Academic literature on the topic 'Modifications de cellulose'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Modifications de cellulose.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Modifications de cellulose"

1

Alavi, Mehran. "Modifications of microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (NCC) for antimicrobial and wound healing applications." e-Polymers 19, no. 1 (2019): 103–19. http://dx.doi.org/10.1515/epoly-2019-0013.

Full text
Abstract:
AbstractRecently, great attention has been paid to nano-composites of cellulose, due to their unique structure as a most abundant natural polymer with having exceptional properties such as renewable, biodegradable and high specific tensile strength, aspect ratio, and Young’s modulus. Prominent cellulose is naturally present in plant lignocellulosic biomass as a biocomposite made of cellulose, hemi-celluloses, lignin, etc. In addition, it can be extracted from other natural sources including bacteria, algae, and sea animals. Microcrystalline cellulose (MCC), nanocrystalline cellulose (NCC), and
APA, Harvard, Vancouver, ISO, and other styles
2

Mauger, Olivia, Sophia Westphal, Stefanie Klöpzig, et al. "Plasma Activation as a Powerful Tool for Selective Modification of Cellulose Fibers towards Biomedical Applications." Plasma 3, no. 4 (2020): 196–203. http://dx.doi.org/10.3390/plasma3040015.

Full text
Abstract:
Cellulosic substrates are known for their biocompatibility, non-cytotoxicity, hypoallergenicity and sterilizability. It is therefore desirable to have a bundle of methods to equip them with tailored properties such as affinity profiles for various applications. In the case of highly swelling materials such as cellulose sponges, “dry” functionalization using plasma activation is the method of choice. The purpose of the study was to adapt low-pressure plasma technology for targeted cellulose modification. Using plasma (pre-) treatment combined with gaseous reactants like O2, ethylene oxide or si
APA, Harvard, Vancouver, ISO, and other styles
3

Spiridon, Iuliana, Carmen-Alice Teacă, and Ruxanda Bodîrlău. "Structural changes evidenced by FTIR spectroscopy in cellulosic materials after pre-treatment with ionic liquid and enzymatic hydrolysis." BioResources 6, no. 1 (2010): 400–413. http://dx.doi.org/10.15376/biores.6.1.400-413.

Full text
Abstract:
Attempts were made to enhance the hydrolysis of Asclepias syriaca (As) seed floss and poplar seed floss (PSF) by cellulase after pre-treatment with ionic liquids. Two ionic liquids, namely 1-butyl-3-methylimidazolium chloride [BMIM]Cl and 1-ethyl-3-methylimidazolium tetrachloroaluminate [EMIM]Cl-AlCl3, were used. In comparison with conventional cellulose pretreatment processes, the ionic liquids were used under a milder condition corresponding to the optimum activity of cellulase. Hydrolysis kinetics of the IL-treated cellulose materials was significantly enhanced. The initial hydrolysis rates
APA, Harvard, Vancouver, ISO, and other styles
4

Stenstad, Per, Martin Andresen, Bjørn Steinar Tanem, and Per Stenius. "Chemical surface modifications of microfibrillated cellulose." Cellulose 15, no. 1 (2007): 35–45. http://dx.doi.org/10.1007/s10570-007-9143-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wibowo, Nani, Meng Jiy Wang, Chin Chuan Chang, and Cheng Kang Lee. "The Design of Novel Scaffolds by Integrating Microbial Cellulose onto Plasma Treated Polypropylene." Advanced Materials Research 47-50 (June 2008): 1371–74. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.1371.

Full text
Abstract:
The effect of plasma treatment on physicochemical properties of a porous polypropylene (PP) membrane was studied. The treated porous membranes were used as substrates for Acetobacter xylinum to grow and produce microbial cellulose pellicle. The effects of modifications on wettability and morphology were correlated with the growth rate of microbial cellulose. The CO2, O2 and N2/H2 plasmas modification not only can increase the hydrophilicity of the membrane but also enhance the growth of microbial cellulose. For 14 days of cultivation, the amount of microbial cellulose found on O2 treated subst
APA, Harvard, Vancouver, ISO, and other styles
6

Teixeira, Paulo Ronaldo Sousa, Ana Siqueira do N. Marreiro Teixeira, José Regilmar Teixeira da Silva, et al. "Electrochemical Behavior of Electroactive PVS/PANI Films Containing Chemically Modified Cellulose." Materials Science Forum 869 (August 2016): 809–14. http://dx.doi.org/10.4028/www.scientific.net/msf.869.809.

Full text
Abstract:
Electroactive films containing cellulose modified with cationic and anionic groups were prepared with polyaniline (PANI) and poly (vinyl sulfonic acid) (PVS). The modifications were performed with (aminomethyl) pyridine (AMP), ethylenediamine (EDA), buthylenediamine (BN), bis-(aminopropyl) piperazine (APP), maleic anhydride (MA), and phosphate PO43- groups. The films were prepared using the layer-by-layer (LbL) technique, utilizing dispersed cellulose in a PANI solution forming the PVS/PANI system (cationic or anionic cellulose). Films of unmodified microcrystalline cellulose (MC) were also pr
APA, Harvard, Vancouver, ISO, and other styles
7

Taczała, Joanna, Jacek Sawicki, and Joanna Pietrasik. "Chemical Modification of Cellulose Microfibres to Reinforce Poly(methyl methacrylate) Used for Dental Application." Materials 13, no. 17 (2020): 3807. http://dx.doi.org/10.3390/ma13173807.

Full text
Abstract:
The mechanical properties of dental acrylic resins have to be improved in the case of a thin denture plate. This can be achieved by cellulose addition, playing the role of active filler. But to provide the excellent dispersion of cellulose microfibres within the hydrophobic polymer matrix, its surface has to be modified. Cellulose microfibres with average length from 8 to 30 μm were modified with octyltriethoxysilane and (3-methacryloxypropyl)methyldimethoxysilane. The latter also participated in the polymerisation reaction of methyl methacrylate. Dental composites were prepared following the
APA, Harvard, Vancouver, ISO, and other styles
8

Abushammala, Hatem, and Jia Mao. "A Review of the Surface Modification of Cellulose and Nanocellulose Using Aliphatic and Aromatic Mono- and Di-Isocyanates." Molecules 24, no. 15 (2019): 2782. http://dx.doi.org/10.3390/molecules24152782.

Full text
Abstract:
Nanocellulose has been subjected to a wide range of chemical modifications towards increasing its potential in certain fields of interest. These modifications either modulated the chemistry of the nanocellulose itself or introduced certain functional groups onto its surface, which varied from simple molecules to polymers. Among many, aliphatic and aromatic mono- and di-isocyanates are a group of chemicals that have been used for a century to modify cellulose. Despite only being used recently with nanocellulose, they have shown great potential as surface modifiers and chemical linkers to graft
APA, Harvard, Vancouver, ISO, and other styles
9

Eyley, Samuel, and Wim Thielemans. "Surface modification of cellulose nanocrystals." Nanoscale 6, no. 14 (2014): 7764–79. http://dx.doi.org/10.1039/c4nr01756k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Araki, Jun. "Surface Modifications of Cellulose Nanocrystals and Their Applications." JAPAN TAPPI JOURNAL 73, no. 1 (2019): 63–68. http://dx.doi.org/10.2524/jtappij.73.63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Modifications de cellulose"

1

Kathirgamanathan, Kalyani. "Modifications of cellulose using ionic liquids." Thesis, University of Auckland, 2010. http://hdl.handle.net/2292/5949.

Full text
Abstract:
This project was focused on the modications of cellulose using ionic liquids. Cellulose is the most highly abundant natural biopolymer on earth. However the utilisation of cellulose requires chemical modication or physical dissolution in a suitable solvent. Recently ionic liquids have become the solvent of choice for cellulose and other biopolymers. This is because of their unique solvency power and the desirable properties such as non-ammability, thermal stability, and recyclability. The use of cellulose/ionic liquid combinations not only supports the green chemistry concept but also helps in
APA, Harvard, Vancouver, ISO, and other styles
2

Mangiante, Gino. ""Green" and innovative chemical modifications of cellulose fibers." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0024.

Full text
Abstract:
Ce projet de recherche mené en collaboration avec le CTP (Centre Technique du papier) a eu comme objectif de mettre en place une stratégie de greffage de polymères sur des fibres de cellulose via « Chimie Click » dans l’eau et dans des conditions douces et respectueuses de l’environnement afin de conférer de nouvelles propriétés mécaniques aux papiers résultants. La première étape a été d’élaborer une fonctionnalisation alcyne des fibres dans des conditions douces – dans l’eau ou dans un mélange eau/isopropanol – permettant à la fois une fonctionnalisation conséquente tout en préservant la cri
APA, Harvard, Vancouver, ISO, and other styles
3

Singh, Gargi. "Effect of surface modifications on biodegradation of nanocellulose and microbial response." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/76655.

Full text
Abstract:
History teaches us that novel materials, such as chlorofluorocarbon and asbestos, can have dire unintended consequences to human and environmental health. The exponential growth of the field of nanotechnology and the products developed along the way provide the opportunity for a new paradigm of design thinking, in which human and environmental impacts are considered early on in product development. In particular, nanocellulose is touted as a promising green nanomaterial, as it is sourced from an effectively inexhaustible feedstock of wood-based cellulose and is assumed to be harmless to the en
APA, Harvard, Vancouver, ISO, and other styles
4

BAUDOIN, REMY. "Modifications chimiques de microfibrilles de cellulose en vue de rendre leur surface hydrophobe." Université Joseph Fourier (Grenoble), 2000. http://www.theses.fr/2000GRE10052.

Full text
Abstract:
La cellulose a depuis longtemps ete utilisee comme renfort dans les materiaux synthetiques ou naturels. Notre etude a porte sur la modification des microfibrilles, elements structuraux de base de la cellulose, afin de diminuer l'hydrophilie de surface. Ceci permet d'augmenter l'affinite entre les microfibrilles et des solvants organiques peu ou pas hydrophiles. La dispersion homogene des microfibrilles ainsi modifiees dans des solvants organiques permet d'envisager leur utilisation comme renfort dans des materiaux composites et nanocomposites. Pour atteindre cet objectif, nous avons modifie la
APA, Harvard, Vancouver, ISO, and other styles
5

Tastet, Damien. "Modulation des propriétés macroscopiques des fibres de pin maritime par polymérisation radicalaire contrôlée amorcée depuis la surface : élaboration de bio-hybrides fonctionnels." Thesis, Pau, 2011. http://www.theses.fr/2011PAUU3026/document.

Full text
Abstract:
Ce travail s’inscrit au sein du projet régional de recherche BEMA (Bois Eco Matériaux Aquitaine) qui allie partenaires universitaires et industriels afin de valoriser, à travers la filière panneaux de particules, des ressources abondantes en Aquitaine : le maïs et le Pin Maritime. L’objectif de cette thèse est de greffer de manière covalente des chaînes de polymère à la surface de fibres de bois afin de modifier leur état de surface et de favoriser leur comptabilisation avec un liant naturel et/ou synthétique. Pour atteindre cet objectif, nous avons choisi d’utiliser une technique de polyméris
APA, Harvard, Vancouver, ISO, and other styles
6

Le, Gars Manon. "Surface modifications of cellulose nanocrystals for biobased food packaging applications Polymerization of glycidyl methacrylate from the surface of cellulose nanocrystals for the elaboration of PLA-based nanocomposites Role of solvent exchange in dispersion of cellulose nanocrystals and their esterification using fatty acids as solvents." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALI021.

Full text
Abstract:
Ce projet vise à développer de nouvelles modifications chimiques de surface des nanocristaux de cellulose (NCC), afin d'améliorer leur compatibilité avec le polymère biosourcé qu'est l'acide polylactique (PLA), afin de combiner leurs propriétés intrinsèques respectives. Ainsi, des matériaux multiphasiques ont été produits à partir de PLA en y incluant des nanomatériaux cellulosiques. L'application visée est celle de l'emballage alimentaire, et l'amélioration des propriétés barrières du PLA, notamment vis-à-vis de l'oxygène et de la vapeur d'eau, est alors un point clé dans la caractérisation d
APA, Harvard, Vancouver, ISO, and other styles
7

Pegg, Timothy Joseph. "Cell Wall Carbohydrate Modifications during Flooding-Induced Aerenchyma Formation in Fabaceae Roots." Miami University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=miami1626443795433208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Josefsson, Peter. "Biochemical modification of wood components." Licentiate thesis, Stockholm : Fibre and Polymer Technology, KTH, the Royal Institute of Technology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xu, Hui. "Genetic Modification of Thermotoga to Degrade Cellulose." Bowling Green State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1430913637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Persson, Per. "Strategies for cellulose fiber modification." Doctoral thesis, KTH, Fibre and Polymer Technology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3730.

Full text
Abstract:
<p>This thesis describes strategies for and examples ofcellulose fiber modification.The ability of an engineered biocatalyst, acellulose-binding module fused to the<i>Candida antarctica</i>lipase B, to catalyze ring-openingpolymerization of e-caprolactone in close proximity tocellulose fiber surfaces was explored. The water content in thesystem was found to regulate the polymer molecular weight,whereas the temperature primarily influenced the reaction rate.The hydrophobicity of the cellulose sample increased as aresult of the presence of surface-deposited polyester.</p><p>A two-step enzymatic
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Modifications de cellulose"

1

Haq, Humara. Investigations of proteinase inhibitors and modifications to microbially produced cellulose. University of Birmingham, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liebert, Tim. Cellulose solvents: For analysis, shaping, and chemical modification. Edited by American Chemical Society. Cellulose and Renewable Materials Division and American Chemical Society Meeting. American Chemical Society, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liebert, Tim, Kevin J. Edgar, and Thomas Heinze. Cellulose solvents: For analysis, shaping, and chemical modification. American Chemical Society, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liebert, Tim F., Thomas J. Heinze, and Kevin J. Edgar, eds. Cellulose Solvents: For Analysis, Shaping and Chemical Modification. American Chemical Society, 2010. http://dx.doi.org/10.1021/bk-2010-1033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mondal, Ibrahim H. Cellulose and Cellulose Composites: Modification, Characterization and Applications. Nova Science Publishers, Incorporated, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mondal, Ibrahim H. Cellulose and Cellulose Derivatives: Synthesis, Modification and Applications. Nova Science Publishers, Incorporated, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1945-, Young Raymond Allen, and Rowell Roger M, eds. Cellulose: Structure, modification, and hydrolysis. Wiley, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Young, Raymond A. Cellulose: Structure, Modification and Hydrolysis. Krieger Pub Co, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

F, Niyazi, ed. Stabilization and modification of cellulose diacetate. Nova Science Publishers, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stabilization and modification of cellulose diacetate. Nova Science Publishers, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Modifications de cellulose"

1

González, Patricia, Mabel Vega, and Claudio Zaror. "Life Cycle Inventory of Pine and Eucalyptus Cellulose Production in Chile: Effect of Process Modifications." In Towards Life Cycle Sustainability Management. Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1899-9_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Keshipour, Sajjad, and Ali Maleki. "Modification of Cellulose." In Polymers and Polymeric Composites: A Reference Series. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-77830-3_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Keshipour, Sajjad, and Ali Maleki. "Modification of Cellulose." In Polymers and Polymeric Composites: A Reference Series. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76573-0_17-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Daud, Jannah B., and Koon-Yang Lee. "Surface Modification of Nanocellulose." In Handbook of Nanocellulose and Cellulose Nanocomposites. Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527689972.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Huang, Jin, Youli Chen, and Peter R. Chang. "Surface Modification of Cellulose Nanocrystals for Nanocomposites." In Surface Modification of Biopolymers. John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781119044901.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fladung, Matthias. "Modification of Cellulose in Wood." In Tree Transgenesis. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-32199-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rodríguez, Francisco, María J. Galotto, Abel Guarda, and Julio Bruna. "Modification of Cellulose Acetate Films." In Sustainable Development and Biodiversity. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44570-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Partain, Emmett M. "The Synthesis of Hydrophobe-Modified Hydroxyethyl Cellulose Polymers Using Phase Transfer Catalysis." In Polymer Modification. Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1477-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Quentin, Michaël, Henry van der Valk, Jan van Dam, and Ed de Jong. "Cellulose-Binding Domains: Tools for Innovation in Cellulosic Fiber Production and Modification." In ACS Symposium Series. American Chemical Society, 2003. http://dx.doi.org/10.1021/bk-2003-0855.ch009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Owonubi, S. J., S. C. Agwunca, N. M. Malima, E. M. Makhatha, and Neerish Revaprasadu. "Chapter 7. Engineering and Surface Modification of Cellulose Nanoparticles and Their Characterization." In Cellulose Nanoparticles : Chemistry and Fundamentals. Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781788019521-00178.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Modifications de cellulose"

1

Prasher, Sangeeta, Mukesh Kumar, and Surinder Singh. "Gamma ray induced modifications in cellulose triacetate polymer used as a solid-state nuclear track detector." In RECENT ADVANCES IN FUNDAMENTAL AND APPLIED SCIENCES: RAFAS2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4990308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

TAKAGI, HITOSHI, ANTONIO N. NAKAGAITO, and YUYA SAKAGUCHI. "STRUCTURAL MODIFICATION OF CELLULOSE NANOCOMPOSITES BY STRETCHING." In MATERIALS CHARACTERISATION 2017. WIT Press, 2017. http://dx.doi.org/10.2495/mc170251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rathnayake, W. S. M., L. Karunanayake, A. M. P. B. Samarasekara, and D. A. S. Amarasinghe. "Chemical modification of Microcrystalline Cellulose using Sunflower oil." In 2020 Moratuwa Engineering Research Conference (MERCon). IEEE, 2020. http://dx.doi.org/10.1109/mercon50084.2020.9185332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Anpilova, A. Yu, E. E. Mastalygina, N. P. Khrameeva, and A. A. Popov. "Surface modification of microcrystalline cellulose by fatty acids." In PROCEEDINGS OF THE ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. Author(s), 2018. http://dx.doi.org/10.1063/1.5083261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kangok Lee, Gyuyeop Lee, Kyeongho Han, Jaedek Han, and Kiehyung Chung. "Cellulose modification study by e-beam irradiation & its applications." In 2008 IEEE 35th International Conference on Plasma Science (ICOPS). IEEE, 2008. http://dx.doi.org/10.1109/plasma.2008.4590926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Qisong, Hang Song, Jiang Li, and Shun Yao. "Glycin Modification of Spherical Cellulose for Chromium Ions Removal from Wastewater." In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5518187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Song, Chao Tang, Jingyu Xie, Xu Li, and Dong Hu. "Molecular dynamics simulation of grafting and modification of insulation paper cellulose." In 2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE). IEEE, 2016. http://dx.doi.org/10.1109/ichve.2016.7800624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yazykova, M. Yu, I. A. Potapova, M. A. Porochkina, and A. I. Sizova. "New strategies for surface modification of bacterial cellulose with antimicrobial properties." In PROCEEDINGS OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN MECHANICAL AND MATERIALS ENGINEERING: ICRTMME 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0026305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Periolatto, Monica, and Giuseppe Gozzelino. "Surface modification and characterization of cellulose-based filters for water-oil separation." In 9TH INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2018. http://dx.doi.org/10.1063/1.5045879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pfütze, Christian. "Timber modification by radio wave technology." In IABSE Congress, New York, New York 2019: The Evolving Metropolis. International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.1912.

Full text
Abstract:
&lt;p&gt;The following paper describes how radio wave thermal modification at temperatures above 160°C can improve the durability of timber. It also broadens possible applications in areas where the timber decays faster under natural conditions. During the process, cellulose areas are modified to absorb less water. The treated timber is more resistant to decaying fungi. The heat required for this process is generated by polarization at a molecular level, similar to a microwave oven. However, the frequency of the radio and microwaves are different. (The frequency of radio and microwave are 13.5
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Modifications de cellulose"

1

Derr, Dan. Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1113242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!