Academic literature on the topic 'Modulus of elasticity of concrete'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Modulus of elasticity of concrete.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Modulus of elasticity of concrete"
Křížová, Klára, and Rudolf Hela. "Evaluation of the Modulus of Elasticity of Different Types of Concrete Compared with Eurocode 2." Key Engineering Materials 677 (January 2016): 181–85. http://dx.doi.org/10.4028/www.scientific.net/kem.677.181.
Full textTipka, Martin, and Jitka Vašková. "Modulus of Elasticity in Tension for Concrete and Fibre Reinforced Concrete." Solid State Phenomena 259 (May 2017): 35–40. http://dx.doi.org/10.4028/www.scientific.net/ssp.259.35.
Full textSaud, Abdullah F., Hakim S. Abdelgader, and Ali S. El-Baden. "Compressive and Tensile Strength of Two-Stage Concrete." Advanced Materials Research 893 (February 2014): 585–92. http://dx.doi.org/10.4028/www.scientific.net/amr.893.585.
Full textDomagała, Lucyna, and Justyna Dobrowolska. "The influence of an applied standard test method on a measurement of concrete stabilized secant modulus of elasticity." MATEC Web of Conferences 163 (2018): 07001. http://dx.doi.org/10.1051/matecconf/201816307001.
Full textŤažký, Martin, Lucia Osuská, and Rudolf Hela. "Development of the HVFAC Modulus of Elasticity." Solid State Phenomena 296 (August 2019): 155–60. http://dx.doi.org/10.4028/www.scientific.net/ssp.296.155.
Full textReiterman, Pavel. "Static Modulus of Elasticity of Concrete." Materials Science Forum 824 (July 2015): 151–54. http://dx.doi.org/10.4028/www.scientific.net/msf.824.151.
Full textTampi, R., H. Parung, R. Djamaluddin, and A. Amiruddin. "Elasticity modulus concrete of abaca fiber." IOP Conference Series: Earth and Environmental Science 473 (May 14, 2020): 012146. http://dx.doi.org/10.1088/1755-1315/473/1/012146.
Full textJacintho, Ana Elisabete Paganelli Guimarães de Avila, Ivanny Soares Gomes Cavaliere, Lia Lorena Pimentel, and Nádia Cazarim Silva Forti. "Modulus and Strength of Concretes with Alternative Materials." Materials 13, no. 19 (October 1, 2020): 4378. http://dx.doi.org/10.3390/ma13194378.
Full textMailyan, D. R., and G. V. Nesvetaev. "RIGIDITY AND STRENGTH ANALYSIS OF REINFORCED CONCRETE BEAMS BY VARYING ELASTICITY MODULUS." Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture, no. 4 (August 29, 2018): 86–93. http://dx.doi.org/10.31675/1607-1859-2018-20-4-86-93.
Full textSANTOS, A. H. A., R. L. S. PITANGUEIRA, G. O. RIBEIRO, and E. V. M. CARRASCO. "Concrete modulus of elasticity assessment using digital image correlation." Revista IBRACON de Estruturas e Materiais 9, no. 4 (August 2016): 587–94. http://dx.doi.org/10.1590/s1983-41952016000400007.
Full textDissertations / Theses on the topic "Modulus of elasticity of concrete"
Bhattacharjee, Chandan. "Bayesian prediction of modulus of elasticity of self consolidated concrete." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-2467.
Full textSchoppe, Brett Michael. "SHRINKAGE & MODULUS OF ELASTICITY IN CONCRETE WITH RECYCLED AGGREGATES." DigitalCommons@CalPoly, 2011. https://digitalcommons.calpoly.edu/theses/500.
Full textAxson, Daniel Peter. "Ultimate Bearing Strength of Post-tensioned Local Anchorage Zones in Lightweight Concrete." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/33711.
Full textMaster of Science
Potočková, Michaela. "Vliv vícenásobného cyklického zatěžování na hodnotu statického modulu pružnosti betonu v tlaku v konstrukcích." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-240134.
Full textGujel, Daniele Artini. "Avaliação do comportamento elástico de concretos produzidos com substituição parcial dos agregados graúdos naturais por reciclados de concreto a partir de ensaios Estático e Dinâmico." Universidade do Vale do Rio dos Sinos, 2014. http://www.repositorio.jesuita.org.br/handle/UNISINOS/4352.
Full textMade available in DSpace on 2015-07-08T22:34:01Z (GMT). No. of bitstreams: 1 DanieleGugel.pdf: 2874038 bytes, checksum: 4386cae5306c5137fce5e8448d48f6fa (MD5) Previous issue date: 2014-04-02
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
FINEP - Financiadora de Estudos e Projetos
A construção civil é um setor que causa elevado impacto ambiental devido à geração de resíduos e ao elevado consumo de matérias-primas. Demandas cada vez maiores por áreas a serem destinadas a aterros, aliadas à escassez de recursos naturais, favorecem a utilização de resíduos de construção e demolição como fonte para agregados. Neste contexto, muitos estudos estão sendo feitos a respeito de concretos produzidos com resíduos de construção e demolição, focados principalmente nas propriedades mecânicas de resistência à tração e à compressão. Para aplicação como material estrutural, entretanto, a relação tensão x deformação e, particularmente, o Módulo de Elasticidade são importantes parâmetros a serem analisados, pois são diretamente relacionados com o projeto de estruturas. Frente ao exposto, o presente trabalho utilizou agregado graúdo reciclado de concreto (ARC) na confecção de novos concretos e teve como objetivo analisar o comportamento elástico dos mesmos. Para tanto, foram confeccionados concretos com 0% e 50% de substituição de agregados graúdos naturais (AGN) por ARC. O comportamento elástico foi determinado através de um método destrutivo (Estático) e através de um método não destrutivo (Dinâmico) nas idades de 7, 28 e 63 dias para os níveis de carregamento de 0 (somente Dinâmico), 20, 30, 40, 50, 60, 70 e 80% da resistência do concreto. Os resultados encontrados para o Módulo de Elasticidade foram comparados com estimativas a partir de métodos empíricos previstos nas normas CEB-FIP Model Code 1990, ACI 318 (2011) e NBR 6118 (ABNT, 2007 e 2014). Com isso, visou-se observar a influência do ARC nas propriedades elásticas do concreto, comparar o comportamento elástico dos concretos de referência aos resultados dos concretos com ARC, estudar a correlação entre os dois métodos experimentais (Dinâmico e Estático) e verificar a correspondência entre os resultados experimentais obtidos com os normativos. Como principais conclusões, pôde-se verificar que os concretos com ARC apresentam limite elástico similar aos concretos que utilizam somente AGN (este limite situa-se entre 40 e 50% da ƒc); não foi possível identificar uma relação única entre os valores de módulo obtidos pelo Método Dinâmico e pelo Método Estático para ambos os concretos; não é possível afirmar que concretos de resistências similares, mas idades diferentes apresentaram módulos diferentes; os concretos com e sem ARC estudados apresentaram valores de Módulo de Elasticidade obtidos pelo método Estático bastante inferiores aos previstos pelas normas estudadas; os valores de Módulo de Elasticidade obtidos pelo método Dinâmico, para concretos com e sem ARC, estão contidos na faixa entre a norma mais conservadora e a menos conservadora e as curvas obtidas mostram que os concretos com ARC têm comportamento similar aos concretos sem ARC, mas são menos rígidos (maiores deformações para as mesmas tensões).
The construction industry causes a great environmental impact due to the generation of waste and the high consumption of raw material. Increasing demands for areas to become landfills, as well as shortages of natural resources, have favored the use of construction and demolition waste as a source of aggregate. In this context, many studies have been made regarding concretes produced with the use of demolition and construction waste; mainly focused on the mechanical properties of tensile and compressive strength. However, in order to use concretes produced with waste as a structural material, the stress-strain behavior and, particularly, the elastic modulus are important parameters to be analyzed, once they are directly related to structural design. Based on that, the objective of this project is to analyze the elastic behavior of concretes using coarse natural aggregates (NA) and 50% of substitution of these aggregate by coarse recycled concrete aggregates (RCA). The elastic behavior was determined by both a destructive method (static) and a nondestructive one (dynamic) on the ages of 7, 28 and 63 days for the loading levels of 0 (only dynamic), 20, 30, 40, 50, 60, 70 and 80% of respective concrete strength. The found results for the Modulus of Elasticity have been compared to estimates based on the empirical recommendations by CEB-FIP Model Code 1990, ACI 318 (2011) and NBR 6118 (ABNT, 2007 and 2014) standards. The objectives of this work were to observe the influence of the RCA on the elastic properties of concrete; to compare the elastic behavior between concretes with and without RCA, to study the correlation of both experimental methods (dynamic and static) and finally to check the relation between measured and calculated values of modulus of elasticity. The conclusions indicate that concretes with and without RCA have similar elastic limits (between 40% and 50% of the concrete strength); it is not possible to identify a unique relationship between the values obtained by dynamic and static methods for both concretes; it is not possible to assert that concretes with similar strength, but different ages, have different modulus; the values of modulus of elasticity obtained by the static method for both concretes are significantly below that indicated by the considered standards; the values of modulus of elasticity obtained by the dynamic method for concrete with and without RCA are contained in the range between the more and less conservative standards and concretes with RCA have a similar behavior than concretes without RCA, but are less rigid (larger strain for the same stress).
Marchi, Renata D\'Agostino De. "Estudo sobre a variabilidade do módulo de deformação do concreto associada a fatores intrínsecos à produção do material." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/3/3146/tde-23032012-102942/.
Full textThe modulus of elasticity requirements for concrete structures is becoming even more frequent. So, the knowledge of the variables involved in the experimental results became more important in order to make more reliable its assessment and enabling better conditions for specifications requirements attendance in relation to this property. Several studies have shown that the variability of mechanical properties of construction materials is subjected to random processes. Therefore, the security methods in the structural design must be based in the probability theory concept rather than deterministic methods. The randomness of the, compressive strength of concrete is already take in account in the quality control process according to the Brazilian Standard ABNT NBR 12655 (2006). The present work aims to study the experimental control of static modulus of elasticity of concrete, showing the influence of the constituent materials used in a Concrete Ready Mix Plant. It also intends to present a discussion on the applicability of the semi-probabilistic concept of national design standards in the mix design and production control of concrete in order to attend the elastic modulus requirements. The research methodology had two main steps: the first one, developed at a Concrete Ready Mix Plant located in São Paulo City, was based on the assessment of two characteristic compressive strength (f ck ) of 25 MPa and 30 MPa, which are commonly demanded in this market. For each strength class, tests were done to evaluate the variability of static modulus of elasticity of concrete, E cs, three times per week, during a period of nine months. On the second step, an analysis of elastic modules of concretes provided at six different sites, where the characteristic strength was 30 MPa, which was made using the same materials used in the first step. It has been used the clip gage instrumentation for measuring deformation to the assessment of static modulus of elasticity of concrete. It was used due to the precision that has been observed in recent research. The evaluation has been done according to the Brazilian Standard ABNT NBR 8522 (2008). It was possible to conclude that the modulus of elasticity of concrete is influenced by the compressive strength, so it follows a probabilistic distribution and cannot be associated to a deterministic model of quality control, due to the risk of non-compliance of the requirement. It was recommended the establishment of tolerances for the measured modulus of elasticity results, taking in account its random characteristic. The possibility of changing the focus on modulus of elasticity quality control was proposed, turning the deterministic criterion as occurs for the compressive strength, giving an estimator that assigns lower values to the modulus of elasticity, considering an acceptable rejection. It can be also based in a method that allows the acceptance of a concrete that lies within a predetermined tolerance around the average value, because the structural responsibility of modulus of elasticity is lower than the compressive strength.
Kocuba, Robert. "Diagnostika a hodnocení prefabrikované železobetonové konstrukce." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-372269.
Full textKocáb, Dalibor. "Experimentální stanovení faktorů ovlivňujících statický modul pružnosti betonu s využitím nedestruktivních zkušebních metod." Doctoral thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-355639.
Full textSousa, Fernando Henrique Fernandes. "Avaliação da relação entre os módulos de elasticidade estático e dinâmico de concretos produzidos com agregados graúdos reciclados em substituição aos agregados graúdos naturais." Universidade do Vale do Rio dos Sinos, 2018. http://www.repositorio.jesuita.org.br/handle/UNISINOS/7170.
Full textMade available in DSpace on 2018-08-16T13:06:28Z (GMT). No. of bitstreams: 1 Fernando Henrique Fernandes Sousa_.pdf: 2658604 bytes, checksum: e7b64f91760b00255d2c12f5440cf17d (MD5) Previous issue date: 2018-05-28
Nenhuma
O módulo de elasticidade é um parâmetro que mensura a rigidez do concreto, sendo uma das propriedades que é levada em consideração na verificação da segurança estrutural, pois expressa as condições dos estados limites último e de serviço. Quando é avaliada - a influência da substituição de agregados graúdos naturais por agregados graúdos reciclados - o comportamento elástico do concreto torna-se imprescindível, uma vez que não é similar ao comportamento de resistência à compressão, que por sua vez pode alcançar resistências superiores ao concreto produzido inteiramente com agregados graúdos naturais. Nesse sentido, o uso da resistência à compressão como parâmetro único, para se estimar o módulo de elasticidade do concreto produzido com agregados graúdos reciclados, tem sido cada vez mais questionável. Tratando-se da influência do uso de agregado graúdo reciclado no módulo de elasticidade do concreto, poucos são os estudos que apresentam os valores de módulo de elasticidade estático e módulo de elasticidade dinâmico. Diante disso, o objetivo desta pesquisa é avaliar a relação entre o módulo de elasticidade estático e o módulo de elasticidade dinâmico de concretos produzidos com agregados graúdos reciclados em substituição aos agregados graúdos naturais, com o intuito de relacionar o tipo de agregado graúdo ao módulo de elasticidade. Para tal, foram utilizados agregados graúdos reciclados de concreto e agregados graúdos reciclados de cerâmica vermelha em taxa de substituição de 30% em relação ao agregado graúdo natural. Os concretos foram produzidos em três traços experimentais, sendo eles: traço pobre (maior relação a/c), traço intermediário e traço rico (menor relação a/c). As propriedades dos concretos foram avaliadas aos 28 dias, sendo elas: massa específica do concreto no estado fresco e endurecido; porosidade; resistência à compressão; módulos de elasticidade estático e dinâmico. Como principais resultados, verificou-se que o tipo de agregado graúdo reciclado de modo geral influenciou negativamente o módulo de elasticidade, sendo essa influência mais pronunciada no módulo de elasticidade dinâmico; não foi possível obter uma relação entre o módulo de elasticidade estático e dinâmico dos concretos produzidos com agregados graúdos reciclados; o módulo de elasticidade estático dos concretos produzidos com agregados graúdos reciclados é mais fortemente relacionado à resistência e à compressão; o módulo de elasticidade dinâmico possui maior relação com a porosidade dos concretos produzidos com agregados graúdos reciclados; os módulos de elasticidade estimados por equações algébricas apresentam elevada variabilidade.
Modulus of elasticity is a parameter that measures the stiffness of the concrete, being one of the properties taken into account in the structural safety check, since it expresses the conditions of the ultimate and service boundary state. When the influence of the replacement of natural aggregates by recycled aggregates is evaluated, the elastic behavior of the concrete becomes essential, since it cannot be compared to the behavior of compressive strength, usually lower than the concrete produced with natural aggregates. The use of compressive strength as a single parameter to estimate the modulus of elasticity of concrete produced with recycled aggregates has been increasingly questionated. Considering the influence of the use of recycled aggregate on the modulus of elasticity of concrete, only a few studies have compared the values of static elastic modulus and dynamic modulus. This research aims to evaluate the relationship between the static elastic modulus and the dynamic elastic modulus of concrete produced with recycled aggregates in replacement of natural aggregates, in order to correlate the type of aggregate to the modulus of elasticity, verifying the relationship between the two procedure of determination of elasticity modulus. Aggregates made of recycled concrete and of ceramic bricks were used in a replacement rate of 30% to the natural aggregate. The concretes were produced in three experimental proportions (lower w/c ratio, intermediate w/c ratio and higher w/c ratio). The properties evaluated at 28 days are: bulk concrete mass; porosity; compressive strength; static and dynamic modulus of elasticity. The main conclusions are: the recycled aggregate decrease the modulus of elasticity, mainly the dynamic modulus; there are no relationship between the static and dynamic modulus of elasticity of concrete produced with recycled aggregates; the static modulus of concrete produced with recycled aggregates has a higher relationship to the compressive strength; the dynamic modulus of elasticity is higher related to the porosity of concrete produced with recycled aggregates; the moduli of elasticity estimated by algebraic equations present high variability.
Montija, Fernando Celotto. "Aspectos da variabilidade experimental do ensaio de módulo de deformação do concreto." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/3/3146/tde-01042009-135948/.
Full textThis work is developed into the areas of laboratorial quality and concrete control tests, specifically focusing on the static modulus of elasticity or Young´s modulus. The motivation of this work is the high variability of experimental results observed by national technicians in interlaboratorial tests. These results show total standard deviations of around 3.5 GPa, a significant value for the technological control for civil construction. The main objectives are the identification of the variability fragments derived from the production and test, specially the ones related to the instrumentation for measuring deformations during the test, and the discussion of the semi-probabilistic concept applicability on the concrete Young´s modulus control. Moreover, the discussion of the applicability of the procedure used in this work and its analysis are also objective pursued here. The experimental program was developed in two steps: the first step covered the accuracy assessments (precision and exactness) of test method. The assessments were carried out according to instructions from Metrology concepts for the validation of the methods and the measure systems. One out of four instrumentations for measuring the tested deformations proved to be more precise (identified as clip gages) and another one proved to be more susceptible to systematic and random errors (identified as a compressometer with two dial indicators). The extension of the experimental program to an interlaboratorial scope is recommended because the current test method could not be considered valid based only on the results of this experimental program. However, it was shown that the practical acceptance of the test method for three among the four kinds of instrumentations analyzed, without damaging the production or the usual technological control of this property, is possible. On the second step, a mix design diagram was obtained and a case of supply of concrete under different statistical criteria (fulfillment the modulus of elasticity specification): the use of the characteristic value and the average value, with difference of 4 GPa between them. An increase of 9% on the vertical transference of a simple dual supported beam was observed when using a lower modulus concrete, when compared to another one with a higher modulus. On the other hand, the modulus increase would require an increment in the cement consumption up to 200 kg per cubic meter, if all the material inputs and further technological parameters is maintained. The final conclusion was that the procedure used on the assessment of the test method accuracy and the semi-probabilistic concept on this material property is applicable.
Books on the topic "Modulus of elasticity of concrete"
Shaker, Atif F. The effective modulus of elasticity of concrete in tension. Edmonton, Alta., Canada: Dept. of Civil Engineering, University of Alberta, Canada, 1991.
Find full textStandards, Association of Australia Committee BD/42 Methods of Testing Concrete. Methods of testing concrete: Determination of the modulus of rupture. 3rd ed. [North Sydney, N.S.W.]: Standards Australia, 1985.
Find full textK, Kokula Krishna Hari, ed. Determination of Modulus of Elasticity of Hybrid composite material with reinforcement of Coconut coir: ICIEMS 2014. India: Association of Scientists, Developers and Faculties, 2014.
Find full textUbysz, Andrzej. Odkształcenia plastyczne i samonaprężenia w żelbetowych konstrukcjach prętowych. Wrocław: Wydawn. Politechniki Wrocławskiej, 1999.
Find full textJuirnarongrit, Teerawut. Effect of pile diameter on the modulus of sub-grade reaction. La Jolla, Calif: Department of Structural Engineering, University of California, San Diego, 2005.
Find full textDutt, Pravir. A spline-based parameter estimation technique for static models of elastic structures. Hampton, Va: ICASE, 1986.
Find full textLee, Hosin David. Validation of the mix design process for cold in-place rehabilitation using foamed asphalt. Iowa City, Iowa: Public Policy Center, University of Iowa, 2007.
Find full textBansal, Narottam P. Solid state synthesis and properties of monoclinic celsian. [Washington, D.C: National Aeronautics and Space Administration, 1996.
Find full textLi, Jian. Simplified data reduction methods for the ECT test for mode III interlaminar fracture toughness. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Find full textBook chapters on the topic "Modulus of elasticity of concrete"
Saju, Aleesha Anna, and K. K. Smitha. "Evaluation of Modulus of Elasticity of Plastic Aggregate Concrete." In Lecture Notes in Civil Engineering, 405–17. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80312-4_36.
Full textSuzila, R., M. S. Hamidah, A. Anizahyati, and M. R. Ahmad Ruslan. "Fibre Reinforced Modulus of Elasticity and Compressive Strength of Foamed Concrete." In InCIEC 2013, 589–96. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-4585-02-6_51.
Full textÖzerkan, N. G., and İ. Ö. Yaman. "Use of Dynamic Modulus of Elasticity to Assess the Durability of Self Consolidating Concrete." In Nondestructive Testing of Materials and Structures, 303–8. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0723-8_43.
Full textHadjab, Hadda, Ahmed Arbia, and Oussama Boulekfouf. "The Use of Ultrasonic Waves and Analytical Modeling to Estimate Elasticity Modulus of Rubber Concrete Specimen." In Advanced Structured Materials, 49–57. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07383-5_4.
Full textNgo, Van Thuc, Tien Thanh Bui, Thi Cam Nhung Nguyen, Thi Thu Nga Nguyen, and Thanh Quang Khai Lam. "Effect of Nano-Silica Content on Compressive Strength and Modulus of Elasticity of High-Performance Concrete." In Lecture Notes in Civil Engineering, 153–59. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0053-1_19.
Full textDanoglidis, P. A., and M. S. Konsta-Gdoutos. "Reinforcing Concrete with Carbon Nanotubes and Carbon Nanofibers: A Novel Method to Improve the Modulus of Elasticity." In Structural Integrity, 98–99. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91989-8_19.
Full textRahim, Jamilah Abd, Siti Hawa Hamzah, and Hamidah Mohd Saman. "Determination of Modulus Elasticity and Poison Ratio of Expanded Polystyrene (EPS) Lightweight Concrete (LWC) Enhanced with Steel Fiber." In InCIEC 2014, 29–36. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-290-6_3.
Full textYazyev, Serdar, Mukhtar Bekkiev, Evgeniy Peresypkin, and Mikhail Turko. "Task for a Prestressed Reinforced Concrete Cylinder with External Reinforcement and Cylinder Optimization by Varying the Modulus of Elasticity." In International Scientific Conference Energy Management of Municipal Transportation Facilities and Transport EMMFT 2017, 869–76. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70987-1_93.
Full textLüttschwager, Nils Olaf Bernd. "Modulus of Elasticity." In Raman Spectroscopy of Conformational Rearrangements at Low Temperatures, 127–44. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08566-1_6.
Full textKeaton, Jeffrey R. "Modulus of Elasticity." In Encyclopedia of Earth Sciences Series, 666. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73568-9_205.
Full textConference papers on the topic "Modulus of elasticity of concrete"
Gherman, Oana. "MODULUS OF ELASTICITY OF HIGH STRENGTH CONCRETE." In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/62/s26.037.
