriculture (22%), domestic fuel burning (20%), natural dust (18%) and industrial activities (15%).As a consequence, the detailed study of dispersion phenomena within the urban canopy becomes a target of great interest. To this end, Computational Fluid Dynamics (CFD) can be successfully employed to predict turbulence and dispersion patterns, accounting for a detailed characterization of the pollutant sources, complex obstacles and atmospheric stability classes.Despite being intrinsically different phenomena, turbulence and dispersion are closely related. It is universally accepted that, to reach accurate prediction of the concentration field, it is necessary to properly reproduce the turbulence one. For this reason, the present PhD thesis is split into two main Sections: one focused on turbulence modelling and the subsequent, centered on the dispersion modelling.Thanks to its good compromise between accuracy of results and calculation time, Reynolds-averaged Navier-Stokes (RANS) still represents a valid alternative to more resource-demanding methods. However, focusing on the models’ performance in urban studies, Large Eddy Simulation (LES) generally outperforms RANS results, even if the former is at least one order of magnitude more expensive. Stemming from this consideration, the aim of this work is to propose a variety of approaches meant to solve some of the major limitations linked to standard RANS simulation and to further improve its accuracy in disturbed flow fields, without renouncing to its intrinsic feasibility. The proposed models are suitable for the urban context, being capable of automatically switching from a formulation proper for undisturbed flow fields to one suitable for disturbed areas. For neutral homogeneous atmospheric boundary layer (ABL), a comprehensive approach is adopted, solving the issue of the erroneous stream-wise gradients affecting the turbulent profiles and able to correctly represent the various roughness elements. Around obstacles, more performing closures are employed. The transition between the two treatments is achieved through the definition of a Building Influence Area (BIA). The finalgoal is to offer more affordable alternatives to LES simulations without sacrificing a good grade of accuracy.Focusing on the dispersion modelling framework, there exists a number of parameters which have to be properly specified. In particular, the definition of the turbulent Schmidt number Sct, expressing the ratio of turbulent viscosity to turbulent mass diffusivity, is imperative. Despite its relevance, the literature does not report a clear guideline on the definition of this quantity. Nevertheless, the importance of Sct with respect to dispersion is undoubted and further demonstrated in the works of different authors. For atmospheric boundary layer flows, typical constant values range between 0.2 and 1.3. As a matter of fact, the local variability of Sct is supported by experimental evidence and by direct numerical simulations (DNS). These observations further suggest that the turbulent Schmidt number should be prescribed as a dynamic variable. Following these observations a variable turbulent Schmidt number formulation is proposed in this work. The latter stems from the same hypothesis of the variable formulation developed by Gorlé et al. Moreover, the relevant uncertain model parameters are optimized through uncertainty quantification (UQ). This formulation further increased the accuracy of the predictions, and was successfully verified by Di Bernardino et al. However, the turbulent Schmidt number resulting from this formulation is still intrinsically linked to the turbulence model employed, i.e. to the Cμ coefficient. To overcome this constraint, the nature and the dependencies of Sct were further analyzed through correlation studies and employing principal component analysis (PCA) on data obtained through the proposed ABL RANS model. Subsequently, the same data-driven technique was employed based on the high-fidelity outcomes of a delayed Detached Eddy Simulation (dDES) to derive a generalized turbulentSchmidt number formulation. The latter can be employed within a wide range of turbulence models, without limiting its variability.
Doctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
36

Megahed, Aly. "Supply chain planning models with general backorder penalties, supply and demand uncertainty, and quantity discounts." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54011.

