To see the other types of publications on this topic, follow the link: Modified chemical vapor deposition.

Journal articles on the topic 'Modified chemical vapor deposition'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Modified chemical vapor deposition.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kurki, Jouko A. "Large modified chemical vapor deposition preform optimization." Optical Engineering 34, no. 9 (1995): 2532. http://dx.doi.org/10.1117/12.208084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dong, L., J. Pinkstone, P. St J. Russell, and D. N. Payne. "Ultraviolet absorption in modified chemical vapor deposition preforms." Journal of the Optical Society of America B 11, no. 10 (1994): 2106. http://dx.doi.org/10.1364/josab.11.002106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cheung, Catherine K. W., David F. Fletcher, and Geoffrey W. Barton. "Impact of chlorine dissociation for modified chemical vapor deposition." Journal of Non-Crystalline Solids 355, no. 13 (2009): 817–20. http://dx.doi.org/10.1016/j.jnoncrysol.2009.03.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yevnin, Maya, Gil Atar, Stanislav Campelj, et al. "Low-Loss Waveguides by Planar Modified Chemical Vapor Deposition." Journal of Lightwave Technology 38, no. 4 (2020): 792–96. http://dx.doi.org/10.1109/jlt.2019.2943494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Doupovec, J., and A. L. Yarin. "Nonsymmetrical modified chemical vapor deposition (N-MCVD) process (optical fibres)." Journal of Lightwave Technology 9, no. 6 (1991): 695–700. http://dx.doi.org/10.1109/50.81970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Serghini-Monim, S., P. R. Norton, and R. J. Puddephatt. "Chemical Vapor Deposition of Silver on Plasma-Modified Polyurethane Surfaces." Journal of Physical Chemistry B 101, no. 39 (1997): 7808–13. http://dx.doi.org/10.1021/jp9713827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Kyo-Seon, and Sotiris E. Pratsinis. "Manufacture of optical waveguide preforms by modified chemical vapor deposition." AIChE Journal 34, no. 6 (1988): 912–21. http://dx.doi.org/10.1002/aic.690340603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kurki, Jouko A. "Soot-overcladding process for enlarging modified chemical vapor deposition preforms." Optical Engineering 34, no. 9 (1995): 2538. http://dx.doi.org/10.1117/12.208111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mohammed Hafiz, O. K., and Anugrah Singh. "CFD simulation of laser enhanced modified chemical vapor deposition process." Chemical Engineering Research and Design 89, no. 6 (2011): 593–602. http://dx.doi.org/10.1016/j.cherd.2010.09.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cheung, Catherine K. W., David F. Fletcher, Geoff W. Barton, and Pam McNamara. "Simulation of particle transport and deposition in the modified chemical vapor deposition process." Journal of Non-Crystalline Solids 355, no. 4-5 (2009): 327–34. http://dx.doi.org/10.1016/j.jnoncrysol.2008.11.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Choi, M., H. R. Baum, and R. Greif. "The Heat Transfer Problem for the Modified Chemical Vapor Deposition Process." Journal of Heat Transfer 109, no. 3 (1987): 642–46. http://dx.doi.org/10.1115/1.3248136.

Full text
Abstract:
The heat transfer problem related to the modified chemical vapor deposition process has been analyzed in the high Peclet number limit. Variations in the axial, angular, and radial directions are presented. Of particular interest are the effects of tube rotation and variable properties on the temperature profiles.
APA, Harvard, Vancouver, ISO, and other styles
12

Digiovanni, D. J., T. F. Morse, and J. W. Cipolla. "The effect of sintering dopant incorporation in modified chemical vapor deposition." Journal of Lightwave Technology 7, no. 12 (1989): 1967–72. http://dx.doi.org/10.1109/50.41616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Warnes, Bruce Michael. "Reactive element modified chemical vapor deposition low activity platinum aluminide coatings." Surface and Coatings Technology 146-147 (September 2001): 7–12. http://dx.doi.org/10.1016/s0257-8972(01)01363-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Park, K. S., B. W. Lee, and M. Choi. "An Analysis of Aerosol Dynamics in the Modified Chemical Vapor Deposition." Aerosol Science and Technology 31, no. 4 (1999): 258–74. http://dx.doi.org/10.1080/027868299304147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Golubev, V. G., A. V. Medvedev, A. B. Pevtsov, and N. A. Feoktistov. "Modified method of plasma-enhanced chemical vapor deposition of nanocrystalline silicon." Technical Physics Letters 24, no. 10 (1998): 758–59. http://dx.doi.org/10.1134/1.1262256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Chen, Jie, Shu Yu, and Xiang Xiong. "Anodic Surface Treatment on Carbon Fibers - The Effect on Microstructure of Pyrocarbon Matrix during Chemical Vapor Deposition." Advanced Materials Research 399-401 (November 2011): 363–67. http://dx.doi.org/10.4028/www.scientific.net/amr.399-401.363.

