Academic literature on the topic 'Modules de Verma généralisés'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Modules de Verma généralisés.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Modules de Verma généralisés"
Eastwood, Michael, and Jan Slovák. "Semiholonomic Verma Modules." Journal of Algebra 197, no. 2 (November 1997): 424–48. http://dx.doi.org/10.1006/jabr.1997.7136.
Full textBrion, Michel. "Plethysm and Verma Modules." Journal of the London Mathematical Society 52, no. 3 (December 1995): 449–66. http://dx.doi.org/10.1112/jlms/52.3.449.
Full textCarlin, Kevin J. "Extensions of Verma modules." Transactions of the American Mathematical Society 294, no. 1 (January 1, 1986): 29. http://dx.doi.org/10.1090/s0002-9947-1986-0819933-4.
Full textBillig, Y., V. Futorny, and A. Molev. "Verma Modules for Yangians." Letters in Mathematical Physics 78, no. 1 (September 1, 2006): 1–16. http://dx.doi.org/10.1007/s11005-006-0107-1.
Full textKhomenko, Oleksandr, and Volodymyr Mazorchuk. "Generalized Verma Modules Induced from sl(2,C) and Associated Verma Modules." Journal of Algebra 242, no. 2 (August 2001): 561–76. http://dx.doi.org/10.1006/jabr.2001.8815.
Full textKhomenko, Oleksandr, and Volodymyr Mazorchuk. "Rigidity of generalized Verma modules." Colloquium Mathematicum 92, no. 1 (2002): 45–57. http://dx.doi.org/10.4064/cm92-1-4.
Full textGeiss, Christof, Bernard Leclerc, and Jan Schröer. "Verma Modules and Preprojective Algebras." Nagoya Mathematical Journal 182 (June 2006): 241–58. http://dx.doi.org/10.1017/s002776300002688x.
Full textTan, Yilan. "Verma modules for twisted Yangians." Communications in Algebra 48, no. 1 (July 14, 2019): 210–17. http://dx.doi.org/10.1080/00927872.2019.1640235.
Full textBoe, Brian D. "Homomorphisms between generalized Verma modules." Transactions of the American Mathematical Society 288, no. 2 (February 1, 1985): 791. http://dx.doi.org/10.1090/s0002-9947-1985-0776404-0.
Full textMazorchuk, Volodymyr. "Tableaux Realization of Generalized Verma Modules." Canadian Journal of Mathematics 50, no. 4 (August 1, 1998): 816–28. http://dx.doi.org/10.4153/cjm-1998-043-x.
Full textDissertations / Theses on the topic "Modules de Verma généralisés"
Tomasini, Guillaume. "Etude de certaines catégories de modules de poids et de leurs rectrictions à des paires duales." Phd thesis, Université de Strasbourg, 2010. http://tel.archives-ouvertes.fr/tel-00485655.
Full textDixon, Jonathan Peter. "Some Results Concerning Verma Modules." Thesis, Queen Mary, University of London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.499187.
Full textSawon, Justin. "Homomorphisms of semi-holonomic verma modules : an exceptional case /." Title page, contents and abstract only, 1996. http://web4.library.adelaide.edu.au/theses/09SM/09smS2707.pdf.
Full textHusain, Aban Zehra. "Verma Modules, The Weyl Character Formula and Embedding Theorems." Thesis, Uppsala universitet, Algebra och geometri, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-386041.
Full textRecher, François. "T-modules généralisés, veceurs de Witt et automates." Caen, 1994. http://www.theses.fr/1994CAEN2006.
Full textCarstensen, Vivi. "On characteristic p Verma modules and subalgebras of the hyperalgebra." Thesis, University of Oxford, 1994. http://ora.ox.ac.uk/objects/uuid:c6f5db9a-db94-4d58-9eb1-dd402c8846c5.
Full textMartins, Renato Alessandro. "Estruturas de Vertex em teoria de representações de álgebras de Lie." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-07092012-173756/.
Full textFollowing the results of [BBFK11], our work starts analyzing (for bsl(n;C)) if we can obtain J-imaginary Verma modules using similar representations used by Cox in [Cox05]. We did it for n = 2 and after, for the general case. The next step was the study of J-intermediate Wakimoto modules, following the ideas of [CF04] and [CF05]. To finish, for affine sl(2;C), we defined an action of Virasoro algebra on the imaginary Wakimoto modules following [EFK98] and we obtained an analogue of the KZ-equations for imaginary Wakimoto modules.
Sivanesan, Narendiran [Verfasser], and Peter [Akademischer Betreuer] Fiebig. "Twisted Verma Modules and Sheaves on Moment Graphs / Narendiran Sivanesan. Gutachter: Peter Fiebig." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2014. http://d-nb.info/1064996620/34.