Full text
Abstract:
In this thesis, we study three supply chain planning problems. The first two problems fall in the tactical planning level, while the third one falls in the strategic/tactical level. We present a direct application for the first two planning problems in the wind turbines industry. For the third problem, we show how it can be applied to supply chains in the food industry. Many countries and localities have the explicitly stated goal of increasing the fraction of their electrical power that is generated by wind turbines. This has led to a rapid growth in the manufacturing and installation of wind turbines. The globally installed capacity for the manufacturing of different components of the wind turbine is nearly fully utilized. Because of the large penalties for missing delivery deadlines for wind turbines, the effective planning of its supply chain has a significant impact on the profitability of the turbine manufacturers. Motivated by the planning challenges faced by one of the world’s largest manufacturers of wind turbines, we present a comprehensive tactical supply chain planning model for manufacturing of wind turbines in the first part of this thesis. The model is multi-period, multi-echelon, and multi-commodity. Furthermore, the model explicitly incorporates backorder penalties with a general cost structure, i.e., the cost structure does not have to be linear in function of the backorder delay. To the best of our knowledge, modeling-based supply chain planning has not been applied to wind turbines, nor has a model with all the above mentioned features been described in the literature. Based on real-world data, we present numerical results that show the significant impact of the capability to model backorder penalties with general cost structures on the overall cost of supply chains for wind turbines. With today’s rapidly changing global market place, it is essential to model uncertainty in supply chain planning. In the second part of this thesis, we develop a two-stage stochastic programming model for the comprehensive tactical planning of supply chains under supply uncertainty. In the first stage, procurement decisions are made while in the second stage, production, inventory, and delivery decisions are made. The considered supply uncertainty combines supplier random yields and stochastic lead times, and is thus the most general form of such uncertainty to date. We apply our model to the same wind turbines supply chain. We illustrate theoretical and numerical results that show the impact of supplier uncertainty/unreliability on the optimal procurement decisions. We also quantify the value of modeling uncertainty versus deterministic planning. Supplier selection with quantity discounts has been an active research problem in the operations research community. In this the last part of this thesis, we focus on a new quantity discounts scheme offered by suppliers in some industries. Suppliers are selected for a strategic planning period (e.g., 5 years). Fixed costs associated with suppliers’ selection are paid. Orders are placed monthly from any of the chosen suppliers, but the quantity discounts are based on the aggregated annual order quantities. We incorporate all this in a multi-period multi-product multi-echelon supply chain planning problem and develop a mixed integer programming (MIP) model for it. Leading commercial MIP solvers take 40 minutes on average to get any feasible solution for realistic instances of our model. With the aim of getting high-quality feasible solutions quickly, we develop an algorithm that constructs a good initial solution and three other iterative algorithms that improve this initial solution and are capable of getting very fast high quality primal solutions. Two of the latter three algorithms are based on MIP-based local search and the third algorithm incorporates a variable neighborhood Descent (VND) combining the first two. We present numerical results for a set of instances based on a real-world supply chain in the food industry and show the efficiency of our customized algorithms. The leading commercial solver CPLEX finds only a very few feasible solutions that have lower total costs than our initial solution within a three hours run time limit. All our iterative algorithms well outperform CPLEX. The VND algorithm has the best average performance. Its average relative gap to the best known feasible solution is within 1% in less than 40 minutes of computing time.
APA, Harvard, Vancouver, ISO, and other styles
37

Sohn, Alexandre Prodóssimo. "Estudos de estabilidade de sistemas elétricos de potência na presença de diferentes modelos de unidades eólicas." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/18/18154/tde-18032014-132419/.

