Dissertations / Theses on the topic 'Modifications of tRNA'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Modifications of tRNA.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Deogharia, Manisha. "PSEUDOURIDINE MODIFICATIONS IN HUMAN tRNAs AND ARCHAEAL rRNAs." OpenSIUC, 2018. https://opensiuc.lib.siu.edu/dissertations/1570.
Full textSun, Congliang. "Probing the UVA-induced effect on tRNA and tRNA modifications by LC-MS." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1573570369421344.
Full textJoardar, Archi. "GUIDE RNA-DEPENDENT AND INDEPENDENT tRNA MODIFICATIONS IN ARCHAEA." OpenSIUC, 2012. https://opensiuc.lib.siu.edu/dissertations/625.
Full textHowell, Nathan W. "Substrate specificity of the Trm10 m1R9 tRNA methyltransferase family." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1563209805137069.
Full textEsberg, Anders. "Functional aspects of wobble uridine modifications in yeast tRNA." Doctoral thesis, Umeå : Department of Molecular Biology, Umeå Univ, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1093.
Full textLobue, Peter. "Towards the Parallel, Accurate, and High-throughput Mapping of RNA Modifications by Liquid Chromatography Tandem Mass Spectrometry." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595005836099446.
Full textRodríguez, Escribà Marta. "Role of tRNA modifications in the synthesis of the extracellular matrix." Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/668499.
Full textEls ARNs de transferència (ARNt) són molècules que tenen un paper clau en el procés de traducció dels ARN missatgers (ARNm) en proteïnes mitjançant la interacció del seu anticodó amb codons d’ARNm. Els ARNt que passen per un procés d’edició d’adenosina a inosina a la base wobble, o posició 34, són capaços de llegir més d’un codó d’ARNm gràcies a la capacitat de la inosina de reconèixer els tres nucleòtids uridina, citidina i adenosina. L’enzim responsable d’aquesta modificació post-transcripcional en eucariotes s’anomena Adenosina Deaminasa específica per l’ARNt (ADAT), es tracta d’un complex heterodimèric format per les subunitats ADAT2 i ADAT3 que és essencial per a la viabilitat de l’organisme. Estudis previs han proposat que l’aparició d’ADAT va determinar el nombre de còpies gèniques de cada ARNt així com la composició de codons presents als genomes eucariòtics de tal manera que aquests dos factors estiguessin mútuament balancejats. Tot i que la contribució precisa de la inosina 34 (I34) a la traducció de proteïnes durant la fase d’elongació encara s’ha determinat experimentalment, algunes investigacions han suggerit que podria jugar un rol en l’eficiència i fidelitat de traducció de gens enriquits en codons reconeguts per ARNt modificats amb I34. Amb l’objectiu d’investigar el rol de la inosina en la traducció, hem generat línies cel·lulars on el gen codificant per ADAT2 ha estat silenciat. La depleció d’ADAT2 comporta un retard en el creixement cel·lular i té un efecte variable en l’expressió gènica de proteïnes de la matriu extracel·lular. El patró de modificacions post-traduccionals de glicosilació d’aquestes proteïnes no resulta alterat per la deficiència d’ADAT2, que tampoc activa la resposta a proteïnes desplegades. Juntament amb l’absència de defectes en la velocitat d’elongació analitzada per ribosome profiling, aquestes observacions suggereixen que la cèl·lula és capaç de dur a terme les seves funcions amb un nombre reduït d’ARNt modificats amb inosina. Hem vist, però, que en condicions que requereixen majors quantitats d’ARNt inosinats, la depleció d’ADAT2 dóna lloc a la traducció ineficient d’un gen de matriu extracel·lular altament enriquit en codons sensibles llegits per ARNt modificats. Així doncs, els nostres resultats indiquen que la inosina pot exercir un rol important en la síntesi de proteïnes de la matriu extracel·lular, particularment durant processos de desenvolupament neuronal i de remodelat de les vies respiratòries. La rellevància de la modificació I34 s’ha vist reforçada recentment per la identificació de mutacions de caire patogènic localitzades al gen que codifica ADAT3. Totes elles tenen en comú la presència de fenotips relacionats amb el desenvolupament neurològic. La mutació d’ADAT3 més comuna consisteix en la substitució d’un residu valina per un metionina (V144M) i està associada a la manifestació de discapacitat intel·lectual i estrabisme. En el present estudi hem caracteritzat l’activitat enzimàtica i l’estructura quaternària de l’ADAT humà, així com l’impacte de la mutació V144M d’ADAT3 en el complex heterdimèric. Els nostres revelen que la substitució V144M dóna lloc a una menor activitat enzimàtica d’ADAT. És possible que aquesta reducció es vegi influïda per les alteracions en l’estructura terciària i en la localització cel·lular d’ADAT3 que indueix la mutació.
Chatterjee, Kunal. "A TALE OF TWO METHYLATION MODIFICATIONS IN ARCHAEAL RNAs." OpenSIUC, 2014. https://opensiuc.lib.siu.edu/dissertations/806.
Full textMatlock, Ashanti Ochumare. "Catalytic and Biological Implications of The Eukaryotic and Prokaryotic Thg1 Enzyme Family." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555598687105069.
Full textChen, Peng. "Function of wobble nucleoside modifications in tRNAs of Salmonella enterica Serovar Typhimurium." Doctoral thesis, Umeå universitet, Molekylärbiologi (Teknat- och Medfak), 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-328.
Full textFu, Lihua. "Identification of tRNA modifications in T. thermophilus: wild type HB8 and mutant DTTHA1897 by LC-UV-MS/MS." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1445342537.
Full textChou, Hsin-Jung. "Transcriptome-Wide Analysis of Roles for Transfer RNA Modifications in Translational Regulation." eScholarship@UMMS, 2017. https://escholarship.umassmed.edu/gsbs_diss/943.
Full textBou, Nader Charles. "Structural and Functional characterization of flavoenzymes involved in posttranscriptional modification of tRNA." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066205/document.
Full textPosttranscriptional modification of ribonucleic acids (RNAs) is a crucial maturation step conserved in all domains of life. During my thesis, I have brought structural and functional insights on flavoenzymes involved in transfer RNA (tRNA) modifications: dihydrouridine synthase (Dus) responsible for dihydrouridine formation using flavin mononucleotide (FMN) and TrmFO responsible for C5 methylation of uridine position 54 relying on flavin adenosine dinucleotide (FAD) and methylenetetrahydrofolate. To elucidate the chemical mechanism of TrmFO we designed an apoprotein via a single mutation that could be reconstituted in vitro with FAD. Furthermore, we chemically synthesized the postulated intermediate active species consisting of a flavin iminium harboring a methylene moiety on the isoalloxazine N5 that was further characterized by mass spectrometry and UV-visible spectroscopy. Reconstitution of TrmFO with this molecule restored in vitro activity on a tRNA transcript proving that TrmFO uses FAD as a methylating agent via a reductive methylation.Dus2 reduces U20 and is comprised of a canonical Dus domain however, mammals have an additional double-stranded RNA-binding domain (dsRBD). To bring functional insight for this modular organization, we showed that only full length human Dus2 was active while its isolated domains were not. tRNA recognition is driven by the dsRBD via binding the acceptor and TΨ stem of tRNA with higher affinity then dsRNA as evidenced by NMR. We further solved the X-ray structures for both domains showing redistribution of surface positive charges justifying the involvement of this dsRBD for tRNA recognition in mammalian Dus2. This was attributed to a peculiar N-terminal extension proven by mutational analysis and an X-ray structure of dsRBD in complex with 22-nucleotide dsRNA. Altogether our work illustrates how during evolution, Dus2 enzymes acquired an engineered dsRBD for efficient tRNA binding via a ruler mechanism
Cao, Xiaoyu. "Mass Exclusion list for RNA modification mapping using LC-MS/MS." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1495807992024166.
Full textKaiser, Steffen [Verfasser]. "Investigations on DNA methylation by Dnmt2 and impact of tRNA modifications on TLR7 stimulation / Steffen Kaiser." Mainz : Universitätsbibliothek Mainz, 2015. http://d-nb.info/1080401431/34.
Full textShi, Wunan. "High-Throughput De Novo Sequencing of Transfer RNAs Using Liquid Chromatography-Tandem Mass Spectrometry." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1378197247.
Full textBa¨r, Christian. "Genetic analysis of protein and Trna modifications required for growth inhibition of Saccharomyces cerevisiae by a fungal ribotoxin." Thesis, University of Leicester, 2012. http://hdl.handle.net/2381/10167.
Full textFill, Mary-Margaret Anne. "Establishment of a tRNA over-expression system in Trypanosoma brucei to study the role of post-transcriptional modifications on function." Connect to resource, 2007. http://hdl.handle.net/1811/28390.
Full textTitle from first page of PDF file. Document formatted into pages: contains x, 25 p.; also includes graphics. Includes bibliographical references (p. 24-25). Available online via Ohio State University's Knowledge Bank.
Cela, Madinaveitia Marta. "Import des ARNt dans Plasmodium : sélection à l'entrée ?" Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAJ067/document.
Full textMy study focused on the specificity of the interaction between two proteins of the malaria parasite (Plasmodium), tRip (tRNA import protein) and the apicoplastic tyrosyl-tRNA synthetase (api-TyrRS), with the transfer RNA (tRNA). Plasmodium is an intracellular parasite with a vestigial organelle, the apicoplast, which has its own translation system. The messenger RNA sequence was adapted to produce api-TyrRS in vitro, and I studied the specificity of apicoplastic tRNATyr recognition, which avoids erroneous interactions rather than favoring the correct ones. The tRip protein is located on the surface of the parasite, and is responsible for importing tRNAs from the host. My results suggest that this import takes place during the blood phase of the parasite. In addition, not all tRNAs are recognized uniformly. The post-transcriptional modifications of the tRNAs define the affinity of tRip, and potentialy, the import rate of this tRNA. Finally, I identified a short nucleotide sequence that binds specifically to tRip. It is a good starting point for designing a molecule that specifically targets the malaria parasite
Létoquart, Juliette. "Etudes structurales et fonctionnelles de complexes entre Trm112 et différentes méthyltransférases impliquées dans la traduction." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA114821/document.
Full textProtein synthesis is a central process in the cell; it ensures the transfer of genetic information from mRNA in to protein. A lot of actors are involved directly or indirectly in translation. In Eukaryotes, Trm112, a small protein, interacts with and activates four methyltransferases modifying direct actors of translation. The termination factor eRF1 is methylated by the Mtq2-Trm112 complex, the 18S rRNA by Bud23-Trm112 and some tRNA by the Trm9-Trm112 and Trm11-Trm112 complexes. During this work, the crystal structures of Trm9-Trm112 and Bud23-Trm112 complexes from yeast were solved. The comparative analysis of these two new structures with Mtq2-Trm112 structure highlights the structural plasticity allowing Trm112 to interact through a very similar mode with its partners although those share less than 20% sequence identity. In the same organism, the key residues for the interaction with Trm112 are conserved or share similar characteristics. In addition to the structural analysis, the function of the Trm9-Trm112 complex was studied in S. cerevisiae. This analysis allowed to map the active site of the enzyme and to propose a model of its mechanism of action. Finally, the first data obtained in vivo, with the Archaea Haloferax volcanii suggest that the Trm112 platform might also be present in some prokaryotic organisms
Gustavsson, Marie. "Studies of Intracellular Transport and Anticancer Drug Action by Functional Genomics in Yeast." Doctoral thesis, Uppsala universitet, Institutionen för medicinsk biokemi och mikrobiologi, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9408.
Full textKnight, William A. "Synthesis of unnatural amino acids for genetic encoding by the pyrrolysyl-tRNA/RNA synthetase system." VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/3794.
Full textZhang, Wenhua. "Structural Basis of the Biosynthesis of the tRNA N6-threonylcarbamoyladenosine." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA114851/document.
Full textMost tRNAs undergo chemical modifications during their maturation after the transcription. N6-threonylcarbamoyladenosine (t6A) is universally present at position 37 of tRNAs that recognize ANN-codons. tRNA t6A plays an essential role in translational fidelity through enhancing the codon-anticodon interaction. Recently, the tRNA t6A-modifying enzymes have been identified and characterized in bacteria, archaea and yeast. The biosynthesis of tRNA t6A proceeds in two main steps: first, the biosynthesis of an unstable intermediate threonylcarbamoyladenylate (TCA) by Sua5/YrdC family protein, using ATP, L-threonine, bicarbonate as substrates; second, the transfer of threonylcarbamoyl-moiety from TCA onto A37 of cognate tRNAs by a set of other proteins that use Kae1/Qri7/YgjD family proteins as a catalytic component. Though the biosynthesis of tRNA t6A could be accomplished by Sua5 and Qri7 in yeast mitochondria, the t6A biosynthesis in archaea and yeast cytoplasm requires Sua5 and KEOPS protein complex, which consists of Kae1, Bud32, Cgi121, Pcc1 in archaea, and a fifth Gon7 in yeast. In bacteria, it requires YrdC, YgjD, YeaZ and YjeE, of which YeaZ and YjeE are not related to any KEOPS subunits. Presently, the molecular mechanism of Sua5/YrdC in catalyzing the TCA biosynthesis is not well understood; How the KEOPS subunits assembly and cooperatively transfer threonylcarbamoyl-moiety from TCA to tRNA is not known; The contribution of YeaZ and YjeE in t6A biosynthesis in bacteria still remains to be probed.In this study, we report crystal structures of P. abyssi Sua5, S. cerevisiae Gon7/Pcc1 and Bud32/Cgi121 binary complexes, and E. coli YgjD-YeaZ heterodimer. Based on the information revealed by the crystal structures, advanced biochemical characterizations were carried out to validate the hypotheses. We confirm first that Sua5/YrdC is capable of catalyzing the TCA biosynthesis using substrates of ATP, L-threonine, and bicarbonate. The structure of P. abyssi Sua5 in complex with pyrophosphate provides a basis for its ATP-pyrophosphatase activity. Second, the structure of Gon7 reveals that it functions as a structural mimic of Pcc1 and therefore prevents the formation of Pcc1 homodimer, which mediates the formation of a dimer of tetrameric KEOPS from archaea. The structure of Bud32-Cgi121 in complex with ADP provides a basis in support of the dual kinase and ATPase activities of Bud32. We present a structural model of yeast KEOPS that exists as a heteropentamer. Third, we discovered that the weak intrinsic ATPase activity of YjeE is activated by YgjD-YeaZ heterodimer. YgjD, YeaZ and YjeE associate and form a ternary complex that is regulated by both the formation of YgjD-YeaZ heterodimer and the binding of ATP to YjeE. The model of YgjD-YeaZ-YjeE ternary complex provides structural insight into the essential role of YeaZ and YjeE in t6A biosynthesis in bacteria. This work provides structural insights into understanding the biosynthesis of tRNA t6A that is essential and ubiquitous in all three domains of life
Frizzarin, Martina. "Gcn4 misregulation reveals a novel role for EKC/KEOPS complex in the t6A37 tRNAs modification." Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422095.
Full textIl complesso EKC/KEOPS è costituito nel lievito da cinque subunità: tre piccole proteine (Pcc1, Pcc2 e Cgi121), di cui non sono note caratteristiche biochimiche rilevanti, Bud32, una protein chinasi atipica e Kae1, la cui funzione è sconosciuta. Fatta eccezione per Pcc2, presente solo nei Funghi, l’intero complesso EKC/KEOPS è conservato negli Archaea e negli Eucarioti, mentre Kae1, il membro più conservato e, probabilmente, più antico del complesso, presenta ortologhi anche nei Batteri. Sebbene il complesso sia implicato in diversi processi cellulari, tra cui trascrizione, omeostasi telomerica e mantenimento della stabilità genomica, il suo preciso meccanismo d’azione o la sua precisa funzione molecolare non sono mai stati descritti finora. Il mio lavoro di Ricerca svolto durante il Dottorato è inserito in una rete di collaborazioni volta ad elucidare i possibili meccanismi d’azione molecolare del complesso, adottando diversi approcci sperimentali e usando il lievito Saccharomyces cerevisiae come organismo modello. All’inizio del mio Dottorato, ho preso parte allo studio della relazione enzima/substrato che già diversi dati indicavano per Bud32 e Kae1. In particolare, ho provato a definire l’importanza e il ruolo fisiologico della fosforilazione della serina in posizione 367 di Kae1, identificata, grazie ad analisi di spettrometria di massa (MS), come uno dei residui di Kae1 fosforilati da Bud32. I risultati di un test di fosforilazione in vitro, condotto usando proteine ricombinanti, tra cui una forma di Kae1 mutagenizzata (e quindi non più fosforilabile) in posizione 367 come substrato di Bud32, assieme all’analisi del fenotipo di crescita di un ceppo di lievito mutante kae1-S367A, indicano che la serina367 non è il principale residuo di Kae1 ad essere fosforilato da Bud32. Per poter identificare e definire l’importanza di altri residui di Kae1 fosforilati da Bud32, saranno quindi necessarie ulteriori analisi. Parallelamente, l’analisi del trascrittoma di ceppi esprimenti subunità mutanti del complesso EKC/KEOPS (eseguite dal gruppo diretto da Frank Holstege), ha rivelato uno specifico profilo di geni up-regolati: fra i trascritti risultati particolarmente arricchiti sono stati identificati quelli corrispondenti ai geni bersaglio dell’attivatore trascrizionale Gcn4. L’espressione di GCN4, il principale regolatore del controllo generale degli amminoacidi, è regolata a livello traduzionale, attraverso un meccanismo di regolazione dell’iniziazione che dipende da 4 ORFs presenti nella regione 5’ UTR dell’mRNA di GCN4 (uORFs 1-4). Usando diversi reporter Gcn4-LacZ, abbiamo dimostrato che la traduzione di GCN4 è derepressa nei mutanti EKC/KEOPS, in seguito a una ridotta capacità di riconoscere le uORFs inibitorie. Altri collaboratori e anche due gruppi in modo indipendente hanno dimostrato il deficit della modificazione universalmente conservata t6A37 (una treonil-carbamoilazione del residuo di adenosina in posizione 37 di tutti i tRNA che decodificano codoni ANN, incluso il tRNA iniziatore tRNAiMet) nei mutanti EKC/KEOPS. Questa modificazione è necessaria per il corretto riconoscimento codone-anticodone e per la stabilità di questa interazione. Un difetto di t6A37 altera la traduzione a diversi livelli, in particolare la fase iniziale della traduzione, ed è la causa della derepressione di Gcn4 nei mutanti EKC/KEOPS. Ciò è inoltre supportato da dati che dimostrano l’esistenza di una forte interazione genetica tra i mutanti EKC/KEOPS e il fattore eIF5 implicato nell’inizio della traduzione, ma anche con geni coinvolti nella biosintesi della treonina o nel metabolismo dei tRNA. A questo punto, ci siamo chiesti se il complesso EKC/KEOPS sia in grado di modificare, mediante l’aggiunta di un gruppo treonil-carbamoilico all’adenosina, anche altri RNA oltre ai tRNA. Ho quindi tentato di riprodurre un esperimento di “primer extension” già pubblicato, in cui si correla l’assenza della modificazione t6A con la scomparsa/diminuzione di una banda d’arresto in corrispondenza del nucleotide A37, prodotta durante l’allungamento di un primer radiomarcato durante la retrotrascrizione di un tRNA che decodifica un codone ANN. Una volta messa a punto la tecnica usando un substrato già testato, avrei potuto analizzare qualsiasi altro tipo di RNA, scegliendo un appropriato oligonucleotide da estendere. Tuttavia, anche usando diverse condizioni sperimentali identiche o comparabili a quelle pubblicate, non sono mai riuscita ad ottenere lo stesso risultato. Allo scopo di identificare gli RNA legati dal compesso EKC/KEOPS, abbiamo scelto una strategia che associa l’immunoprecipitazione dell’RNA (RIP) al suo sequenziamento. Nella parte finale dei risultati descrivo le diverse tappe dell’esperimento RIP che ho iniziato a mettere a punto. Il risultato principale derivante dal lavoro presentato in questa tesi è la dimostrazione del coinvolgimento del complesso EKC/KEOPS nel processo di traduzione, come conseguenza del suo ruolo diretto nella modificazione t6A37 dei tRNAs. Questo risultato rappresenta una nuova svolta nella comprensione della funzione primaria del complesso e del suo impatto su diverse funzioni cellulari essenziali, tra cui la trascrizione e l’omeostasi dei telomeri
Tyagi, Kshitiz. "A systems biology approach unravels the biological function of two tRNA wobble base modifications in fine-tuning translation and the response to environmental stress." Thesis, University of Dundee, 2014. https://discovery.dundee.ac.uk/en/studentTheses/32e734c5-198d-4c8a-9f56-7d5d19d1ef3d.
Full textTavares, Joana Formigal. "Identification of novel regulators of protein synthesis fidelity using high content genetic screens." Doctoral thesis, Universidade de Aveiro, 2018. http://hdl.handle.net/10773/22825.
Full textProtein synthesis is central to life and is being intensively studied at various levels. The exception is mRNA translational fidelity whose study has been hampered by technical difficulties in detecting amino acid misincorporations in proteins. Few genes have so far been associated to the control of protein synthesis fidelity and it is unclear how many genes control this biological process. We investigated the role of RNA modification by RNA modifying enzymes (RNAmods) in protein synthesis efficiency and accuracy. Our hypothesis was that RNAmods that modify tRNA nucleosides (tRNAmods) have a significant impact on protein synthesis through modulation of codonanticodon interactions. To address this issue, we focused our work on tRNAmods involved in the modification of tRNA anticodons. The biology of these enzymes is still poorly understood, but they are involved in RNA processing, stability and function and their deregulation is associated with cancer, neurodegenerative, metabolic and other diseases. We have set up a yeast genetic screen and used mass-spectrometry methods to determine the role of tRNAmods on proteome homeostasis. Our work identified a subgroup of yeast tRNAmods that play essential roles in protein synthesis fidelity and folding. The genes that encode insoluble proteins isolated from yeast cells lacking U34 modification were enriched in codon sites that are decoded by the hypomodified tRNAs. These aggregated proteins also participate in specific biological processes, suggesting that tRNAmods are linked to specific physiological pathways. Interestingly, we detected amino acid misincorporations at the codon sites decoded by the anticodons of the hypomodified tRNAs, demonstrating that tRNA U34 modifications control translational error rate.
A síntese proteica é central para a vida e tem sido extensivamente estudada a vários níveis. Contudo, o estudo da fidelidade da tradução do mRNA tem progredido lentamente devido a dificuldades técnicas na deteção de incorporações incorretas de aminoácidos nas proteínas. Poucos genes têm sido associados com o controlo da fidelidade da síntese proteica e não é evidente quais os genes que controlam este processo biológico. Nesta tese investigámos o papel da modificação dos nucleósidos do RNA na eficiência e precisão da síntese proteica. A nossa hipótese é que as enzimas que modificam nucleósidos do tRNA (tRNAmods) têm um impacto significativo na síntese proteica através da modulação das interações codão-anticodão. A biologia das tRNAmods e das modificações do tRNA são ainda pouco conhecidas, mas estão envolvidas na estabilidade e função do RNA e mutações nos seus genes causam doenças neurodegenerativas, metabólicas, cancro, entre outras. Neste projeto realizámos um rastreio genético em levedura com o objetivo de identificar tRNAmods que asseguram a homeostase do proteoma (proteostase) e usámos espectrometria de massa para clarificar o papel das tRNAmods na fidelidade da síntese proteica. Os resultados do estudo genético mostram que um sub-grupo de tRNAmods envolvidas na modificação de nucleósidos do anticodão do tRNA são essenciais para manter a estabilidade do proteoma. Outras tRNAmods estudadas não produziram impactos visíveis na proteostase. Os genes de proteínas agregadas que isolámos a partir de células de levedura com tRNAs hipomodificados são enriquecidos em codões descodificados por estes tRNAs. Os nossos dados mostram também que tais proteínas participam em processos biológicos específicos e têm níveis de aminoácidos errados mais elevados que as células wild-type. Estes dados mostram que certas modificações do tRNA são essenciais para a fisiologia celular, estabilidade do proteoma e fidelidade da síntese proteica.
Galvanin, Adeline. "Use of high-throughput sequencing for the characterization of extracellular RNA and to study the dynamics of bacterial RNA modification." Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0095/document.
Full textFor less than a decade, high-throughput sequencing became a very powerful, sensitive and precise technique for the study of ribonucleic acids. During my PhD thesis, I used this technology for in-depth characterization of the extracellular RNA (exRNA) content of human plasma. exRNA in plasma exists either in a “soluble state” as a component of ribonucleoprotein (RNP) complexes or encapsulated into extracellular vesicles (EV) of diverse origins (exosomes, microvesicles, …). In this project, I demonstrated that whole human plasma contains mostly micro RNA and the fragment of RNA hY4, as well as degraded ribosomal RNA. Moreover, using a rigorous strategy via size exclusion chromatography or consecutive proteinase K/RNase A treatments, highly purified EVs can be obtained. miRNAs and RNA hY4 fragments were not present in majority of samples, demonstrating a huge difference between soluble exRNA and exRNA from purified EVs. The RNA content of these EVs mainly reflects RNA composition of human microbiota. In addition, I also performed a comparative analysis of commercially available “exosome-enrichment” kits which are supposed to purify human exosomes by precipitation. Their RNA composition was found to be almost identical to human plasma, showing strong uncontrolled contamination by soluble RNPs. Based on this study, we were able to propose a protocol for studies in exRNA in the field of liquid biopsies with clinical sample in order to discover new diagnostic biomarkers. Apart from the characterization of RNA, high-throughput sequencing can be used for detection and quantification of RNA post-transcriptional modifications. During my PhD thesis I applied deep sequencing for analysis of transfer RNA (tRNA) 2’-O-methylations in model bacteria (E. coli) using RiboMethSeq. Under several stress conditions, such as starvation and non-lethal antibiotics concentrations, some 2’-O-methylated nucleotides show an adaptive response. While over than half of Gm18 show a global increase under all investigated stress conditions, ribomethylated residues at position 34 show an opposite effect for some antibiotic treatments (chloramphenicol and streptomycin). Each of these dynamic profiles can be linked to cell regulation in response to stress. Change at the tRNA wobble base (position 34) could be a way to regulate translation by modifying the codon usage. Concerning Gm18, its role in the escape from the human innate immune system during host invasion is currently elucidated
Swinehart, William E. Jr. "A Biochemical Investigation of Saccharomyces cerevisiae Trm10 and Implications of 1-methylguanosine for tRNA Structure and Function." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429867956.
Full textKessler, Alan Christopher Kessler. "tRNA subcellular dynamics dictates modification and nutrient sensing." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1513786086369393.
Full textWohlgamuth-Benedum, Jessica M. "MODIFICATION AND EDITING IN MITOCHONDRIAL TRYPTOPHAN tRNA OF TRYPANOSOMES." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1245097409.
Full textGaston, Kirk W. "Editing and Modification of Threonyl-tRNAs in Kinetoplastids." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1248965851.
Full textRussell, Susan P. "Characterizing Modified Nucleosides in RNA by LC/UV/MS." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1353951985.
Full textBimai, Louise. "Etude biochimique et structurale de deux enzymes de thiolation des ARNt dépendantes d’un centre [4Fe-4S] : la s2U54-ARNt thiolase TtuA et la s2U34-ARNt thiolase NcsA." Electronic Thesis or Diss., Paris Sciences et Lettres (ComUE), 2018. https://theses.hal.science/tel-03270824.
Full textTransfer RNAs are essential components of cellular translation machinery. To achieve their function they possess several post-transcriptional chemical modifications. These modifications improve recognition between tRNA and its partners during translation and thus ensure translation fidelity and efficiency. Sulfur is present in several of these modified nucleosides: as thiouridine and its derivatives (s4U8, s2U34, m5s2U54), 2-thioadenosine derivatives (ms2i6A37, ms2t6A37) and 2-thiocytidine (s2C32).My project consisted in the structural and functional study of enzymes of the TtcA/TtuA family a [4Fe-4S]-dependent superfamily, involved in the thiolation of transfer RNAs (tRNAs).My aim was to show that enzymes that catalyze the simple non-redox substitution of the C2-uridine carbonyl oxygen by sulfur at position 54 (TtuA) and 34 (Ncs6/Ctu1/NcsA) in tRNAs use an iron-sulfur cluster cofactor and elucidate the biochemical and structural mechanisms of the TtuA and NcsA reactions.The thiolation of the universally conserved methyl-uridine at position 54, catalyzed by TtuA, stabilizes tRNAs from thermophilic bacteria and hyperthermophilic archaea and is required for growth at high temperature of these organisms. On the other hand, the thiolation of uridine 34 in the anticodon loop of tRNAs, which is required for normal growth and stress resistance in yeast, is carried out by two completely different systems: the well-studied MnmA protein (present in bacteria and in the eukaryotic mitochondrion) and the Nsc6/NcsA/Ctu1 proteins in all other organisms, including the eukaryotic cytoplasm.Spectroscopic and crystallographic analysis, together with activity tests enzymatic of TtuA and NcsA showed that: (i) the [4Fe-4S] cluster is ligated by three cysteines only that are fully conserved, allowing the fourth unique iron to bind an exogenous sulfide, which likely acts as the sulfurating agent; (ii) the ATP-binding site is adjacent to the cluster. A new mechanism for tRNA sulfuration was proposed, in which the unique iron of the catalytic [4Fe-4S] cluster functions as a sulfur carrier, opening new perspectives regarding functions of iron-sulfur cluster in biology
Leipuviene, Ramune. "Frameshifting as a tool in analysis of transfer RNA modification and translation." Doctoral thesis, Umeå universitet, Molekylärbiologi (Teknat- och Medfak), 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-302.
Full textMcKenney, Katherine Mary. "Investigating the basis of tRNA editing and modification enzyme coactivation in Trypanosoma brucei." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu152266963775877.
Full textNist, Richard Neil. "Maturation of tRNA in Haloferax volcanii." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1308066223.
Full textSournia, Pierre. "La méthylation flavine-dépendante d’acides nucléiques : aspects évolutifs, métaboliques, biochimiques et spectroscopiques." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX108/document.
Full textEnzymes catalyzing the methylation of uridine at its carbon 5 position have appeared independently in different forms across evolution. Thymidylate synthases ThyA and the flavoprotein ThyX catalyze the de novo synthesis of dTMP, an essential DNA precursor in the three domains of life. They are encoded by heterologous genes and have drastically different structures and reaction mechanisms. On the other hand, this uridine methylation is also performed by tRNA and rRNA post-transcriptional modification enzymes.This thesis assesses the question of the evolutionary constraints that have led independently to four kinds of uridine methylation. The first part describes the identification of a metabolic pathway allowing the complementation of thymidine auxotrophy by non-natural nucleotide analogs in Escherichia coli. A synthetic biology approach, aiming to establish an alternative pathway for thymidylate biosynthesis, was also implemented and a selection strategy for thymidine auxotrophy-complementing genes, could be developed.In a second part, biochemical and spectral studies where realised on the flavin-dependent methyltransferase TrmFO, responsible for the post-transcriptional methylation of uridine at the invariant position 54 of tRNA in several microorganisms. The involvement of specific amino acid residues in substrate fixation and in stabilization of potential reaction intermediates was demonstrated. Their spectral characterization supports previously proposed reaction schemes for flavin-dependent thymidylate forming enzymes. These observations are currently being pursued by parallel approaches combining time-resolved spectroscopy and molecular dynamics simulations, aiming to further our understanding of how flavin mediates the transfer of carbon molecules from folate to uracil rings
Hernandez, Diana Raquel. "Regulation of Expression of a Neisseria Gonorrhoeae tRNA-Modification Enzyme (Gcp)." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/242381.
Full textXu, Hao. "Functional aspects of modified nucleosides in tRNA." Doctoral thesis, Umeå universitet, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-109491.
Full textYu, Ningxi. "Post-transcriptional Modification Characterizing and Mapping of Archaea tRNAs Using Liquid Chromatography with Tandem Mass Spectrometry." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1552379526695035.
Full textDare, Kiley Elizabeth. "Changes in the Physiology of Bacillus subtilis and Listeria monocytogenes Upon tRNA-dependent Phospholipid Modification with Lysine." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1343793765.
Full textKrishnamohan, Aiswarya Lakshmi. "Biochemical characterization of catalytic mechanism and substrate recognition by the atypical SPOUT tRNA methyltransferase, Trm10." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1512039838462506.
Full textHarrison, Jesse. "Physiological relevance of a trna-dependent mechanism for membrane modification in enterococcus faecium." Honors in the Major Thesis, University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/565.
Full textB.S.
Bachelors
Burnett School of Biomedical Sciences
Molecular Biology and Microbiology
Young, Anthony Peter, and Anthony Peter Young. "Characterization of 4-demethylwyosine Synthase, a Radical S-adenosyl-l-methionine Enzyme Involved in the Modification of tRNA." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/621437.
Full textRafels, Ybern Àlbert. "Evolution of I34 modifications in tRNAs and their role in proteome composition." Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/650880.
Full textLa inosina és un anàleg de la guanosina, que quan es troba a la posició 34 dels tRNAs, expandeix el nombre de codons que aquests tRNA són capaços de reconèixer. La inosina pot emparellar-se mitjançant wobbling amb citosina, adenosina i uridina. Degut que la inosina no està codificada al genoma, existeixen enzims essencials encarregats de la deaminar la adenosina a inosina específicament a la posició 34 dels tRNAs. Als organismes bacterians, aquesta modificació es troba principalment a tRNAArg i és catalitzada per l’enzim homodimeric tRNA adenosina desaminasa A (TadA), que disposa d’un centre actiu conservat. Als organismes eucariòtics, aquesta modificació és present en fins a vuit tRNAs diferents, catalitzada per l’enzim heterodimeric ADAT (ADAT2-ADAT3). Aquest enzim ha evolucionat a partir de TadA per duplicació i divergència. ADAT2 és considerat la subunitat catalítica, ja que conserva el centre actiu mentre que ADAT3 n’ha perdut un dels residus essencials i es considera que té un paper en el reconeixement dels substrats. L’expansió en el reconeixement de substrats entre TadA i ADAT ha influenciat significativament en la composició dels genomes eucariotes, particularment en l’abundància de gens de tRNA i en el biaix de la composició de codons. Tanmateix, les pressions selectives que condueixen aquests processos romanen desconegudes. En aquesta tesi, hem caracteritzat el transcriptoma i el proteoma humà respecte la freqüència i distribució de codons relacionats amb ADAT. Els nostres resultats indiquen que la composició de codons del transcriptoma humà està esbiaixada promovent una dependència en l’ús de I34, especialment en regions altament repetitives. Persuadits per aquests resultats, hem estès les nostres anàlisis a un conjunt d’organismes eucariotes i bacterians per tal de representar tot l’arbre de la vida. Hem comprovat que aquesta preferència per codons que són reconeguts per tRNAs amb I34 és generalitzada només als eucariotes, tot i que sorprenentment, també és present al fílum bacterià dels Firmicutes. Els nostres resultats també indiquen que alguns grups bacterians ancestrals no disposen de tRNAs amb A34 ni de l’enzim TadA, cosa que suggereix que aquestes espècies mai han desenvolupat la maquinària per generar tRNAs amb I34. Altres conjunts de bactèries indiquen tant la pèrdua secundària d’aquest sistema, com l’expansió a d’altres tRNAs. Hem demostrat experimentalment que Oenococcus oeni, pertanyent als Firmicutes, presenta altres tRNAs amb I34 a part del tRNAArg i que també presenta tRNA amb A34 no modificats. Entre els organismes eucariotes, els protists presenten una gran variabilitat en l’ús de tRNA amb I34, mentre que en Metazoa, Fungi i Plantae, tots els tRNAs amb I34 són presents.
Fleming, Ian Murray Cameron. "Studies on RNA Modification and Editing in Trypanosoma brucei." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1452245560.
Full textNavarro, González María del Carmen. "Caenorhabditis elegans as a research tool to study mitochondrial diseases associated with defects in tRNA modification." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/61978.
Full text[ES] La modificación post-transcripcional de la uridina de tambaleo (U34) de ciertos tRNAs es un proceso conservado evolutivamente, realizado por proteínas homólogas de las familias MnmA/MTU1, MnmE/GTPBP3 y MnmG/MTO1, y biológicamente relevante. De hecho, mutaciones en los genes humanos MTU1 y GTPBP3 o MTO1 causan fallo hepático infantil agudo y cardiomiopatía hipertrófica infantil, respectivamente, que producen letalidad durante los primeros meses de vida. Se asume que la causa primaria de estas enfermedades es la ausencia de las modificaciones introducidas por la proteína MTU1 en la posición 2 (tiol) y las proteínas GTPBP3 y MTO1 (taurinometil) en la posición 5 de la U34 en un grupo de mt-tRNAs. Se desconocen los mecanismos subyacentes y las razones por las que el déficit de OXPHOS resultante en todos los casos (atribuido a alteraciones de la traducción mitocondrial de proteínas) produce fenotipos tan diversos. Nuestra hipótesis es que la señalización retrógrada mitocondria-núcleo promovida por la hipomodificación de los mt-tRNAs en 2 ó 5 de la U34 es diferente y la respuesta nuclear viene modulada por el programa genético y epigenético de células y organismos. Hemos utilizado el nematodo C. elegans como modelo para estudiar los efectos producidos por la inactivación de las proteínas homólogas de MTU1, GTPBP3 y MTO1 a las que hemos denominado MTTU-1, MTCU-1 y MTCU-2. Hemos comprobado que estas proteínas, codificadas por el núcleo, son de localización mitocondrial y están implicadas en la modificación de la U34 de los mt-tRNAs. Los mutantes mtcu-1 y mtcu-2 presentan una reducción en su fertilidad y, en el caso del mutante simple mttu-1, fenotipos asociados a termosensibilidad. Los fenotipos exhibidos por los mutantes mttu-1, mtcu-1 y mtcu-2 sustentan la hipótesis de que la mutación mttu-1, y las mutaciones mtcu-1 y mtcu-2 promueven señales retrógradas diferentes que producen patrones de expresión nuclear específicos. Así, un rasgo fenotípico dependiente de genes nucleares (como lo es la transcripción y/o estabilidad de los mt-tRNAs) y la expresión de genes nucleares como ucp-4, hsp-6, hsp-60 y otros implicados en el metabolismo mitocondrial muestran un patrón diferente en los dos grupos de mutantes. Los genes hsp-6 y hsp-60 (marcadores de la UPRmt) están regulados a la baja en el mutante mttu-1. Los tres mutantes simples exhiben una reducción en la expresión de genes de la glicólisis y de la ß-oxidación de los ácidos grasos, una inducción en un marcador de glutaminolisis y una inducción en el gen ucp-4 (mayor en mttu-1) implicado en el transporte de succinato a la mitocondria. Dado que los tres mutantes simples presentan una disfunción OXPHOS relativamente suave, proponemos que los cambios de expresión en genes que modulan el metabolismo mitocondrial revelan una reprogramación del ciclo del TCA que compensa la disminución en el aporte de acetil-CoA procedente de glicólisis y oxidación de ácidos grasos con la activación de rutas anapleróticas del ciclo del TCA (importe de succinato a la mitocondria por UCP-4 y aporte de ¿-cetoglutarato procedente de la glutaminolisis). También analizamos los efectos de la anulación simultánea de las modificaciones en las posiciones 2 y 5 de la U34. El doble mutante mttu-1;mtcu-2 presenta una disfunción OXPHOS severa, con una ratio AMP/ATP 5 veces superior al control, que resulta en letalidad embrionaria, detención del desarrollo en estadios larvarios tempranos y esterilidad completa en los adultos que presentan, por otra parte, una longevidad unas dos veces superior a la cepa control. Este incremento de la longevidad está modulado por rutas de señalización que dependen de la subunidad catalítica AAK-1 (AMPK), y de hormonas esteroideas (proteínas DAF-9 y DAF-12). El trabajo muestra la importante reprogramación de genes relacionados con el metabolismo mitocondrial en respuesta a la hipomodificación de la U34 de los mt-tRNAs y
[CAT] La modificació post-transcripcional de la uridina de balanceig (U34) de certs tRNAs és un procés conservat evolutivament realitzat per proteïnes homòlogues a les de les famílies MnmA/MTU1, MnmE/GTPBP3 i MnmG/MTO1 i biològicament relevant. De fet, mutacions en els gens humans MTU1 i GTPBP3 o MTO1 causen fallada hepàtica infantil aguda i cardiomiopatia hipertròfica infantil amb acidosis làctica, respectivament, que produïxen letalitat durant els primers mesos de vida. S'assumix que la causa primària d'aquestes malalties és l'absència de les modificacions introduïdes per la proteïna MTU1 a la posició 2 (tiol) i per les proteïnes GTPBP3 i MTO1 (taurinometil) a la posició 5 de la U34 en un grup de mt-tRNAs. Es desconeixen els mecanismes subjacents en estes malalties i les raons per les quals el dèficit de la OXPHOS resultant en tots els casos (atribuït a alteracions de la traducció mitocondrial de proteïnes) produïx fenotips tan diversos. La nostra hipòtesi és que la senyalització retrògrada mitocondria-nucli promoguda per la hipomodificació dels mt-tRNAs en 2 o 5 de la U34 és diferent i la resposta nuclear en cada cas es dependent del programa genètic i epigenètic de cèl¿lules i organismes. Hem utilitzat el nematode C. elegans com a organisme model per a estudiar els efectes produïts per la inactivació de les proteïnes homòlogues de MTU1, GTPBP3 i MTO1 a les que hem denominat MTTU-1, MTCU-1 i MTCU-2. Hem comprovat que aquestes proteïnes, codificades pel nucli, són de localització mitocondrial i estan implicades en la modificació de la U34 dels mt-tRNAs. Els mutants mtcu-1 i mtcu-2 presenten una reducció en la seua fertilitat i, en el cas del mutant mttu-1, fenotipus associats a termosensibilitat. Els fenotipus exhibits pels mutants mttu-1, mtcu-1 i mtcu-2 sustenten la hipòtesi que la mutació mttu-1, i les mutacions mtcu-1 i mtcu-2 promouen senyals retrògrads diferents que produïxen patrons d'expressió nuclears específics. Així, un tret fenotípic dependent de gens nuclears (com ho és la transcripció i/o l'estabilitat dels mt-tRNAs) i l'expressió de gens nuclears com ucp-4, hsp-6, hsp-60 i altres implicats en el metabolisme mitocondrial mostren un patró diferent en els dos grups de mutants. Els gens hsp-6 i hsp-60 (marcadors de la UPRmt) estan regulats a la baixa en el mutant mttu-1. Els tres mutants simples exhibixen una reducció en l'expressió de gens de la glicòlisi i de la ß-oxidació dels àcids grassos, una inducció en un marcador de glutaminolisi i una inducció en el gen ucp-4 (major en el mutant mttu-1) implicat en el transport de succinat a la mitocondria. Atés que els tres mutants simples presenten una disfunció OXPHOS relativament suau, proposem que els canvis d'expressió en gens que modulen el metabolisme mitocondrial revelen una reprogramació del cicle del TCA que compensa la disminució en l'aportació d'acetil-CoA procedent de la glicòlisi i de l'oxidació d'àcids grassos amb l'activació de rutes anaplerótiques del cicle del TCA (importació de succinat a la mitocondria per UCP-4 i aportació de ¿-cetoglutarat de la glutaminolisi). També s'analitzen els efectes de l'anul¿lació simultània de les modificacions en 2 i 5 de la U34. El doble mutant mttu-1;mtcu-2 presenta una disfunció OXPHOS severa, amb una ràtio AMP/ATP 5 vegades superior al control, que resulta en letalitat embrionària, detenció del desenvolupament en estadis larvaris primerencs, esterilitat completa en els adults i una longevitat unes 2 vegades superior al control. Aquest increment de la longevitat està modulat per rutes de senyalització que depenen de la subunitat catalítica AAK-1 (AMPK), i d'hormones esteroidees (a través de les proteïnes DAF-9 i DAF-12). En resum, aquest treball mostra per primera vegada a nivell d'un animal model la important reprogramació de gens relacionats amb el metabolisme mitocondrial en resposta a la hipomodificació de la U34 dels mt-tRNAs i
Navarro González, MDC. (2016). Caenorhabditis elegans as a research tool to study mitochondrial diseases associated with defects in tRNA modification [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/61978
TESIS
Cargill, James Stuart. "Characterisation of the essential t⁶A tRNA modification enzymes and evaluation as a potential novel antimicrobial target." Thesis, University of Dundee, 2014. https://discovery.dundee.ac.uk/en/studentTheses/62f60b8c-44be-4af4-b5d9-3eec06700690.
Full textGuelorget, Amandine. "Etude de la structure et de la région-spécificité de la m1A57/58 méthyltransférase d'ARNt de l'archée Pyrococcus abyssi." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00612159.
Full textDeutsch, Christopher Wayne. "Discovery and Characterization of the Proteins Involved in the Synthesis of N⁶-Threonylcarbamoyl Adenosine, a Nucleoside Modification of tRNA." PDXScholar, 2016. http://pdxscholar.library.pdx.edu/open_access_etds/3080.
Full text