Full text
Abstract:
Before chemical vapor deposition, PAN-based carbon fibers were modified by anodic surface treatment for different time, using 5% ammonium bicarbonate as electrolyte. Effects of the surface treatment on surface mophology, chemical functional groups of carbon fibers were investigated. The microstructure of pyrocarbon were analysed as well. The results show that the anodic surface treatment by 5% ammonium bicarbonate for proper time can improve the surface morphology and adjust the surface functinal groups of carbon fibers, which can promote the deposition of ordered pyrocarbon during chemical va
APA, Harvard, Vancouver, ISO, and other styles
17

Lin, Y. T., M. Choi, and R. Greif. "A Three-Dimensional Analysis of Particle Deposition for the Modified Chemical Vapor Deposition (MCVD) Process." Journal of Heat Transfer 114, no. 3 (1992): 735–42. http://dx.doi.org/10.1115/1.2911342.

Full text
Abstract:
A study has been made of the deposition of particles that occurs during the modified chemical vapor deposition (MCVD) process. The three-dimensional conservation equations of mass, momentum, and energy have been solved numerically for forced flow, including the effects of buoyancy and variable properties in a heated, rotating tube. The motion of the particles that are formed is determined from the combined effects resulting from thermophoresis and the forced and secondary flows. The effects of torch speed, rotational speed, inlet flow rate, tube radius, and maximum surface temperature on depos
APA, Harvard, Vancouver, ISO, and other styles
18

Cho, J., and M. Choi. "An Experimental Study of Heat Transfer and Particle Deposition for the Modified Chemical Vapor Deposition." Journal of Heat Transfer 117, no. 4 (1995): 1036–41. http://dx.doi.org/10.1115/1.2836278.

Full text
Abstract:
An experimental study has been made of heat transfer and particle deposition for the Modified Chemical Vapor Deposition process. The tube wall temperature distributions and the rates and efficiencies of particle deposition were measured. Results indicate that the axial variation of the tube wall temperature is quasi-steady; i.e., the distributions fit onto one curve if the relative distance from the moving torch is used as the axial coordinate. Due to the repeated heating from the traversing torch, the wall temperature is shown to reach a minimum ahead of the torch. It is shown that the two-to
APA, Harvard, Vancouver, ISO, and other styles
19

Shi, B., W. J. Meng, R. D. Evans, and N. Hershkowitz. "Deposition of highly hydrogenated carbon films by a modified plasma assisted chemical vapor deposition technique." Surface and Coatings Technology 200, no. 5-6 (2005): 1543–48. http://dx.doi.org/10.1016/j.surfcoat.2005.08.098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Park, K. S., and M. Choi. "Analysis of Unsteady Heat and Mass Transfer During the Modified Chemical Vapor Deposition Process." Journal of Heat Transfer 120, no. 4 (1998): 858–64. http://dx.doi.org/10.1115/1.2825904.

Full text
Abstract:
An analysis of unsteady heat and mass transfer in the modified chemical vapor deposition has been carried out. It is found that the commonly used quasi-steady-state assumption could be used to predict the overall efficiency of particle deposition; however, the assumption would not be valid near the inlet region where tapered deposition occurs. The present unsteady calculations have been found to be capable of predicting the detailed deposition profile correctly even from the inlet region where further optimization is needed at a practical situation. The present results have also been compared
APA, Harvard, Vancouver, ISO, and other styles
21

Cheung, C. K. W., P. McNamara, G. W. Barton, and Z. Liu. "Germania nanocrystals in Modified Chemical Vapour Deposition." Journal of Non-Crystalline Solids 354, no. 33 (2008): 3958–64. http://dx.doi.org/10.1016/j.jnoncrysol.2008.05.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Endo, Eishi, Toshikazu Yasuda, Kiyoshi Yamaura, Akinori Kita, and Koji Sekai. "LiNiO2 electrode modified by plasma chemical vapor deposition for higher voltage performance." Journal of Power Sources 93, no. 1-2 (2001): 87–92. http://dx.doi.org/10.1016/s0378-7753(00)00549-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Hu, Zhi-hui, Shao-ming Dong, Jian-bao Hu, et al. "Synthesis of carbon nanotubes on carbon fibers by modified chemical vapor deposition." Carbon 52 (February 2013): 624. http://dx.doi.org/10.1016/j.carbon.2012.10.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Cheung, Catherine K. W., Daniel Haley, David F. Fletcher, Geoff W. Barton, and Pam McNamara. "Simulation of particle–vortex interactions in the modified chemical vapor deposition process." Journal of Non-Crystalline Solids 353, no. 44-46 (2007): 4066–75. http://dx.doi.org/10.1016/j.jnoncrysol.2007.06.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zhao, Yuping, Chengchen Li, Mingming Chen, et al. "Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition." Physics Letters A 380, no. 47 (2016): 3993–97. http://dx.doi.org/10.1016/j.physleta.2016.06.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

DiGIOVANNI, D. J., T. F. MORSE, and J. W. CIPOLLA. "Theoretical Model of Phosphorus Incorporation in Silica in Modified Chemical Vapor Deposition." Journal of the American Ceramic Society 71, no. 11 (1988): 914–23. http://dx.doi.org/10.1111/j.1151-2916.1988.tb07558.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Bhat, Yajnavalkya Subray, Jagannath Das, and Anand Bhimrao Halgeri. "Activity Stabilization of Ga-MFI Zeolite Catalyst Modified by Chemical Vapor Deposition." Bulletin of the Chemical Society of Japan 69, no. 2 (1996): 469–72. http://dx.doi.org/10.1246/bcsj.69.469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

HU, Zhi-hui, Shao-ming DONG, Jian-bao HU, et al. "Synthesis of carbon nanotubes on carbon fibers by modified chemical vapor deposition." New Carbon Materials 27, no. 5 (2012): 352–61. http://dx.doi.org/10.1016/s1872-5805(12)60021-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Shi, Yonggui, Dong Wang, Jincheng Zhang, Peng Zhang, Xuefang Shi, and Yue Hao. "Synthesis of Multilayer Graphene Films on Copper by Modified Chemical Vapor Deposition." Materials and Manufacturing Processes 30, no. 6 (2014): 711–16. http://dx.doi.org/10.1080/10426914.2014.984201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

JangJean, Shiuh-Ko, Ying-Lang Wang, Chuan-Pu Liu, Weng-Sing Hwang, Wei-Tsu Tseng, and Chi-Wen Liu. "In situfluorine-modified organosilicate glass prepared by plasma enhanced chemical vapor deposition." Journal of Applied Physics 94, no. 1 (2003): 732–37. http://dx.doi.org/10.1063/1.1578171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Song, Wenlei, Ming Gao, Pengbo Zhang, et al. "Role of nuclei in controllable MoS2 growth by modified chemical vapor deposition." Journal of Materials Science: Materials in Electronics 29, no. 9 (2018): 7425–34. http://dx.doi.org/10.1007/s10854-018-8733-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kim, Kyo-Seon, and Pratsinis Sotiris E. "Modeling and analysis of modified chemical vapor deposition of optical fiber preforms." Chemical Engineering Science 44, no. 11 (1989): 2475–82. http://dx.doi.org/10.1016/0009-2509(89)85191-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Purceno, Aluir D., Breno R. Barrioni, Anderson Dias, Geraldo M. da Costa, Rochel M. Lago, and Flávia C. C. Moura. "Carbon nanostructures-modified expanded vermiculites produced by chemical vapor deposition from ethanol." Applied Clay Science 54, no. 1 (2011): 15–19. http://dx.doi.org/10.1016/j.clay.2011.06.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Karlicek, R. F., D. L. Coblentz, R. A. Logan, T. R. Hayes, R. Pawelek, and E. K. Byrne. "A modified metalorganic chemical vapor deposition chemistry for improved selective area regrowth." Journal of Crystal Growth 131, no. 1-2 (1993): 204–8. http://dx.doi.org/10.1016/0022-0248(93)90416-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ohtake, Atsushi, Kinya Kobayashi, Syuhei Kurokawa, Osamu Ohnishi, and Toshiro Doi. "Fast Diffusion of Water Molecules into Chemically Modified SiO2 Films Formed by Chemical Vapor Deposition." Chemistry Letters 41, no. 1 (2012): 60–61. http://dx.doi.org/10.1246/cl.2012.60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Xie, Haifen, Keke Wang, Zhiqiang Zhang, Xiaojing Zhao, Feng Liu, and Haichuan Mu. "Temperature and thickness dependence of the sensitivity of nitrogen dioxide graphene gas sensors modified by atomic layer deposited zinc oxide films." RSC Advances 5, no. 36 (2015): 28030–37. http://dx.doi.org/10.1039/c5ra03752b.