Full text
Abstract:
Diante da crescente penetração da energia elétrica gerada por unidades eólicas no sistema elétrico de inúmeros países, a presente dissertação de mestrado investiga os problemas de estabilidade transitória, para geradores síncronos, de estabilidade de tensão, para geradores síncronos e aerogeradores e de estabilidade de velocidade, para aerogeradores, em sistemas de transmissão de energia elétrica, frente a grandes perturbações. São estabelecidas comparações entre os diferentes comportamentos dinâmicos de cada tipo de unidade eólica, referentes aos tipos A, B, C e D. Também, são verificados os efeitos de contingências aplicadas a sistemas teste, na presença de sistemas de geração convencionais dotados de geradores síncronos e parques eólicos compostos pelos tipos de unidades eólicas citadas, a fim de verificar a relação entre os diferentes sistemas de geração. As simulações realizadas contemplam aspectos dinâmicos de modelos genéricos de aerogeradores. São estudadas as partes constituintes de aerogeradores, realizadas as modelagens e discutidos os métodos de controle usuais. As principais características dos modelos genéricos de unidades eólicas, assim como os respectivos diagramas de bloco para cada modelo são apresentados. As simulações são realizadas no programa computacional PSS/E, cujos modelos, já validados, representam aerogeradores reais de fabricantes distintos. É observado que as diferentes características dos modelos de unidades eólicas e as estratégias de controle empregadas para atenuar os efeitos negativos de contingências impostas ao sistema, influenciam significativamente o perfil da tensão e o fluxo de potência na rede elétrica. Este fato é refletido em diferentes respostas dos sistemas de geração. As unidades eólicas mostram-se resistentes à perderem a estabilidade e apresentam-se capazes de estabilizar um sistema elétrico de potência, devido aos mecanismos de controle de velocidade e potência dos mesmos. A violação da curva LVRT mostra-se a principal causa da desconexão de aerogeradores da rede elétrica. Verifica-se neste trabalho que os aerogeradores somente tornam-se instáveis quando os geradores síncronos perdem o sincronismo, ou quando o controle do torque aerodinâmico é desconsiderado.
Considering the growing penetration of electrical energy generated by wind turbines in the power system of numerous countries, the present masters dissertation investigates the problems of transient stability, for synchronous generators, voltage stability, for synchronous generators and aerogenerators, and velocity stability, for aerogenerators, in transmission systems, before large disturbances. Comparisons are made between the different dynamic behaviors of each type of wind energy conversion system, namely types A, B, C and D. The effects of contingencies in some test systems in the presence of wind farms with different types of aerogenerators and conventional synchronous generators are verified, whose aim of the simulations is to analyze the relation between the different generation systems. The simulations performed contemplate dynamic aspects of generic models of wind turbines. The components of wind turbines are studied, the modeling of these components is elaborated and the usual control methods are discussed. The main characteristics of generic wind models and the diagram blocks are presented. The simulations were performed in software PSS/E, whose models already validated, represent real machines. The different characteristics of aerogenerator models and the control strategies employed to mitigate the negative consequences, from several contingencies, significantly influence the voltage profile and the power flow network. This fact implies in different responses of generation systems. It is verified that wind generators are very robust to perturbations and contribute to the stabilization of synchronous generators in a power system, increasing the average critical clearing times. Unstable modes related to the acceleration of the wind generator rotor are hardly ever observed due to the existing mechanisms of control of speed and generated power. It is observed that violation of the LVRT curve is the main cause of disconnection of wind turbines from the grid and it consists of the main cause of power system collapse triggered by problems in this type of generators.
APA, Harvard, Vancouver, ISO, and other styles
38

Yan, Zeyu master of science in engineering. "Optimal control for a modern wind turbine system." 2012. http://hdl.handle.net/2152/17055.

Full text
Abstract:
Wind energy is the most abundant resource in the renewable energy portfolio. Increasing the wind capture capability improves the economic viability of this technology, and makes it more competitive with traditional fossil-fuel based supplies. Therefore, it is necessary to explore control strategies that maximize aerodynamic efficiency, thus, the wind energy capture. Several control algorithms are developed and compared during this research. A traditional feedback control is adapted as the benchmark approach, where the turbine torque and the blade pitch angle are used to control the wind turbine operation during partial and full load operations, correspondingly. Augmented feedback control algorithms are then developed to improve the wind energy harvesting. Optimal control methodologies are extensively explored to achieve maximal wind energy capture. Numerical optimization techniques, such as direct shooting optimization are employed. The direct shooting method convert the optimal control problem into a parameter optimization problem and use nonlinear programming algorithm to find the optimal solution. The dynamic programming, a global optimization approach over a time horizon, is also investigated. The dynamic programming finds the control inputs for the blade pitch angle and speed ratio to maximize the power coefficient, based on historical wind data. A dynamic wind turbine model has been developed to facilitate this process by characterizing the performance of the various possible input scenarios. Simulation results of each algorithm on real wind site data are presented to compare the wind energy capture under the proposed control algorithms with the traditional feedback control design. The result of the tradeoff analysis between the computation expense and the energy capture is also reported.
text
APA, Harvard, Vancouver, ISO, and other styles
39

Huang, Hong-Chun, and 黃鴻鈞. "Numerical Analysis for the Modern Vertical Axis Wind Turbine Blade Performance in Rotational Mode." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/03101116996450186412.