Full textSaifi, Halip. "Generalized Borel subalgebras, Verma type modules and new irreducible representations for affine Kac-Moody algebras." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq20582.pdf.
Full textBoissy, Corentin. "Configurations de connexions de selles et échanges d'intervalles généralisés dans l'espace des modules des différentielles quadratiques." Phd thesis, Université Rennes 1, 2007. http://tel.archives-ouvertes.fr/tel-00259639.
Full textOn regarde ensuite de façon plus fine des dégénérescences particulières et on prouve en particulier qu'une strate n'admet qu'un seul bout topologique lorsque le genre est zéro.
Le lien entre surfaces de translation et échanges d'intervalles fournit un outil puissant pour l'étude du flot de Teichmüller. On propose une généralisation de cette représentation au cadre des différentielles quadratiques. On relie les propriétés géométriques et dynamiques de ces applications à des critères combinatoires explicites portant sur les permutations généralisées associées.
Books on the topic "Modules de Verma généralisés"
Mazorchuk, V. Generalized verma modules. Edited by Zarichnyi M. Lviv, Ukraine: VNTL Publishers, 2000.
Find full textA filtered category OS and applications. Providence, R.I., USA: American Mathematical Society, 1990.
Find full text1958-, Shelton Brad, ed. Categories of highest weight modules: Applications to classical Hermitian symmetric pairs. Providence, Rhode Island, USA: American Mathematical Society, 1987.
Find full textRepresentation theory and mathematical physics: Conference in honor of Gregg Zuckerman's 60th birthday, October 24--27, 2009, Yale University. Providence, R.I: American Mathematical Society, 2011.
Find full textDoran, Robert S., 1937- editor of compilation, Friedman, Greg, 1973- editor of compilation, and Nollet, Scott, 1962- editor of compilation, eds. Hodge theory, complex geometry, and representation theory: NSF-CBMS Regional Conference in Mathematics, June 18, 2012, Texas Christian University, Fort Worth, Texas. Providence, Rhode Island: American Mathematical Society, 2013.
Find full text1948-, Deodhar Vinay, and AMS Special Session on Kazhdan-Lusztig Theory and Related Topics (1989 : Loyola University of Chicago), eds. Kazhdan-Lusztig theory and related topics: Proceedings of an AMS Special Session held May 19-20, 1989 at the University of Chicago, Lake Shore Campus, Chicago, Illinois. Providence, R.I: American Mathematical Society, 1992.
Find full textBook chapters on the topic "Modules de Verma généralisés"
Dixmier, Jacques. "Verma modules." In Graduate Studies in Mathematics, 231–76. Providence, Rhode Island: American Mathematical Society, 1996. http://dx.doi.org/10.1090/gsm/011/07.
Full textAndersen, H. H., and N. Lauritzen. "Twisted Verma Modules." In Studies in Memory of Issai Schur, 1–26. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-1-4612-0045-1_1.
Full textGruber, B., and Yu F. Smirnov. "On Quantized Verma Modules." In Symmetries in Science V, 293–304. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3696-3_14.
Full textIohara, Kenji, and Yoshiyuki Koga. "Verma Modules I: Preliminaries." In Springer Monographs in Mathematics, 149–207. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-160-8_5.
Full textUnterberger, Jérémie, and Claude Roger. "Induced Representations and Verma Modules." In Theoretical and Mathematical Physics, 43–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22717-2_4.
Full textIohara, Kenji, and Yoshiyuki Koga. "Verma Modules II: Structure Theorem." In Springer Monographs in Mathematics, 209–36. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-160-8_6.
Full textIohara, Kenji, and Yoshiyuki Koga. "A Duality among Verma Modules." In Springer Monographs in Mathematics, 237–63. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-160-8_7.
Full textDobrev, V. K. "On Reducible Verma Modules over Jacobi Algebra." In Quantum Theory and Symmetries, 217–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55777-5_20.
Full textEelbode, David, and Nikolaas Verhulst. "On Appell Sets and Verma Modules for $$ \mathfrak{sl} $$ (2)." In Trends in Mathematics, 111–18. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-08771-9_7.
Full textMahnkopf, J. "On Slope Subspaces of Cohomology of p-adic Verma Modules." In Cohomology of Arithmetic Groups, 107–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95549-0_5.
Full textConference papers on the topic "Modules de Verma généralisés"
GUO, XIANGQIAN, XUEWEN LIU, and KAIMING ZHAO. "VERMA MODULES OVER GENERIC EXP-POLYNOMIAL LIE ALGEBRAS." In Proceeding of the International Workshop. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814340458_0004.
Full text