Full text
Abstract:
The Chemical Vapor Deposition (CVD) grown graphene nitrogen dioxide (NO<sub>2</sub>) gas sensors modified by zinc oxide (ZnO) thin films via atomic layer deposition (ALD) were fabricated and their sensitivity dependence on the temperature and ZnO film thickness was investigated.
APA, Harvard, Vancouver, ISO, and other styles
37

Li, Xinliang, Xiaowei Yin, Meikang Han, et al. "Ti3C2MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties." Journal of Materials Chemistry C 5, no. 16 (2017): 4068–74. http://dx.doi.org/10.1039/c6tc05226f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Claros, Martha, Milena Setka, Yecid P. Jimenez, and Stella Vallejos. "AACVD Synthesis and Characterization of Iron and Copper Oxides Modified ZnO Structured Films." Nanomaterials 10, no. 3 (2020): 471. http://dx.doi.org/10.3390/nano10030471.

Full text
Abstract:
Non-modified (ZnO) and modified (Fe2O3@ZnO and CuO@ZnO) structured films are deposited via aerosol assisted chemical vapor deposition. The surface modification of ZnO with iron or copper oxides is achieved in a second aerosol assisted chemical vapor deposition step and the characterization of morphology, structure, and surface of these new structured films is discussed. X-ray photoelectron spectrometry and X-ray diffraction corroborate the formation of ZnO, Fe2O3, and CuO and the electron microscopy images show the morphological and crystalline characteristics of these structured films. Static
APA, Harvard, Vancouver, ISO, and other styles
39

Zhang, Hongtao, and Zhongyang Xu. "Microstructure of nanocrystalline SiC films deposited by modified plasma-enhanced chemical vapor deposition." Optical Materials 20, no. 3 (2002): 177–81. http://dx.doi.org/10.1016/s0925-3467(02)00046-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Lee, B. W., K. S. Park, and M. Choi. "An analysis of multicomponent aerosol dynamics for the modified chemical vapor deposition process." Journal of Aerosol Science 29 (September 1998): S75—S76. http://dx.doi.org/10.1016/s0021-8502(98)00119-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Andreev, A. G., K. V. Dukel’skii, V. S. Ermakov, et al. "Investigation into doping of silica glasses with fluorine by modified chemical vapor deposition." Glass Physics and Chemistry 32, no. 1 (2006): 33–37. http://dx.doi.org/10.1134/s1087659606010032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Andreev, A. G., V. S. Bureev, M. A. Eronyan, I. I. Kryukov, T. V. Mazunina, and M. M. Serkov. "Doping of silica glass with fluorine by the modified chemical vapor deposition method." Glass Physics and Chemistry 39, no. 3 (2013): 285–86. http://dx.doi.org/10.1134/s1087659613030024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Monkawa, Akira, Toshiyuki Ikoma, Shunji Yunoki, Kazushi Ohta, and Junzo Tanaka. "Collagen Coating on Hydroxyapatite Surfaces Modified with Organosilane by Chemical Vapor Deposition Method." Journal of Nanoscience and Nanotechnology 7, no. 3 (2007): 833–38. http://dx.doi.org/10.1166/jnn.2007.524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Liu, Yu-Chuan, Bing-Joe Hwang, and Wen-Cheng Hsu. "Characteristics of Pd/Nafion oxygen sensor modified with polypyrrole by chemical vapor deposition." Journal of Solid State Electrochemistry 6, no. 5 (2001): 351–56. http://dx.doi.org/10.1007/s100080100230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

HIBINO, T. "Shape-selectivity over hzsm-5 modified by chemical vapor deposition of silicon alkoxide." Journal of Catalysis 128, no. 2 (1991): 551–58. http://dx.doi.org/10.1016/0021-9517(91)90312-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Struszczyk, MH, AK Puszkarz, B. Wilbik-Hałgas, et al. "The surface modification of ballistic textiles using plasma-assisted chemical vapor deposition (PACVD)." Textile Research Journal 84, no. 19 (2014): 2085–93. http://dx.doi.org/10.1177/0040517514528559.

Full text
Abstract:
This paper describes studies on the surface modification of so-called ballistic materials (materials commonly used to protect the human body against firearms, i.e. fragments or bullets). Two materials, an ultra-high molecular weight polyethylene (UHMWPE) composite and aramid fabric, were investigated. The surfaces of these fibrous materials were modified using plasma-assisted chemical vapor deposition (PACVD) to examine the effects of the modification on the material properties, which are important for designing ballistic protections. Accordingly, both the mechanical strength and water resista
APA, Harvard, Vancouver, ISO, and other styles
47

Mishyn, Vladyslav, Patrik Aspermair, Yann Leroux, et al. "“Click” Chemistry on Gold Electrodes Modified with Reduced Graphene Oxide by Electrophoretic Deposition." Surfaces 2, no. 1 (2019): 193–204. http://dx.doi.org/10.3390/surfaces2010015.

Full text
Abstract:
The coating of electrical interfaces with reduced graphene oxide (rGO) films and their subsequent chemical modification are essential steps in the fabrication of graphene-based sensing platforms. In this work, electrophoretic deposition (EPD) of graphene oxide at 2.5 V for 300 s followed by vapor treatment were employed to coat gold electrodes uniformly with rGO. These interfaces showed excellent electron transfer characteristics for redox mediators such as ferrocene methanol and potassium ferrocyanide. Functional groups were integrated onto the Au/rGO electrodes by the electro-reduction of an
APA, Harvard, Vancouver, ISO, and other styles
48

Fiebig, M., M. Hilgenstock, and H. A. Riemann. "The Modified Chemical Vapor Deposition Process in a Concentric Annulus: An Extension for Focused High-Rate Deposition." Aerosol Science and Technology 9, no. 3 (1988): 237–49. http://dx.doi.org/10.1080/02786828808959211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

He, Zhen Hua, Hirokazu Katsui, Rong Tu, and Takashi Goto. "Surface Modification of Silicon Carbide Powder with Silica Coating by Rotary Chemical Vapor Deposition." Key Engineering Materials 616 (June 2014): 232–36. http://dx.doi.org/10.4028/www.scientific.net/kem.616.232.

Full text
Abstract:
The surface of silicon carbide (SiC) powder was modified by coating with amorphous silica (SiO2) using (C2H5O4)Si (tetraethyl orthosilicate: TEOS) as a precursor by rotary chemical vapor deposition (RCVD). With increasing deposition time from 0.9 to 14.4 ks, the mass content of SiO2 coating increased from 1 to 35 mass%. The SiO2 mass content had a linear relationship with deposition time from 2.7 to 7.2 ks. The effects of O2 gas flow, deposition temperature (Tdep), total pressure (Ptot) and precursor vaporization temperature (Tvap) on the SiO2 yield by RCVD were investigated. At O2 gas flow of
APA, Harvard, Vancouver, ISO, and other styles
50

Lee, M. K., and C. C. Hu. "High Quality InP Epitaxial Growth Using Flow Rate Modulation Metalorganic Chemical Vapor Deposition." International Journal of High Speed Electronics and Systems 08, no. 04 (1997): 575–86. http://dx.doi.org/10.1142/s0129156497000214.

Full text
Abstract:
The characteristics of modified flow rate modulation metalorganic chemical deposition is studied. From observation with the atomic force microscope, the flatness of a InP homoepitaxial layer is improved to atomic scale by phosphine modulation metalorganic chemical vapor deposition. The full width at half maximum 5.6 meV of photoluminescence at 77 K can be achieved under optimum growth conditions. The satellite peak around the near band emission can also be reduced to a negligible quantity under optimum growth conditions. Also, MFME can improve the electrical characteristics of the epilayer wit
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!