Full text
Abstract:
碩士
國立臺灣科技大學
機械工程系
97
Establishment of a reliable simulation model to execute the numerical analysis and predict the aerodynamic performance associated with an innovative vertical axis wind turbine (VAWT) is the main goal of this research. This new VAWT owns a 3-dimensional matrix of the wind blade panels which operate in 90 degree oppositional to each other and move uniformly in the same direction as the wind. Because this VAWT’s rotary direction goes with the wind, it creates the smooth revolution of the entire blade-panel matrix and the smooth transfer of wind energy to the vertical shaft. Also, this integrated study is composed of the CFD calculation with LES scheme and the experimental field test for the performance verification. First of all, a series of low-Reynolds-number numerical simulation, ranging from 1.3×10^5 to 3.0×10^5, on the flow passing a horizontal plate is performed and compared to the 1/7-power-law solution for validating the accuracy of this LES model. Subsequently, after taking into account of the corrections caused by the surface friction and the angle-of-attack variation, this LES simulation outcome is agree well with the experimental data and presents an acceptable 21% deviation on the power coefficient from the field-test measurement under the condition of -5° angle-of-attack, 10 m/s wind speed, and TSR=0.125. Later, a parametric study on the blade length ratio (β) and the wind velocity (V) is carried out to realize their corresponding influences on this VAWT’s aerodynamic performance. Within all the cases considered here, the best power coefficient (Cp=0.070) appears at β=0.8 for the case of TSR=0.25. Additionally, the highest torque coefficient (Ct=0.238) is found at the case of V=3m/s, TSR=0.25, and β=0.9. The high torque coefficient implies that this new VAWT owns a good starting capability even under a low wind speed. Furthermore, the detailed flow patterns and torque contribution for each blade/panel at various locations are illustrated and analyzed clearly in this work; thus this established model can be applied for the further performance improvement of this VAWT.
APA, Harvard, Vancouver, ISO, and other styles
40

Vicente, António Henrique Seabra Nunes. "Validation of wind turbine wake models." Master's thesis, 2018. http://hdl.handle.net/10316/86091.

Full text
Abstract:
Dissertação de Mestrado Integrado em Engenharia Mecânica apresentada à Faculdade de Ciências e Tecnologia
O fenómeno de esteira tem um impacto significativo nos parques eólicos, dado que tanto a potência gerada pelas turbinas como o seu tempo de vida são afetados. Deste modo, os estudos de modelação da esteira tem uma elevada importância no seio da indústria da energia do vento, nomeadamente na otimização do layout de parques eólicos.O principal objetivo deste trabalho é a validação de modelos de esteira analíticos implementados no software WindStation. Esta validação foi baseada em dados experimentais medidos num parque eólico terrestre com oito turbinas eólicas, e reforçada com resultados obtidos no software WindSim. As conclusões tiradas basearam-se nos resultados obtidos para o défice de velocidade do vento a montante das turbinas.-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Wind turbine wakes have a strong impact on wind farms given that they affect the power output and the level of turbulence that determines the turbines lifetime. Thus, wake modelling is of critical importance to the wind energy industry, having a central role in the optimization of wind farm layouts. The main objective of this work is the validation of the analytical wake models implemented in the software package WindStation. Such validation was based on measurement data recorded in an onshore wind farm with eight wind turbines, and supported by results obtained by the software package WindSim. Conclusions were drawn by analyzing the computed velocity deficit of the air flow downstream of the wind turbines and the effective power of a single wind turbine.------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
APA, Harvard, Vancouver, ISO, and other styles
41

Aljeeran, Fares. "Basic Integrative Models for Offshore Wind Turbine Systems." Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-05-9101.

Full text
Abstract:
This research study developed basic dynamic models that can be used to accurately predict the response behavior of a near-shore wind turbine structure with monopile, suction caisson, or gravity-based foundation systems. The marine soil conditions were modeled using apparent fixity level, Randolph elastic continuum, and modified cone models. The offshore wind turbine structures were developed using a finite element formulation. A two-bladed 3.0 megawatt (MW) and a three-bladed 1.5 MW capacity wind turbine were studied using a variety of design load, and soil conditions scenarios. Aerodynamic thrust loads were estimated using the FAST Software developed by the U.S Department of Energy’s National Renewable Energy Laboratory (NREL). Hydrodynamic loads were estimated using Morison’s equation and the more recent Faltinsen Newman Vinje (FNV) theory. This research study addressed two of the important design constraints, specifically, the angle of the support structure at seafloor and the horizontal displacement at the hub elevation during dynamic loading. The simulation results show that the modified cone model is stiffer than the apparent fixity level and Randolph elastic continuum models. The effect of the blade pitch failure on the offshore wind turbine structure decreases with increasing water depth, but increases with increasing hub height of the offshore wind turbine structure.
APA, Harvard, Vancouver, ISO, and other styles
42

Cline, Shane. "Potential flow modelling for wind turbines." Thesis, 2011. http://hdl.handle.net/1828/3647.

Full text
Abstract:
Lagrangian potential flow methods are a promising alternative to mainstream wind turbine aerodynamics tools such as blade element momentum methods and grid-based computation fluid dynamics approaches. Potential flow methods are relatively easy to setup and robust with respect to geometry. With the advent of numerical techniques such as the fast multipole method, potential flow methods can be made computationally fast. Viscous core modelling has led to improvements in accuracy and numerical robustness. A C++ programming library employing Prandtl-Weissinger lifting line wing models and tailorable potential flow wake models has been developed under the name LibAero. The library offers steady-state, periodic, and unsteady flow simulators that can be used interchangeably with wake models. (Periodic and unsteady simulation are still under development and validation.) Wake models are constructed from potential flow elements such as vortex particles, laments, and sheets. Fast multipole method, symmetry modelling, multigrid method, and relaxation iteration are utilized to accelerate the computation of element-by-element interactions. The computational performance is assessed and the numerical results are validated against wind tunnel experimental data from the MEXICO Project and the Tj reborg wind turbine. The results of steady-state simulations with respect to a variety of numerical options and rotor blade designs are presented and conclusions are drawn.
Graduate
APA, Harvard, Vancouver, ISO, and other styles
43

LI, YUN-LIN, and 李運霖. "Study on Wind Turbine Blade Models Development and Reality Fabrication." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/m8xb6j.

Full text
Abstract:
碩士
建國科技大學
電機工程系暨研究所
105
ABSTRACT The global wind power systems at present include two main types: (1) horizontal axis wind turbine (HAWT) system, and (2) vertical axis wind turbine (VAWT) system. This paper studied on wind blade models development and reality manufacture. First, the researcher collected and read related literature of wind power systems. Second, the researcher studied on HAWT blade (including one traditional model and eight innovative models) and VAWT blade (including one traditional model and eight innovative models), and adopted the methodologies of Bionics and TRIZ to innovate. There are three VAWT blades used TRIZ theory, eight HAWT blades and five VAWT blades used Bionics. Third, the researcher used 3D direct modeling software (e.g. SpaceClaim, SolidWorks and AutoCAD) to draw the figures, and used RP 3D printer (FORTUS 360mc) to manufacture the wind blade models. Fourth, the researcher also used an experiment device (WINDTRAINER) to propel and measure the voltages, currents of the wind blade models, adjusted the wind speed (4 m/s~12 m/s), compared their watts (Pa) and rotor power coefficient (Cp). Thus, the researcher can find the higher efficient wind blades of HAWT and VAWT types. The researcher found the best Cp value of HAWT blade is Bentley type, the better Cp value is four-leaved clover type; and the best Cp value of VAWT blade is Tai-Chi spiral type, the better CP value is Taiwan shape type. The other, the better Cp value of commercial advertisement for attracting the customers are Bentley type and Taiwan shape type. The baseball set shape wind blade is quite attractive, but its Cp value needs to be improved. These customer oriented innovative wind blades are designed to go beyond the thinking of the traditional wind blade models. The next, in the area of reality manufacture, we purchased and installed one 300W type VAWT power system (including an arc type blade, a Spiral type blade, a generator, a cylinder about 3 meters in height, a controller, two batteries, and a load of LED streetlamp). We used one PC and its monitor package to test and analyze this system functions. The wind power system got more watts (Pa) during the winter in 2014 typhoon Soudelor and typhoon Dujuan and the winter in 2015,and typhoon Nepartak and the winter in 2016. Finally, this research result is valuable in teaching and R&D of wind power generation. Furthermore, we use these innovative wind blades to take part in some international invention exhibitions and won some prize that can win the honor for CTU.
APA, Harvard, Vancouver, ISO, and other styles
44

Fluck, Manuel. "Stochastic methods for unsteady aerodynamic analysis of wings and wind turbine blades." Thesis, 2017. http://hdl.handle.net/1828/7981.

