Journal articles on the topic 'Modifications de cellulose'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Modifications de cellulose.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Alavi, Mehran. "Modifications of microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (NCC) for antimicrobial and wound healing applications." e-Polymers 19, no. 1 (2019): 103–19. http://dx.doi.org/10.1515/epoly-2019-0013.
Full textMauger, Olivia, Sophia Westphal, Stefanie Klöpzig, et al. "Plasma Activation as a Powerful Tool for Selective Modification of Cellulose Fibers towards Biomedical Applications." Plasma 3, no. 4 (2020): 196–203. http://dx.doi.org/10.3390/plasma3040015.
Full textSpiridon, Iuliana, Carmen-Alice Teacă, and Ruxanda Bodîrlău. "Structural changes evidenced by FTIR spectroscopy in cellulosic materials after pre-treatment with ionic liquid and enzymatic hydrolysis." BioResources 6, no. 1 (2010): 400–413. http://dx.doi.org/10.15376/biores.6.1.400-413.
Full textStenstad, Per, Martin Andresen, Bjørn Steinar Tanem, and Per Stenius. "Chemical surface modifications of microfibrillated cellulose." Cellulose 15, no. 1 (2007): 35–45. http://dx.doi.org/10.1007/s10570-007-9143-y.
Full textWibowo, Nani, Meng Jiy Wang, Chin Chuan Chang, and Cheng Kang Lee. "The Design of Novel Scaffolds by Integrating Microbial Cellulose onto Plasma Treated Polypropylene." Advanced Materials Research 47-50 (June 2008): 1371–74. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.1371.
Full textTeixeira, Paulo Ronaldo Sousa, Ana Siqueira do N. Marreiro Teixeira, José Regilmar Teixeira da Silva, et al. "Electrochemical Behavior of Electroactive PVS/PANI Films Containing Chemically Modified Cellulose." Materials Science Forum 869 (August 2016): 809–14. http://dx.doi.org/10.4028/www.scientific.net/msf.869.809.
Full textTaczała, Joanna, Jacek Sawicki, and Joanna Pietrasik. "Chemical Modification of Cellulose Microfibres to Reinforce Poly(methyl methacrylate) Used for Dental Application." Materials 13, no. 17 (2020): 3807. http://dx.doi.org/10.3390/ma13173807.
Full textAbushammala, Hatem, and Jia Mao. "A Review of the Surface Modification of Cellulose and Nanocellulose Using Aliphatic and Aromatic Mono- and Di-Isocyanates." Molecules 24, no. 15 (2019): 2782. http://dx.doi.org/10.3390/molecules24152782.
Full textEyley, Samuel, and Wim Thielemans. "Surface modification of cellulose nanocrystals." Nanoscale 6, no. 14 (2014): 7764–79. http://dx.doi.org/10.1039/c4nr01756k.
Full textAraki, Jun. "Surface Modifications of Cellulose Nanocrystals and Their Applications." JAPAN TAPPI JOURNAL 73, no. 1 (2019): 63–68. http://dx.doi.org/10.2524/jtappij.73.63.
Full textJacek, Paulina, Marcin Szustak, Katarzyna Kubiak, Edyta Gendaszewska-Darmach, Karolina Ludwicka, and Stanisław Bielecki. "Scaffolds for Chondrogenic Cells Cultivation Prepared from Bacterial Cellulose with Relaxed Fibers Structure Induced Genetically." Nanomaterials 8, no. 12 (2018): 1066. http://dx.doi.org/10.3390/nano8121066.
Full textPogorelova, Natalia, Evgeniy Rogachev, Ilya Digel, Svetlana Chernigova, and Dmitry Nardin. "Bacterial Cellulose Nanocomposites: Morphology and Mechanical Properties." Materials 13, no. 12 (2020): 2849. http://dx.doi.org/10.3390/ma13122849.
Full textLi, Wenyi, John D. Wade, Eric Reynolds, and Neil M. O'Brien-Simpson. "Chemical Modification of Cellulose Membranes for SPOT Synthesis." Australian Journal of Chemistry 73, no. 3 (2020): 78. http://dx.doi.org/10.1071/ch19335.
Full textIsogai, Akira. "Structural Characterization and Modifications of Surface-oxidized Cellulose Nanofiber." Journal of the Japan Petroleum Institute 58, no. 6 (2015): 365–75. http://dx.doi.org/10.1627/jpi.58.365.
Full textLi, Yongchao, Diana C. Irwin, and David B. Wilson. "Increased Crystalline Cellulose Activity via Combinations of Amino Acid Changes in the Family 9 Catalytic Domain and Family 3c Cellulose Binding Module of Thermobifida fusca Cel9A." Applied and Environmental Microbiology 76, no. 8 (2010): 2582–88. http://dx.doi.org/10.1128/aem.02735-09.
Full textBeekmann, Uwe, Paul Zahel, Berit Karl, et al. "Modified Bacterial Cellulose Dressings to Treat Inflammatory Wounds." Nanomaterials 10, no. 12 (2020): 2508. http://dx.doi.org/10.3390/nano10122508.
Full textRampinelli, Gabriele, Luca Di Landro, and Toru Fujii. "Characterization of Biomaterials based on Microfibrillated Cellulose with Different Modifications." Journal of Reinforced Plastics and Composites 29, no. 12 (2009): 1793–803. http://dx.doi.org/10.1177/0731684409335453.
Full textMukhamadeeva, R. M., R. G. Zhbankov, V. I. Kovalenko, V. F. Sopin, and G. N. Marchenko. "Low-frequency IR spectra of various structural modifications of cellulose." Journal of Applied Spectroscopy 52, no. 4 (1990): 403–7. http://dx.doi.org/10.1007/bf00660537.
Full textSaidane, Dorra, Emilie Perrin, Fanch Cherhal, Florian Guellec, and Isabelle Capron. "Some modification of cellulose nanocrystals for functional Pickering emulsions." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, no. 2072 (2016): 20150139. http://dx.doi.org/10.1098/rsta.2015.0139.
Full textBarambu, A. U., D. E. A. Boryo, H. M. Adamu, N. M. Lawal, and A. B. Mustapha. "Effect of Organic Alternative Scouring Agents on Structure of Cellulose/Polyester Blend Fabric." Journal of Applied Sciences and Environmental Management 24, no. 7 (2020): 1175–79. http://dx.doi.org/10.4314/jasem.v24i7.8.
Full textBrännvall, Elisabet, and Karin Walter. "Process modifications to obtain a prehydrolysis kraft dissolving pulp with low limiting pulp viscosity." Nordic Pulp & Paper Research Journal 35, no. 3 (2020): 332–41. http://dx.doi.org/10.1515/npprj-2019-0100.
Full textAl-Naggar, Tayseer I., Basma A. El-Badry, and Naglaa F. Abdel All. "Study the modifications induced by alpha particles in cellulose nitrate NTD." Vacuum 160 (February 2019): 31–36. http://dx.doi.org/10.1016/j.vacuum.2018.11.003.
Full textRebière, Jérémy, Maëlie Heuls, Patrice Castignolles, et al. "Structural modifications of cellulose samples after dissolution into various solvent systems." Analytical and Bioanalytical Chemistry 408, no. 29 (2016): 8403–14. http://dx.doi.org/10.1007/s00216-016-9958-1.
Full textGauthier, Helene, Anne-Cecile Coupas, Pascal Villemagne, and Robert Gauthier. "Physicochemical modifications of partially esterified cellulose evidenced by inverse gas chromatography." Journal of Applied Polymer Science 69, no. 11 (1998): 2195–203. http://dx.doi.org/10.1002/(sici)1097-4628(19980912)69:11<2195::aid-app11>3.0.co;2-z.
Full textHeinze, Thomas, Kerstin Rahn, Mariet Jaspers, and Hugo Berghmans. "p-Toluenesulfonyl esters in cellulose modifications: acylation of remaining hydroxyl groups." Macromolecular Chemistry and Physics 197, no. 12 (1996): 4207–24. http://dx.doi.org/10.1002/macp.1996.021971218.
