Journal articles on the topic 'Modified 9Cr-1Mo steel'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Modified 9Cr-1Mo steel.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bertrand, C., A. Allou, F. Beauchamp, E. Pluyette, P. Defrasne, and F. Baqué. "Thermomechanical Model and Bursting Tests to Evaluate the Risk of Swelling and Bursting of Modified 9Cr-1Mo Steel Steam Generator Tubes during a Sodium-Water Reaction Accident." Science and Technology of Nuclear Installations 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/974581.
Full textSivabharathy, M., P. Palanichamy, M. Vasudevan, P. Kalyanasundaram, and K. Ramachandran. "An Experimental Study of the Thermal Properties of Modified 9Cr-1Mo Steel." Defect and Diffusion Forum 332 (December 2012): 1–6. http://dx.doi.org/10.4028/www.scientific.net/ddf.332.1.
Full textJones, Wendell B., C. R. Hills, and D. H. Polonis. "Microstructural evolution of modified 9Cr-1Mo steel." Metallurgical Transactions A 22, no. 5 (1991): 1049–58. http://dx.doi.org/10.1007/bf02661098.
Full textHyun, Yang Ki, Soon Ho Won, Jae Ho Jang, and In Bae Kim. "The Evaluation of Material Degradation in Modified 9Cr-1Mo Steel by Electrochemical and Magnetic Property Analysis." Key Engineering Materials 321-323 (October 2006): 486–91. http://dx.doi.org/10.4028/www.scientific.net/kem.321-323.486.
Full textLi, Sheng Zhi, Jie Xu, Yuan De Yin, J. G. Xue, and Y. Feng. "The Study of Inner Surface Crack Formation of Seamless Modified 9Cr-1Mo Tube Rolled on Mandrel Mill and Its Application." Materials Science Forum 561-565 (October 2007): 61–64. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.61.
Full textPark, Jong Seo, Un Bong Baek, Seung Hoon Nahm, Sang In Han, and Song Chun Choi. "The Application of Nondestructive Methods for Degradation Evaluation of Modified 9Cr-1Mo Steel." Key Engineering Materials 321-323 (October 2006): 528–31. http://dx.doi.org/10.4028/www.scientific.net/kem.321-323.528.
Full textNakashima, Hideharu, Daisuke Terada, Fuyuki Yoshida, Hiroyuki Hayakawa, and Hiroshi Abe. "EBSP analysis of Modified 9Cr-1Mo Martensitic steel." ISIJ International 41, Suppl (2001): S97—S100. http://dx.doi.org/10.2355/isijinternational.41.suppl_s97.
Full textChoudhary, B. K., and E. Isaac Samuel. "Creep behaviour of modified 9Cr–1Mo ferritic steel." Journal of Nuclear Materials 412, no. 1 (2011): 82–89. http://dx.doi.org/10.1016/j.jnucmat.2011.02.024.
Full textShrestha, Triratna, Mehdi Basirat, Indrajit Charit, Gabriel P. Potirniche, Karl K. Rink, and Uttara Sahaym. "Creep deformation mechanisms in modified 9Cr–1Mo steel." Journal of Nuclear Materials 423, no. 1-3 (2012): 110–19. http://dx.doi.org/10.1016/j.jnucmat.2012.01.005.
Full textKim, Sung Ho, Ji-Hyun Yoon, Woo Seog Ryu, Chan Bock Lee, and Jun Hwa Hong. "Fracture toughness of irradiated modified 9Cr–1Mo steel." Journal of Nuclear Materials 386-388 (April 2009): 387–89. http://dx.doi.org/10.1016/j.jnucmat.2008.12.324.
Full textKishore, R., R. N. Singh, T. K. Sinha, and B. P. Kashyap. "Serrated flow in a modified 9Cr-1Mo steel." Scripta Metallurgica et Materialia 32, no. 8 (1995): 1297–300. http://dx.doi.org/10.1016/0956-716x(94)00020-i.
Full textAlbert, S. K., V. Ramasubbu, and T. P. S. Gill. "Hydrogen Assisted Cracking Susceptibility of Modified 9Cr-1Mo Steel." Indian Welding Journal 34, no. 2 (2001): 37. http://dx.doi.org/10.22486/iwj.v34i2.178597.
Full textMitra, A., J. N. Mohapatra, J. Swaminathan, M. Ghosh, A. K. Panda, and R. N. Ghosh. "Magnetic evaluation of creep in modified 9Cr–1Mo steel." Scripta Materialia 57, no. 9 (2007): 813–16. http://dx.doi.org/10.1016/j.scriptamat.2007.07.004.
Full textVerma, Preeti, G. Sudhakar Rao, N. C. Santhi Srinivas, and Vakil Singh. "Rosette fracture of modified 9Cr–1Mo steel in tension." Materials Science and Engineering: A 683 (January 2017): 172–86. http://dx.doi.org/10.1016/j.msea.2016.12.011.
Full textYAGUCHI, Masatsugu, and Yukio TAKAHASHI. "Ratchetting Deformation Analysis of Modified 9Cr-1Mo Steel. III. Modeling of Temperature Dependence of Ratchetting Deformation Behavior of Modified 9Cr-1Mo Steel." Journal of the Society of Materials Science, Japan 51, no. 3 (2002): 299–306. http://dx.doi.org/10.2472/jsms.51.299.
Full textXu, Xue Xia, Jie Ouyang, Yan Ting Feng, et al. "Creep-Rupture Properties and Life Evaluation of Low Hardness Modified 9Cr-1Mo Steel." Advanced Materials Research 476-478 (February 2012): 346–50. http://dx.doi.org/10.4028/www.scientific.net/amr.476-478.346.
Full textLi, Sheng Zhi, Jie Xu, Yuan De Yin, and Hui Chao Su. "Mechanical Analysis on the Inner Surface Crack of Modified 9Cr-1Mo Seamless Steel Tubes Rolled by Mandrel Mill." Advanced Materials Research 97-101 (March 2010): 3070–74. http://dx.doi.org/10.4028/www.scientific.net/amr.97-101.3070.
Full textSwindeman, R. W., and M. Gold. "Developments in Ferrous Alloy Technology for High-Temperature Service." Journal of Pressure Vessel Technology 113, no. 2 (1991): 133–40. http://dx.doi.org/10.1115/1.2928737.
Full textKarthick, K., S. Malarvizhi, V. Balasubramanian, S. A. Krishnan, G. Sasikala, and Shaju K. Albert. "Tensile properties of shielded metal arc welded dissimilar joints of nuclear grade ferritic steel and austenitic stainless steel." Journal of the Mechanical Behavior of Materials 25, no. 5-6 (2016): 171–78. http://dx.doi.org/10.1515/jmbm-2017-0005.
Full textGhosh, P. K., and P. K. Agarwal. "Manual Metal Arc Welding of Modified 9Cr-1Mo Steel Pipe." Indian Welding Journal 31, no. 1 (1998): 9. http://dx.doi.org/10.22486/iwj.v31i1.177522.
Full textLee, W. H., R. K. Shiue, and C. Chen. "Mechanical properties of modified 9Cr–1Mo steel welds with notches." Materials Science and Engineering: A 356, no. 1-2 (2003): 153–61. http://dx.doi.org/10.1016/s0921-5093(03)00115-1.
Full textKimura, K., H. Kushima, and K. Sawada. "Long-term creep deformation property of modified 9Cr–1Mo steel." Materials Science and Engineering: A 510-511 (June 2009): 58–63. http://dx.doi.org/10.1016/j.msea.2008.04.095.
Full textShanmugarajan, B., G. Padmanabham, H. Kumar, S. K. Albert, and A. K. Bhaduri. "Autogenous laser welding investigations on modified 9Cr–1Mo (P91) steel." Science and Technology of Welding and Joining 16, no. 6 (2011): 528–34. http://dx.doi.org/10.1179/1362171811y.0000000035.
Full textMATSUMORI, Yoshiaki, Yuji ICHIKAWA, Isamu NONAKA, and Hideo MIURA. "OS2118 Very High Cycle Fatigue of Modified 9Cr-1Mo Steel." Proceedings of the Materials and Mechanics Conference 2012 (2012): _OS2118–1_—_OS2118–2_. http://dx.doi.org/10.1299/jsmemm.2012._os2118-1_.
Full textMatsumori, Yoshiaki, Yuji Ichikawa, Isamu Nonaka, and Hideo Miura. "148 Very high cyde fatigue of modified 9Cr-1Mo steel." Proceedings of Conference of Tohoku Branch 2012.47 (2012): 102–3. http://dx.doi.org/10.1299/jsmeth.2012.47.102.
Full textShiva, V., Sunil Goyal, R. Sandhya, K. Laha, and A. K. Bhaduri. "Flow Behaviour of Modified 9Cr–1Mo Steel at Elevated Temperatures." Transactions of the Indian Institute of Metals 70, no. 3 (2017): 589–96. http://dx.doi.org/10.1007/s12666-017-1047-4.
Full textPARK, Kyu Seop, Fujimitsu MASUYAMA, and Takao ENDO. "Short-term Creep Behavior Analysis of a Modified 9Cr-1Mo Steel." Tetsu-to-Hagane 84, no. 7 (1998): 526–33. http://dx.doi.org/10.2355/tetsutohagane1955.84.7_526.
Full textPARK, Kyu Seop, Fujimitsu MASUYAMA, and Takao ENDO. "Constitutive Equation Describing Tertiary Creep of a Modified 9Cr-1Mo Steel." Tetsu-to-Hagane 84, no. 8 (1998): 553–58. http://dx.doi.org/10.2355/tetsutohagane1955.84.8_553.
Full textOkamura, Hiroyuki, Ryuichi Ohtani, Kiyoshi Saito, et al. "Basic investigation for life assessment technology of modified 9Cr–1Mo steel." Nuclear Engineering and Design 193, no. 3 (1999): 243–54. http://dx.doi.org/10.1016/s0029-5493(99)00181-8.
Full textGuguloth, Krishna, J. Swaminathan, Nilima Roy, and R. N. Ghosh. "Uniaxial creep and stress relaxation behavior of modified 9Cr-1Mo steel." Materials Science and Engineering: A 684 (January 2017): 683–96. http://dx.doi.org/10.1016/j.msea.2016.12.090.
Full textSakthivel, T., K. Laha, M. Vasudevan, M. Koteswara Rao, and S. Panneer Selvi. "Type IV cracking behaviour of modified 9Cr-1Mo steel weld joints." Materials at High Temperatures 33, no. 2 (2016): 137–53. http://dx.doi.org/10.1080/09603409.2015.1137158.
Full textNagesha, A., R. Kannan, R. Sandhya, et al. "Thermomechanical Fatigue Behaviour of a Modified 9Cr-1Mo Ferritic-Martensitic Steel." Procedia Engineering 55 (2013): 199–203. http://dx.doi.org/10.1016/j.proeng.2013.03.242.
Full textNAGAE, Yuji, Shigeru TAKAYA, and Tai ASAYAMA. "Creep-Fatigue Evaluation by Hysteresis Energy in Modified 9Cr-1Mo Steel." Journal of Solid Mechanics and Materials Engineering 3, no. 3 (2009): 449–56. http://dx.doi.org/10.1299/jmmp.3.449.
Full textMitchell, M. R., R. E. Link, S. Sathyanarayanan, et al. "Characterization of Crack Arrest Phenomena in a Modified 9Cr-1Mo Steel." Journal of Testing and Evaluation 39, no. 3 (2011): 103048. http://dx.doi.org/10.1520/jte103048.
Full textChandravathi, K. S., K. Laha, K. Bhanu Sankara Rao, and S. L. Mannan. "Microstructure and tensile properties of modified 9Cr–1Mo steel (grade 91)." Materials Science and Technology 17, no. 5 (2001): 559–65. http://dx.doi.org/10.1179/026708301101510212.
Full textChatterjee, Arya, A. Moitra, A. K. Bhaduri, R. Mitra, and D. Chakrabarti. "Dynamic fracture behaviour of thermo-mechanically processed modified 9Cr–1Mo steel." Engineering Fracture Mechanics 149 (November 2015): 74–88. http://dx.doi.org/10.1016/j.engfracmech.2015.09.051.
Full textYoon, Ji-Hyun, and Eui-Pak Yoon. "Fracture toughness and the master curve for modified 9Cr−1Mo steel." Metals and Materials International 12, no. 6 (2006): 477–82. http://dx.doi.org/10.1007/bf03027747.
Full textVeerababu, J., Sunil Goyal, J. Vanaja, A. Nagesha, and M. Vasudevan. "Generation of creep-fatigue interaction diagram for modified 9Cr–1Mo steel." International Journal of Pressure Vessels and Piping 191 (June 2021): 104376. http://dx.doi.org/10.1016/j.ijpvp.2021.104376.
Full textDu, Xian He, and Ying Hua Liu. "Plastic Limit Analysis of Piping with Local Wall-Thinning under Elevated Temperature." Key Engineering Materials 725 (December 2016): 47–52. http://dx.doi.org/10.4028/www.scientific.net/kem.725.47.
Full textArvinth Davinci, Marimuthu, Dipti Samantaray, Utpal Borah, Shaju K. Albert, and Arun Kumar Bhaduri. "Characterization of Hot Workability of Boron-Added Modified 9Cr-1Mo Steel (P91B) Using Dynamic Materials Model." Materials Science Forum 830-831 (September 2015): 325–28. http://dx.doi.org/10.4028/www.scientific.net/msf.830-831.325.
Full textDas, Chittaranjan, Arun Kumar Bhaduri, V. Thomas Paul, et al. "Effect of PWHT on the Toughness of Modified 9Cr-1Mo Steel Weldmetal." Indian Welding Journal 47, no. 4 (2014): 24. http://dx.doi.org/10.22486/iwj.v47i4.141079.
Full textKim, Seon Jin, Woo Gon Kim, Ik Hee Jung, and Yong Wan Kim. "Statistical Analysis of Creep Crack Growth Behavior in Modified 9Cr-1Mo Steel." Materials Science Forum 654-656 (June 2010): 516–19. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.516.
Full textSamant, S. S., I. V. Singh, and R. N. Singh. "Influence of intermediate rolling on mechanical behavior of modified 9Cr-1Mo steel." Materials Science and Engineering: A 738 (December 2018): 135–52. http://dx.doi.org/10.1016/j.msea.2018.09.092.
Full textSasikala, G., and S. K. Ray. "Evaluation of quasistatic fracture toughness of a modified 9Cr-1Mo (P91) steel." Materials Science and Engineering: A 479, no. 1-2 (2008): 105–11. http://dx.doi.org/10.1016/j.msea.2007.06.021.
Full textZhang, X. Z., X. J. Wu, R. Liu, J. Liu, and M. X. Yao. "Deformation-mechanism-based modeling of creep behavior of modified 9Cr-1Mo steel." Materials Science and Engineering: A 689 (March 2017): 345–52. http://dx.doi.org/10.1016/j.msea.2017.02.044.
Full textZhang, X. Z., X. J. Wu, R. Liu, J. Liu, and M. X. Yao. "Influence of Laves phase on creep strength of modified 9Cr-1Mo steel." Materials Science and Engineering: A 706 (October 2017): 279–86. http://dx.doi.org/10.1016/j.msea.2017.08.111.
Full textVerma, Preeti, N. C. Santhi Srinivas, and Vakil Singh. "Low cycle fatigue behavior of modified 9Cr-1Mo steel at 300 °C." Materials Science and Engineering: A 715 (February 2018): 17–24. http://dx.doi.org/10.1016/j.msea.2017.12.105.
Full textYAMADA, Katsutaka, and Takashi OGATA. "Influence of Multiaxial Stress on Creep Damage of Modified 9Cr-1Mo Steel." Proceedings of Conference of Kanto Branch 2017.23 (2017): 1006. http://dx.doi.org/10.1299/jsmekanto.2017.23.1006.
Full textGuguloth, Krishna, S. Sivaprasad, D. Chakrabarti, and S. Tarafder. "Low-cyclic fatigue behavior of modified 9Cr–1Mo steel at elevated temperature." Materials Science and Engineering: A 604 (May 2014): 196–206. http://dx.doi.org/10.1016/j.msea.2014.02.076.
Full textVerma, Preeti, G. Sudhakar Rao, P. Chellapandi, et al. "Dynamic strain ageing, deformation, and fracture behavior of modified 9Cr–1Mo steel." Materials Science and Engineering: A 621 (January 2015): 39–51. http://dx.doi.org/10.1016/j.msea.2014.10.011.
Full text