Full text
Abstract:
Advancing towards `better' wind turbine designs engineers face two central challenges: first, current aerodynamic models (based on Blade Element Momentum theory) are inherently limited to comparatively simple designs of flat rotors with straight blades. However, such designs present only a subset of possible designs. Better concepts could be coning rotors, swept or kinked blades, or blade tip modifications. To be able to extend future turbine optimization to these new concepts a different kind of aerodynamic model is needed. Second, it is difficult to include long term loads (life time extreme and fatigue loads) directly into the wind turbine design optimization. This is because with current methods the assessment of long term loads is computationally very expensive -- often too expensive for optimization. This denies the optimizer the possibility to fully explore the effects of design changes on important life time loads, and one might settle with a sub-optimal design. In this dissertation we present work addressing these two challenges, looking at wing aerodynamics in general and focusing on wind turbine loads in particular. We adopt a Lagrangian vortex model to analyze bird wings. Equipped with distinct tip feathers, these wings present very complex lifting surfaces with winglets, stacked in sweep and dihedral. Very good agreement between experimental and numerical results is found, and thus we confirm that a vortex model is actually capable of analyzing complex new wing and rotor blade geometries. Next stochastic methods are derived to deal with the time and space coupled unsteady aerodynamic equations. In contrast to deterministic models, which repeatedly analyze the loads for different input samples to eventually estimate life time load statistics, the new stochastic models provide a continuous process to assess life time loads in a stochastic context -- starting from a stochastic wind field input through to a stochastic solution for the load output. Hence, these new models allow obtaining life time loads much faster than from the deterministic approach, which will eventually make life time loads accessible to a future stochastic wind turbine optimization algorithm. While common stochastic techniques are concerned with random parameters or boundary conditions (constant in time), a stochastic treatment of turbulent wind inflow requires a technique capable to handle a random field. The step from a random parameter to a random field is not trivial, and hence the new stochastic methods are introduced in three stages. First the bird wing model from above is simplified to a one element wing/ blade model, and the previously deterministic solution is substituted with a stochastic solution for a one-point wind speed time series (a random process). Second, the wind inflow is extended to an $n$-point correlated random wind field and the aerodynamic model is extended accordingly. To complete this step a new kind of wind model is introduced, requiring significantly fewer random variables than previous models. Finally, the stochastic method is applied to wind turbine aerodynamics (for now based on Blade Element Momentum theory) to analyze rotor thrust, torque, and power. Throughout all these steps the stochastic results are compared to result statistics obtained via Monte Carlo analysis from unsteady reference models solved in the conventional deterministic framework. Thus it is verified that the stochastic results actually reproduce the deterministic benchmark. Moreover, a considerable speed-up of the calculations is found (for example by a factor 20 for calculating blade thrust load probability distributions). Results from this research provide a means to much more quickly analyze life time loads and an aerodynamic model to be used a new wind turbine optimization framework, capable of analyzing new geometries, and actually optimizing wind turbine blades with life time loads in mind. However, to limit the scope of this work, we only present the aerodynamic models here and will not proceed to turbine optimization itself, which is left for future work.
Graduate
0538
0548
mfluck@uvic.ca
APA, Harvard, Vancouver, ISO, and other styles
45

Singh, Mohit 1982. "Dynamic models for wind power plants." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-08-3809.

Full text
Abstract:
Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. In order to determine how realistic model performance is, the performance of the one of the models (doubly fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.
text
APA, Harvard, Vancouver, ISO, and other styles
46

Cheng, Yu-Hsuan, and 鄭宇軒. "Analyzing Aerodynamics of Vertical Axis Wind Turbines with Different Models." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/33839777673828885429.

Full text
Abstract:
碩士
國立臺灣大學
應用力學研究所
99
VAWTs have the advantages of wind direction with no restrictions and convenient operation .VAWTs become the focus of development of offshore turbines in recent years. The aerodynamic characteristics of vertical axis wind turbines are determined by the complex interactions between the flow and the turbine blades. The complication mainly arises from the change of angle of attack, and Reynolds number of the blade airfoil during rotation and this leads to transient periodic aerodynamic forces on the blade. In this study, we analyze the torque and power output of large-scale wind turbines by using both BEM (Blade Element Method) and numerical method. The parameters of calculations include tip-speed ratio(tsr=3,4,5,6), number of blades(2,3,4), and solidity ratio(1/30、1/45、1/60). We found that the maximum power can be obtained at tsr=4, which is dominated by dynamic effect and viscous effect. The turbine with three leaves have the best power efficiency. When solidity is smaller than 1/45, the results of CFD and BEM are similar. Therefore, BEM is appropriate for prediction of large-scale VAWT.
APA, Harvard, Vancouver, ISO, and other styles
47

Mardfekri, Rastehkenari Maryam 1981. "Multi-hazard Reliability Assessment of Offshore Wind Turbines." Thesis, 2012. http://hdl.handle.net/1969.1/148290.

Full text
Abstract:
A probabilistic framework is developed to assess the structural reliability of offshore wind turbines. Probabilistic models are developed to predict the deformation, shear force and bending moment demands on the support structure of wind turbines. The proposed probabilistic models are developed starting from a commonly accepted deterministic model and by adding correction terms and model errors to capture respectively, the inherent bias and the uncertainty in developed models. A Bayesian approach is then used to assess the model parameters incorporating the information from virtual experiment data. The database of virtual experiments is generated using detailed three-dimensional finite element analyses of a suite of typical offshore wind turbines. The finite element analyses properly account for the nonlinear soil-structure interaction. Separate probabilistic demand models are developed for three operational/load conditions including: (1) operating under day-to-day wind and wave loading; (2) operating throughout earthquake in presence of day-to-day loads; and (3) parked under extreme wind speeds and earthquake ground motions. The proposed approach gives special attention to the treatment of both aleatory and epistemic uncertainties in predicting the demands on the support structure of wind turbines. The developed demand models are then used to assess the reliability of the support structure of wind turbines based on the proposed damage states for typical wind turbines and their corresponding performance levels. A multi-hazard fragility surface of a given wind turbine support structure as well as the seismic and wind hazards at a specific site location are incorporated into a probabilistic framework to estimate the annual probability of failure of the support structure. Finally, a framework is proposed to investigate the performance of offshore wind turbines operating under day-to-day loads based on their availability for power production. To this end, probabilistic models are proposed to predict the mean and standard deviation of drift response of the tower. The results are used in a random vibration based framework to assess the fragility as the probability of exceeding certain drift thresholds given specific levels of wind speed.
APA, Harvard, Vancouver, ISO, and other styles
48

Weber, Timothy L. "Turbulance induced loads on a teetered rotor." Thesis, 1991. http://hdl.handle.net/1957/37912.

Full text
Abstract:
Development of variable speed horizontal axis wind turbines has resulted in a need for an analysis code with a rotor speed degree-of-freedom. This study develops a five degree-of-freedom time domain computer code that evaluates blade and rotor, mean and cyclic loads with nonlinear aerodynamics together with atmospheric turbulence as a forcing function. Verification of the model is made by comparison of loads predictions between ESI-80 wind turbine data and analytical solutions. Results show good agreement for mean and cyclic loads and teeter angle excursions. A single-blade point turbulence simulation model is optimized using a three-blade point turbulence simulation model. The optimum point is the 80% radius location, although a multiplying factor is needed to make conservative fatigue cycle predictions of blade bending. ESI-80 start-up and shutdown scenarios are examined, prediction trends matched ESI-80 data. Three generator models are investigated. Results show that generator torque cycles are reduced and yearly energy capture increased by 24% when a variable speed generator is implemented.
Graduation date: 1991
APA, Harvard, Vancouver, ISO, and other styles
49

Pusha, Ayana T. "Multiple turbine wind power transfer system loss and efficiency analysis." 2013. http://hdl.handle.net/1805/3800.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
A gearless hydraulic wind energy transfer system utilizes the hydraulic power transmission principles to integrate the energy of multiple wind turbines in a central power generation location. The gearless wind power transfer technology may replace the current energy harvesting system to reduce the cost of operation and increase the reliability of wind power generation. It also allows for the integration of multiple wind turbines to one central generation unit, unlike the traditional wind power generation with dedicated generator and gearbox. A Hydraulic Transmission (HT) can transmit high power and can operate over a wide range of torque-to-speed ratios, allowing efficient transmission of intermittent wind power. The torque to speed ratios illustrates the relationship between the torque and speed of a motor (or pump) from the moment of start to when full-load torque is reached at the manufacturer recommended rated speed. In this thesis, a gearless hydraulic wind energy harvesting and transfer system is mathematically modeled and verified by experimental results. The mathematical model is therefore required to consider the system dynamics and be used in control system development. Mathematical modeling also provided a method to determine the losses of the system as well as overall efficiency. The energy is harvested by a low speed-high torque wind turbine connected to a high fixed-displacement hydraulic pump, which is connected to hydraulic motors. Through mathematical modeling of the system, an enhanced understanding of the HTS through analysis was gained that lead to a highly efficient hydraulic energy transmission system. It was determined which factors significantly influenced the system operation and its efficiency more. It was also established how the overall system operated in a multiple wind turbine configuration. The quality of transferred power from the wind turbine to the generator is important to maintaining the systems power balance, frequency droop control in grid-connected applications, and to ensure that the maximum output power is obtained. A hydraulic transmission system can transfer large amounts of power and has more flexibility than a mechanical and electrical system. However high-pressure hydraulic systems have shown low efficiency in wind power transfer when interfaced with a single turbine to a ground-level generator. HT’s generally have acceptable efficiency at full load and drop efficiency as the loading changes, typically having a peak around 60%. The efficiency of a HT is dependent on several parameters including volumetric flow rate, rotational speed and torque at the pump shaft, and the pressure difference across the inlet and outlet of the hydraulic pump and motor. It has been demonstrated that using a central generation unit for a group of wind turbines and transferring the power of each turbine through hydraulic system increases the efficiency of the overall system versus one turbine to one central generation unit. The efficiency enhancement depends on the rotational speed of the hydraulic pumps. Therefore, it is proven that the multiple-turbine hydraulic power transfer system reaches higher efficiencies at lower rotational speeds. This suggests that the gearbox can be eliminated from the wind powertrains if multiple turbines are connected to the central generation unit. Computer simulations and experimental results are provided to quantify the efficiency enhancements obtained by adding the second wind turbine hydraulic pump to the system.
APA, Harvard, Vancouver, ISO, and other styles
50

呂韋廷. "Study on Horizontal Axis Wind Turbine Blade Models Design and Comparison of Their Power Generation Efficiencies." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/50911141695868592920.

Full text
Abstract:
碩士
建國科技大學
電機工程系暨研究所
101
This research is mainly to design and manufacture the horizontal axis wind turbine blade models, and measure their power generation efficiencies. First, the researcher read the references of horizontal axis wind turbine systems to get the basic knowledge and technology. Second, the researcher designed and developed 10 horizontal axis blades (included 3 traditional types and 7 innovative types). The main innovative type blades were designed that used the Bionics methodology. Third, the researcher used 3D direct modeling software SpaceClaim to design the figures, and used RP 3D printer Objet EDEN 250 to manufacture the 10 blade models. Fourth, the researcher also used an experiment device WINDTRAINER to propel and measure the voltages, currents of the 10 blade models (including 2~4 blades, and different setting angles), adjusted the wind speed (4 m/s~14 m/s), and compared their watts (Pa) and rotor power coefficient (CP). Thus, this thesis can find the higher efficiency blades. The blade of imitation bird feathers is the best wind blade. Finally, this research result is valuable in teaching and R&;D. Furthermore, these innovative type blades can apply for patent and strive for technology transfer.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography