Academic literature on the topic 'Modules de Verma généralisés'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Modules de Verma généralisés.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Modules de Verma généralisés"

1

Eastwood, Michael, and Jan Slovák. "Semiholonomic Verma Modules." Journal of Algebra 197, no. 2 (November 1997): 424–48. http://dx.doi.org/10.1006/jabr.1997.7136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brion, Michel. "Plethysm and Verma Modules." Journal of the London Mathematical Society 52, no. 3 (December 1995): 449–66. http://dx.doi.org/10.1112/jlms/52.3.449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carlin, Kevin J. "Extensions of Verma modules." Transactions of the American Mathematical Society 294, no. 1 (January 1, 1986): 29. http://dx.doi.org/10.1090/s0002-9947-1986-0819933-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Billig, Y., V. Futorny, and A. Molev. "Verma Modules for Yangians." Letters in Mathematical Physics 78, no. 1 (September 1, 2006): 1–16. http://dx.doi.org/10.1007/s11005-006-0107-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Khomenko, Oleksandr, and Volodymyr Mazorchuk. "Generalized Verma Modules Induced from sl(2,C) and Associated Verma Modules." Journal of Algebra 242, no. 2 (August 2001): 561–76. http://dx.doi.org/10.1006/jabr.2001.8815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Khomenko, Oleksandr, and Volodymyr Mazorchuk. "Rigidity of generalized Verma modules." Colloquium Mathematicum 92, no. 1 (2002): 45–57. http://dx.doi.org/10.4064/cm92-1-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Geiss, Christof, Bernard Leclerc, and Jan Schröer. "Verma Modules and Preprojective Algebras." Nagoya Mathematical Journal 182 (June 2006): 241–58. http://dx.doi.org/10.1017/s002776300002688x.

Full text
Abstract:
AbstractWe give a geometric construction of the Verma modules of a symmetric Kac-Moody Lie algebra g in terms of constructible functions on the varieties of nilpotent finite-dimensional modules of the corresponding preprojective algebra Λ.
APA, Harvard, Vancouver, ISO, and other styles
8

Tan, Yilan. "Verma modules for twisted Yangians." Communications in Algebra 48, no. 1 (July 14, 2019): 210–17. http://dx.doi.org/10.1080/00927872.2019.1640235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Boe, Brian D. "Homomorphisms between generalized Verma modules." Transactions of the American Mathematical Society 288, no. 2 (February 1, 1985): 791. http://dx.doi.org/10.1090/s0002-9947-1985-0776404-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mazorchuk, Volodymyr. "Tableaux Realization of Generalized Verma Modules." Canadian Journal of Mathematics 50, no. 4 (August 1, 1998): 816–28. http://dx.doi.org/10.4153/cjm-1998-043-x.

Full text
Abstract:
AbstractWe construct the tableaux realization of generalized Verma modules over the Lie algebra sl(3, ℂ). By the same procedure we construct and investigate the structure of a new family of generalized Verma modules over sl(n, ℂ).
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Modules de Verma généralisés"

1

Tomasini, Guillaume. "Etude de certaines catégories de modules de poids et de leurs rectrictions à des paires duales." Phd thesis, Université de Strasbourg, 2010. http://tel.archives-ouvertes.fr/tel-00485655.

Full text
Abstract:
Un problème majeur en théorie de Lie est de comprendre la catégorie de tous les modules d'une algèbre de Lie donnée. La catégorie O de Bernstein-Gelfand-Gelfand puis la notion de module de poids exploitée à partir des années 80 ont permis une avancée considérable dans ce domaine. Les modules cuspidaux introduits pour décrire tous les modules de poids sont aujourd'hui au coeur de cette théorie. Nous introduisons dans cette thèse une famille de catégories extrapolant la catégorie O et celle de tous les modules cuspidaux. Dans certains cas, nous décrivons entièrement la catégorie obtenue. Nous utilisons ensuite ces catégories pour décrire des correspondances pour certaines paires duales.
APA, Harvard, Vancouver, ISO, and other styles
2

Dixon, Jonathan Peter. "Some Results Concerning Verma Modules." Thesis, Queen Mary, University of London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.499187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sawon, Justin. "Homomorphisms of semi-holonomic verma modules : an exceptional case /." Title page, contents and abstract only, 1996. http://web4.library.adelaide.edu.au/theses/09SM/09smS2707.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Husain, Aban Zehra. "Verma Modules, The Weyl Character Formula and Embedding Theorems." Thesis, Uppsala universitet, Algebra och geometri, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-386041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Recher, François. "T-modules généralisés, veceurs de Witt et automates." Caen, 1994. http://www.theses.fr/1994CAEN2006.

Full text
Abstract:
Le travail présenté dans cette thèse comporte trois chapitres distincts dans leur finalité, mais qui possèdent néanmoins un point commun : la théorie des t-modules généralisés. Le premier chapitre développé dans le contexte des t-modules généralisés introduits par y. Hellegouarch la notion de produit tensoriel élaborée par g. W. Anderson et l'applique à la puissance n-ième du module de Carlitz. Le deuxième chapitre exploite la théorie des vecteurs de Witt, ainsi que la notion de somme formelle de racines de l'unité développée par J. H. Conway et A. J. Jones. Nous utilisons ces outils pour nous intéresser d'une part au défaut d'additivité des chiffres de Teichmuller, et d'autre part au relèvement de modules de Drinfeld en caractéristique zéro. Le troisième chapitre étudie et compare les notions de transcendance et de sigma-transcendance.
APA, Harvard, Vancouver, ISO, and other styles
6

Carstensen, Vivi. "On characteristic p Verma modules and subalgebras of the hyperalgebra." Thesis, University of Oxford, 1994. http://ora.ox.ac.uk/objects/uuid:c6f5db9a-db94-4d58-9eb1-dd402c8846c5.

Full text
Abstract:
Let G be a finite dimensional semisimple Lie algebra; we study the class of infinite dimensional representations of Gcalled characteristic p Verma modules. To obtain information about the structure of the Verma module Z(λ) we find primitive weights μ such that a non-zero homomorphism from Z(μ) to Z(λ) exists. For λ + ρ dominant, where ρ is the sum of the fundamental roots, there exist only finitely many primitive weights, and they all appear in a convex, bounded area. In the case of λ + ρ not dominant, and the characteristic p a good prime, there exist infinitely many primitive weights for the Lie algebra. For G = sl3 we explicitly present a large, but not necessarily complete, set of primitive weights. A method to obtain the Verma module as the tensor product of Steinberg modules and Frobenius twisted Z(λ1) is given for certain weights, λ = pn λ1 + (pn — 1)ρ. Furthermore, a result about exact sequences of Weyl modules is carried over to Verma modules for sl2. Finally, the connection between the subalgebra u¯1 of the hyperalgebra U for a finite dimensional semisimple Lie algebra, and a group algebra KG for some suitable p-group G is studied. No isomorphism exists, when the characteristic of the field is larger than the Coxeter number. However, in the case of p — 2 we find u¯1sl3≈ KG. Furthermore, we determine the centre ofu¯nsl3, and we obtain an alternative K-basis of U-.
APA, Harvard, Vancouver, ISO, and other styles
7

Martins, Renato Alessandro. "Estruturas de Vertex em teoria de representações de álgebras de Lie." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-07092012-173756/.

Full text
Abstract:
Motivados pelos resultados do artigo [BBFK11], nosso trabalho começa analisando, no caso da álgebra de Lie afim sl(n;C), a possibilidade de se obter módulos de Verma J-imaginários, via representações análogas às feitas por Cox em [Cox05]. Inicialmente consideramos, por simplicidade, n = 2 e, só então, analisamos o caso geral. Depois, de modo análogo, estudamos os artigos [CF04] e [CF05] com o intuito de obter módulos J-intermediários de Wakimoto. Finalmente imbutimos, no caso n = 2, uma ação de álgebra de Virasoro nos módulos imaginários de Wakimoto, utilizando-nos do resultado exposto em [EFK98], em que tal problema é abordado para o caso dos módulos de Verma. Desta forma, obtemos equações análogas às de Knizhnik-Zamolodchikov (equações KZ) para os módulos imaginários de Wakimoto.
Following the results of [BBFK11], our work starts analyzing (for bsl(n;C)) if we can obtain J-imaginary Verma modules using similar representations used by Cox in [Cox05]. We did it for n = 2 and after, for the general case. The next step was the study of J-intermediate Wakimoto modules, following the ideas of [CF04] and [CF05]. To finish, for affine sl(2;C), we defined an action of Virasoro algebra on the imaginary Wakimoto modules following [EFK98] and we obtained an analogue of the KZ-equations for imaginary Wakimoto modules.
APA, Harvard, Vancouver, ISO, and other styles
8

Sivanesan, Narendiran [Verfasser], and Peter [Akademischer Betreuer] Fiebig. "Twisted Verma Modules and Sheaves on Moment Graphs / Narendiran Sivanesan. Gutachter: Peter Fiebig." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2014. http://d-nb.info/1064996620/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Saifi, Halip. "Generalized Borel subalgebras, Verma type modules and new irreducible representations for affine Kac-Moody algebras." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq20582.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Boissy, Corentin. "Configurations de connexions de selles et échanges d'intervalles généralisés dans l'espace des modules des différentielles quadratiques." Phd thesis, Université Rennes 1, 2007. http://tel.archives-ouvertes.fr/tel-00259639.

Full text
Abstract:
On étudie des familles rigides de connexions de selles sur des surfaces de demi-translation. Les configurations correspondantes sont une première étape pour comprendre la géométrie à l'infini des strates de l'espace des modules des différentielles quadratiques. On étend un résultat de Masur et Zorich en classifiant ces configurations pour chaque composante connexe de strate dès que le genre est supérieur à cinq.

On regarde ensuite de façon plus fine des dégénérescences particulières et on prouve en particulier qu'une strate n'admet qu'un seul bout topologique lorsque le genre est zéro.

Le lien entre surfaces de translation et échanges d'intervalles fournit un outil puissant pour l'étude du flot de Teichmüller. On propose une généralisation de cette représentation au cadre des différentielles quadratiques. On relie les propriétés géométriques et dynamiques de ces applications à des critères combinatoires explicites portant sur les permutations généralisées associées.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Modules de Verma généralisés"

1

Mazorchuk, V. Generalized verma modules. Edited by Zarichnyi M. Lviv, Ukraine: VNTL Publishers, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

A filtered category OS and applications. Providence, R.I., USA: American Mathematical Society, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1958-, Shelton Brad, ed. Categories of highest weight modules: Applications to classical Hermitian symmetric pairs. Providence, Rhode Island, USA: American Mathematical Society, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Representation theory and mathematical physics: Conference in honor of Gregg Zuckerman's 60th birthday, October 24--27, 2009, Yale University. Providence, R.I: American Mathematical Society, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Doran, Robert S., 1937- editor of compilation, Friedman, Greg, 1973- editor of compilation, and Nollet, Scott, 1962- editor of compilation, eds. Hodge theory, complex geometry, and representation theory: NSF-CBMS Regional Conference in Mathematics, June 18, 2012, Texas Christian University, Fort Worth, Texas. Providence, Rhode Island: American Mathematical Society, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1948-, Deodhar Vinay, and AMS Special Session on Kazhdan-Lusztig Theory and Related Topics (1989 : Loyola University of Chicago), eds. Kazhdan-Lusztig theory and related topics: Proceedings of an AMS Special Session held May 19-20, 1989 at the University of Chicago, Lake Shore Campus, Chicago, Illinois. Providence, R.I: American Mathematical Society, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Modules de Verma généralisés"

1

Dixmier, Jacques. "Verma modules." In Graduate Studies in Mathematics, 231–76. Providence, Rhode Island: American Mathematical Society, 1996. http://dx.doi.org/10.1090/gsm/011/07.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Andersen, H. H., and N. Lauritzen. "Twisted Verma Modules." In Studies in Memory of Issai Schur, 1–26. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-1-4612-0045-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gruber, B., and Yu F. Smirnov. "On Quantized Verma Modules." In Symmetries in Science V, 293–304. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3696-3_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Iohara, Kenji, and Yoshiyuki Koga. "Verma Modules I: Preliminaries." In Springer Monographs in Mathematics, 149–207. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-160-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Unterberger, Jérémie, and Claude Roger. "Induced Representations and Verma Modules." In Theoretical and Mathematical Physics, 43–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22717-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Iohara, Kenji, and Yoshiyuki Koga. "Verma Modules II: Structure Theorem." In Springer Monographs in Mathematics, 209–36. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-160-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Iohara, Kenji, and Yoshiyuki Koga. "A Duality among Verma Modules." In Springer Monographs in Mathematics, 237–63. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-160-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dobrev, V. K. "On Reducible Verma Modules over Jacobi Algebra." In Quantum Theory and Symmetries, 217–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55777-5_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Eelbode, David, and Nikolaas Verhulst. "On Appell Sets and Verma Modules for $$ \mathfrak{sl} $$ (2)." In Trends in Mathematics, 111–18. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-08771-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mahnkopf, J. "On Slope Subspaces of Cohomology of p-adic Verma Modules." In Cohomology of Arithmetic Groups, 107–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95549-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Modules de Verma généralisés"

1

GUO, XIANGQIAN, XUEWEN LIU, and KAIMING ZHAO. "VERMA MODULES OVER GENERIC EXP-POLYNOMIAL LIE ALGEBRAS." In Proceeding of the International Workshop. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814340458_0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography