Dissertations / Theses on the topic 'Modules de Verma généralisés'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 22 dissertations / theses for your research on the topic 'Modules de Verma généralisés.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Tomasini, Guillaume. "Etude de certaines catégories de modules de poids et de leurs rectrictions à des paires duales." Phd thesis, Université de Strasbourg, 2010. http://tel.archives-ouvertes.fr/tel-00485655.
Full textDixon, Jonathan Peter. "Some Results Concerning Verma Modules." Thesis, Queen Mary, University of London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.499187.
Full textSawon, Justin. "Homomorphisms of semi-holonomic verma modules : an exceptional case /." Title page, contents and abstract only, 1996. http://web4.library.adelaide.edu.au/theses/09SM/09smS2707.pdf.
Full textHusain, Aban Zehra. "Verma Modules, The Weyl Character Formula and Embedding Theorems." Thesis, Uppsala universitet, Algebra och geometri, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-386041.
Full textRecher, François. "T-modules généralisés, veceurs de Witt et automates." Caen, 1994. http://www.theses.fr/1994CAEN2006.
Full textCarstensen, Vivi. "On characteristic p Verma modules and subalgebras of the hyperalgebra." Thesis, University of Oxford, 1994. http://ora.ox.ac.uk/objects/uuid:c6f5db9a-db94-4d58-9eb1-dd402c8846c5.
Full textMartins, Renato Alessandro. "Estruturas de Vertex em teoria de representações de álgebras de Lie." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-07092012-173756/.
Full textFollowing the results of [BBFK11], our work starts analyzing (for bsl(n;C)) if we can obtain J-imaginary Verma modules using similar representations used by Cox in [Cox05]. We did it for n = 2 and after, for the general case. The next step was the study of J-intermediate Wakimoto modules, following the ideas of [CF04] and [CF05]. To finish, for affine sl(2;C), we defined an action of Virasoro algebra on the imaginary Wakimoto modules following [EFK98] and we obtained an analogue of the KZ-equations for imaginary Wakimoto modules.
Sivanesan, Narendiran [Verfasser], and Peter [Akademischer Betreuer] Fiebig. "Twisted Verma Modules and Sheaves on Moment Graphs / Narendiran Sivanesan. Gutachter: Peter Fiebig." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2014. http://d-nb.info/1064996620/34.
Full textSaifi, Halip. "Generalized Borel subalgebras, Verma type modules and new irreducible representations for affine Kac-Moody algebras." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq20582.pdf.
Full textBoissy, Corentin. "Configurations de connexions de selles et échanges d'intervalles généralisés dans l'espace des modules des différentielles quadratiques." Phd thesis, Université Rennes 1, 2007. http://tel.archives-ouvertes.fr/tel-00259639.
Full textOn regarde ensuite de façon plus fine des dégénérescences particulières et on prouve en particulier qu'une strate n'admet qu'un seul bout topologique lorsque le genre est zéro.
Le lien entre surfaces de translation et échanges d'intervalles fournit un outil puissant pour l'étude du flot de Teichmüller. On propose une généralisation de cette représentation au cadre des différentielles quadratiques. On relie les propriétés géométriques et dynamiques de ces applications à des critères combinatoires explicites portant sur les permutations généralisées associées.
Santos, Felipe Albino dos. "Módulos irredutíveis para subálgebras de Heisenberg de álgebras de Krichever-Novikov." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05122017-200848/.
Full textThis work gives an introduction to the already known Krichever-Novikov algebras limited only to the examples approached before in Bremner (1995), Cox (2013), Cox e Jurisich (2013), Cox, Futorny and Martins (2014), Bueno, Cox and Furtony (2009), and the structures definitions that could help us to study these spaces, including affine Lie algebras, loop algebras and Verma modules. Let K be a 4-point, 3-point, elliptic or DJKM Krichever-Novikov algebra and its respective Heisenberg subalgebras K\' = K hK , where hK is the K Cartan subalgebra. In the Theorems 3.2.3, 3.4.3, 3.6.3 and 3.8.3 we will give a explicit irreducibility criteria for -Verma K\'-modules.
Soudères, Ismaël. "Motifs de Tate mixtes et éclatements à la Mac Pherson-Procesi : une application aux valeurs zêta multiples motiviques." Paris 7, 2009. http://www.theses.fr/2009PA077205.
Full textIn this thesis, we study the close links between multiple zêta values and the geometry of moduli spaces of curves in genius zero. It is shown how the properties of forgetful maps between moduli spaces of curves lead to the double shuffle relations for multiple zêta values MZVs (shuffle and stuffle). The main result of this work shows that these double shuffle relations hold for the motivic multiple zêta values attached to the moduli space of curves defined by Goncharov and Manin. First we show how those double shuffle relations are linked to the geometry of the moduli spaces of curves in genus 0. The next step, after a review on framed mixed motives, is to obtain shuffle relations for for the framed mixed motives defined by Goncharov and Manin, which are attached to both multiple zêta values and moduli spaces of curves. The last chapter of my thesis is devoted to the problem of the motivic stuffle. There, we adapt a theorem from Y. Hu about successive blow-ups to the situation of mixed Tate motives and then build a family of varieties. After some considerations on intersections of specific hypersurfaces in the affine and on the mixed Hodge structure of some relative cohomology groups, this family makes it possible to construct a new version of motivic multiple zêta values. Using the geometry of this family of varieties and these new motivic multiple zêta values it is easy to deduced some motivic stuffle relations for the new motivic multiple zêta values which lead, by comparison with the moduli spaces of curve, to motivic stuffle relations for the motivic multiple zêta values defined by Goncharov and Manin. Ented directions. Then, by studying the edges's lengths of these polygonal boundaries, we show that every polygon is the boundary of a minimal disk
Alaoui, Abdallaoui Mostafa. "Sur les quotients primitifs minimaux des algèbres enveloppantes d'algèbres de Lie semi-simples." Lyon 1, 1985. http://www.theses.fr/1985LYO11676.
Full textAlves, Marcela Guerrini. "Realização de campos livres de álgebras de Kac-Moody afim." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-29092017-114301/.
Full textThe main purpose of this work is to study the irreducible modules of affine Kac-Moody algebras,according to [7].In particular, the localization technique was applied to the imaginary Verma modules of affine Lie algebra A(1)1, with the purpose to obtain new irreducible modules of this algebra. According to[8] and [6], it is the same as to apply the localization technique to the first realization of free fields of A(1)1.To achieve the purpose, we introduced the Kac-Moody algebras, having the main focus the af-fine Kac-Moody algebras, according to [14]. Following, we defined the Verma modules, highlighting imaginary Verma modules of affine Lie algebra A(1)1, according to [8].
Fuser, Alain. "Autour de la conjecture d'Alexandru." Nancy 1, 1997. http://www.theses.fr/1997NAN10289.
Full textDudas, Olivier. "Géométrie des variétés de Deligne-Lusztig, décompositions, cohomologie modulo \ell et représentations modulaires." Phd thesis, Université de Franche-Comté, 2010. http://tel.archives-ouvertes.fr/tel-00492848.
Full textBäcklund, Pierre. "Studies on boundary values of eigenfunctions on spaces of constant negative curvature." Doctoral thesis, Uppsala University, Department of Mathematics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8920.
Full textThis thesis consists of two papers on the spectral geometry of locally symmetric spaces of Riemannian and Lorentzian signature. Both works are concerned with the idea of relating analysis on such spaces to structures on their boundaries.
The first paper is motivated by a conjecture of Patterson on the Selberg zeta function of Kleinian groups. We consider geometrically finite hyperbolic cylinders with non-compact Riemann surfaces of finite area as cross sections. For these cylinders, we present a detailed investigation of the Bunke-Olbrich extension operator under the assumption that the cross section of the cylinder has one cusp. We establish the meromorphic continuation of the extension of Eisenstein series and incomplete theta series through the limit set. Furthermore, we derive explicit formulas for the residues of the extension operator in terms of boundary values of automorphic eigenfunctions.
The motivation for the second paper comes from conformal geometry in Lorentzian signature. We prove the existence and uniqueness of a sequence of differential intertwining operators for spherical principal series representations, which are realized on boundaries of anti de Sitter spaces. Algebraically, these operators correspond to homomorphisms of generalized Verma modules. We relate these families to the asymptotics of eigenfunctions on anti de Sitter spaces.
Hall, Mark Edwin. "Verma bases of modules for simple Lie algebras." 1987. http://catalog.hathitrust.org/api/volumes/oclc/17893453.html.
Full textTypescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 249-250).
Wang, Kuo-kun, and 王國坤. "Homomorphisms between finite Verma modules over N=2 conformal superalgebra." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/40112799155350244584.
Full text國立成功大學
數學系應用數學碩博士班
91
We construct certain long exact sequences of modules over the annihilation subalgebra K(1, 2)+ of N = 2 superconformal algebra. Then every irreducible highest weight modules over K(1, 2)+ has a resolution of finite Verma modules and also every finite irreducible module over N = 2 conformal superalgebra has a resolution of finite Verma modules.
Eon, Sylvain. "Équations différentielles issues des vecteurs singuliers des représentations de l'algèbre de Virasoro." Thèse, 2008. http://hdl.handle.net/1866/7900.
Full textChênevert, Gabriel. "Polynômes de Kazhdan-Lusztig et cohomologie d'intersection des variétés de drapeaux." Thèse, 2003. http://hdl.handle.net/1866/14614.
Full textTCHOUDJEM, Alexis. "Représentations d'algèbres de Lie dans des groupes de cohomologie à support." Phd thesis, 2002. http://tel.archives-ouvertes.fr/tel-00002269.
Full text