Academic literature on the topic 'Modules de Gelfand-Graev'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Modules de Gelfand-Graev.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Modules de Gelfand-Graev"

1

Bonnafé, Cédric, and Raphaël Rouquier. "Coxeter Orbits and Modular Representations." Nagoya Mathematical Journal 183 (2006): 1–34. http://dx.doi.org/10.1017/s0027763000009259.

Full text
Abstract:
AbstractWe study the modular representations of finite groups of Lie type arising in the cohomology of certain quotients of Deligne-Lusztig varieties associated with Coxeter elements. These quotients are related to Gelfand-Graev representations and we present a conjecture on the Deligne-Lusztig restriction of Gelfand-Graev representations. We prove the conjecture for restriction to a Coxeter torus. We deduce a proof of Brouée’s conjecture on equivalences of derived categories arising from Deligne-Lusztig varieties, for a split group of type An and a Coxeter element. Our study is based on Luszt
APA, Harvard, Vancouver, ISO, and other styles
2

ACKERMANN, BERND. "THE LOEWY SERIES OF THE STEINBERG-PIM OF FINITE GENERAL LINEAR GROUPS." Proceedings of the London Mathematical Society 92, no. 1 (2005): 62–98. http://dx.doi.org/10.1017/s0024611505015443.

Full text
Abstract:
In this paper we calculate the Loewy series of the projective indecomposable module of the unipotent block contained in the Gelfand–Graev module of the finite general linear group in the case of non-describing characteristic and Abelian defect group.
APA, Harvard, Vancouver, ISO, and other styles
3

Dudas, Olivier. "Deligne-Lusztig restriction of a Gelfand-Graev module." Annales scientifiques de l'École normale supérieure 42, no. 4 (2009): 653–74. http://dx.doi.org/10.24033/asens.2105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bonnafé, Cédric, and Radha Kessar. "On the endomorphism algebras of modular Gelfand–Graev representations." Journal of Algebra 320, no. 7 (2008): 2847–70. http://dx.doi.org/10.1016/j.jalgebra.2008.05.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Modules de Gelfand-Graev"

1

Dudas, Olivier. "Géométrie des variétés de Deligne-Lusztig, décompositions, cohomologie modulo \ell et représentations modulaires." Phd thesis, Université de Franche-Comté, 2010. http://tel.archives-ouvertes.fr/tel-00492848.

Full text
Abstract:
Cette thèse porte sur la construction et l'étude des représentations modulaires des groupes réductifs finis. Comme dans le cas ordinaire, l'accent est mis sur les constructions de nature géométrique, obtenues à partir de la cohomologie des variétés de Deligne-Lusztig. On commence par introduire des méthodes de décomposition du type Deodhar, permettant de déterminer en toute généralité la présence d'une classe particulière de représentations, les modules de Gelfand-Graev, ainsi que certaines de leurs versions généralisées. Des résultats plus précis sont ensuite démontrés pour des variétés assoc
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Modules de Gelfand-Graev"

1

"Jacquet modules corresponding to Gelfand - Graev characters of parabolically induced representations." In The Descent Map from Automorphic Representations of GL(n) to Classical Groups. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814304993_0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!