Full textSaedi, Shahab, Coralia V. Garcia, Jun Tae Kim, and Gye Hwa Shin. "Physical and chemical modifications of cellulose fibers for food packaging applications." Cellulose 28, no. 14 (2021): 8877–97. http://dx.doi.org/10.1007/s10570-021-04086-0.
Full textSouthon, J. R., and A. L. Magana. "A Comparison of Cellulose Extraction and ABA Pretreatment Methods for AMS 14C Dating of Ancient Wood." Radiocarbon 52, no. 3 (2010): 1371–79. http://dx.doi.org/10.1017/s0033822200046452.
Full textCitterio, Barbara, Manuela Malatesta, Serafina Battistelli, et al. "Possible involvement ofPseudomonas fluorescensand Bacillaceae in structural modifications ofTuber borchiifruit bodies." Canadian Journal of Microbiology 47, no. 3 (2001): 264–68. http://dx.doi.org/10.1139/w01-005.
Full textPotthast, Antje, Mirjana Kostic, Sonja Schiehser, Paul Kosma, and Thomas Rosenau. "Studies on oxidative modifications of cellulose in the periodate system: Molecular weight distribution and carbonyl group profiles." Holzforschung 61, no. 6 (2007): 662–67. http://dx.doi.org/10.1515/hf.2007.099.
Full textNoé, Pierre, and Henri Chanzy. "Swelling of Valonia cellulose microfibrils in amine oxide systems." Canadian Journal of Chemistry 86, no. 6 (2008): 520–24. http://dx.doi.org/10.1139/v08-030.
Full textBinhayeeniyi, Nawal, Adinan Jehsu, Mancharee Sukpet, and Safitree Nawae. "Surface Modification of Cellulose Membrane by Air Plasma Treatment." Advanced Materials Research 770 (September 2013): 112–15. http://dx.doi.org/10.4028/www.scientific.net/amr.770.112.
Full textUmmartyotin, S., and C. Pechyen. "Waste Composite Sensor Designed by Cellulose and Activated Carbon as Ethylene Absorber." International Journal of Polymer Science 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/3841410.
Full textKhine, Yee Yee, and Martina H. Stenzel. "Surface modified cellulose nanomaterials: a source of non-spherical nanoparticles for drug delivery." Materials Horizons 7, no. 7 (2020): 1727–58. http://dx.doi.org/10.1039/c9mh01727e.
Full textRamesh, Sivalingam, Jaehwan Kim, and Joo-Hyung Kim. "Characteristic of Hybrid Cellulose-Amino Functionalized POSS-Silica Nanocomposite and Antimicrobial Activity." Journal of Nanomaterials 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/936590.
Full textCichosz, Stefan, and Anna Masek. "Superiority of Cellulose Non-Solvent Chemical Modification over Solvent-Involving Treatment: Application in Polymer Composite (part II)." Materials 13, no. 13 (2020): 2901. http://dx.doi.org/10.3390/ma13132901.
Full textPangau, Jeafert R., Hanny F. Sangian, and Benny M. Lumi. "Karakterisasi Bahan Selulosa Dengan Iradiasi Pretreatment Gelombang Mikro Terhadap Serbuk Kayu Cempaka Wasian (Elmerillia Ovalis) Di Sulawesi Utara." Jurnal MIPA 6, no. 1 (2017): 53. http://dx.doi.org/10.35799/jm.6.1.2017.16157.
Full textXin, Yuanrong, Guowei Wang, Wenjuan Han, Yehua Shen, and Hiroshi Uyama. "An ideal enzyme immobilization carrier: a hierarchically porous cellulose monolith fabricated by phase separation method." Pure and Applied Chemistry 90, no. 6 (2018): 1055–62. http://dx.doi.org/10.1515/pac-2017-0710.
Full textCH. Venkata Prasad et al.,, CH Venkata Prasad et al ,. "Surface Modifications and Properties for Caryota Urens Cellulose Fibers Reinforced Polymer Composites." International Journal of Mechanical and Production Engineering Research and Development 10, no. 3 (2020): 1423–32. http://dx.doi.org/10.24247/ijmperdjun2020126.
Full textLee, Sunwoo E. "Surface Modifications of Cellulose Acetate Film for the Application of Face Shield." Journal of Materials Science and Chemical Engineering 08, no. 08 (2020): 41–45. http://dx.doi.org/10.4236/msce.2020.88004.
Full textProcter, A. R., and R. H. Wiekenkamp. "The stabilization of cellulose to alkaline degradation by novel end unit modifications." Journal of Polymer Science Part C: Polymer Symposia 28, no. 1 (2007): 1–13. http://dx.doi.org/10.1002/polc.5070280104.
Full textKouznetsov, Dmitri A., Andrey A. Ivanov, Pavel R. Veletsky, Vyacheslav L. Charsky, and Oleg S. Beklemishev. "A Laboratory Model for Studying Environmently Dependent Chemical Modifications in Textile Cellulose." Textile Research Journal 66, no. 2 (1996): 111–14. http://dx.doi.org/10.1177/004051759606600208.
Full textGorgieva, Selestina. "Bacterial Cellulose as a Versatile Platform for Research and Development of Biomedical Materials." Processes 8, no. 5 (2020): 624. http://dx.doi.org/10.3390/pr8050624.
Full textLu, Tingju, Shimeng Liu, Man Jiang, et al. "Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly(lactic acid) composites." Composites Part B: Engineering 62 (June 2014): 191–97. http://dx.doi.org/10.1016/j.compositesb.2014.02.030.
Full textZhang, Fei, Hai Wei Ren, and Jin Ping Li. "Study of the Structural Properties of Microcrystalline Cellulose (MCC) Particles from Distillers Grains (DG) by XRD, FTIR and SEM." Applied Mechanics and Materials 295-298 (February 2013): 339–44. http://dx.doi.org/10.4028/www.scientific.net/amm.295-298.339.
Full textMacarel, Vasile Ciprian, Cezar Doru Radu, Liliana Verestiuc, et al. "Researches Concerning Chemical Modifications of Hair Keratin." Revista de Chimie 70, no. 6 (2019): 2091–95. http://dx.doi.org/10.37358/rc.19.6.7281.
Full textIsroi, Isroi, and Adi Cifriadi. "Oxidation of Cellulose from Oil Palm Empty Fruit Bunch Using Hydrogen Peroxide in Alkaline Condition." JURNAL SELULOSA 8, no. 02 (2018): 51. http://dx.doi.org/10.25269/jsel.v8i02.233.
Full textAl-Ahmad, Hani. "Biotechnology for bioenergy dedicated trees: meeting future energy demands." Zeitschrift für Naturforschung C 73, no. 1-2 (2018): 15–32. http://dx.doi.org/10.1515/znc-2016-0185.
Full textUmmami, Riza, Busroni Busroni, and Bambang Piluharto. "Synthesis and Characterization of Bacterial Cellulose-Polyaniline Composite with Variation of Dopant Concentration." BERKALA SAINSTEK 9, no. 2 (2021): 69. http://dx.doi.org/10.19184/bst.v9i2.18120.
Full textPrado, Natália Soares, Ingrid Souza Vieira da Silva, Luís Carlos de Morais, Daniel Pasquini, and Harumi Otaguro. "Effects of Surface Modifications of Kraft Wood Pulp Cellulose Fibres on Improving the Mechanical Properties of Cellulose Fibre/Latex Composites." Journal of Polymers and the Environment 27, no. 11 (2019): 2445–53. http://dx.doi.org/10.1007/s10924-019-01516-w.
Full textde Assis, Amaro César Lima, Larissa Pereira Alves, João Paulo Tavares Malheiro, et al. "Opuntia Ficus-Indica L. Miller (Palma Forrageira) as an Alternative Source of Cellulose for Production of Pharmaceutical Dosage Forms and Biomaterials: Extraction and Characterization." Polymers 11, no. 7 (2019): 1124. http://dx.doi.org/10.3390/polym11071124.
Full text