Full textMaheswari, S., M. B. Anoop, and K. Balaji Rao. "Probabilistic Analysis of Modulus of Elasticity of Concrete Through Multiscale Modelling." In 5th International Congress on Computational Mechanics and Simulation. Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-1139-3_170.
Full textPratama, M. Mirza Abdillah, Buntara Sthenly Gan, Han Ay Lie Han Ay Lie, and Andika Bagus Nur Rahma Putra. "A Numerical Analysis of The Modulus of Elasticity of The Graded Concrete." In Proceedings of the 2nd International Conference on Vocational Education and Training (ICOVET 2018). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/icovet-18.2019.29.
Full textKocáb, Dalibor, Romana Halamová, Barbara Kucharczyková, and Petr Daněk. "Development of the modulus of elasticity of cement materials in the early stage of ageing." In SPECIAL CONCRETE AND COMPOSITES 2019: 16th International Conference. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000398.
Full textBuari, T. A., Festus Olutoge, and G. M. Ayininuola. "RELATIONSHIP BETWEEN COMPRESSIVE STRENGTH AND MODULUS OF ELASTICITY OF SELF CONSOLIDATING HIGH PERFORMANCE CONCRETES (SCHPCS) INCORPORATING GSA AS SCM." In International Conference on Emerging Trends in Engineering & Technology (IConETech-2020). Faculty of Engineering, The University of the West Indies, St. Augustine, 2020. http://dx.doi.org/10.47412/aktq7222.
Full textRizos, Dimitrios C. "High-Strength Reduced-Modulus High Performance Concrete (HSRM-HPC) for Prestressed Concrete Tie Applications." In 2016 Joint Rail Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/jrc2016-5798.
Full textHan, T., J. Huang, K. Khayat, A. Kumar, and H. Ma. "Prediction of Compressive Strength and Modulus of Elasticity of Concrete Using Machine Learning Models." In MS&T19. TMS, 2019. http://dx.doi.org/10.7449/2019mst/2019/mst_2019_604_611.
Full textHan, T., J. Huang, K. Khayat, A. Kumar, and H. Ma. "Prediction of Compressive Strength and Modulus of Elasticity of Concrete Using Machine Learning Models." In MS&T19. TMS, 2019. http://dx.doi.org/10.7449/2019/mst_2019_604_611.
Full textGailitis, Rihards, Andina Sprince, Leonids Pakrastins, Genadijs Shakhmenko, Tomass Kozlovskis, and Liga Radina. "Long-term properties of foamed concrete." In The 13th international scientific conference “Modern Building Materials, Structures and Techniques”. Vilnius Gediminas Technical University, 2019. http://dx.doi.org/10.3846/mbmst.2019.067.
Full textOng, Chong Yong, Kok Keong Choong, Geem Eng Tan, and Tai Boon Ong. "Full Scale Load Test of A 20m Span Precast Concrete Closed Spandrel Arch Bridge System With Corrugated Section." In IABSE Conference, Kuala Lumpur 2018: Engineering the Developing World. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/kualalumpur.2018.0933.
Full textReports on the topic "Modulus of elasticity of concrete"
Carter, Austin D., and S. Elhadj. Modulus of Elasticity and Thermal Expansion Coefficient of ITO Film. Office of Scientific and Technical Information (OSTI), June 2016. http://dx.doi.org/10.2172/1325877.
Full textVerrill, Steve P., Frank C. Owens, David E. Kretschmann, and Rubin Shmulsky. Statistical models for the distribution of modulus of elasticity and modulus of rupture in lumber with implications for reliability calculations. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2017. http://dx.doi.org/10.2737/fpl-rp-692.
Full textShives, T. Robert, and Richard J. Fields. Modulus of elasticity and Poisson's ratio for types 17-4 PH and 410 stainless steels in compression. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.4671.
Full textKretschmann, David, James Evans, Mike Wiemann, Bruce A. Kimball, and Sherwood B. Idso. Long-term effects of elevated carbon dioxide concentration on sour orange wood specific gravity, modulus of elasticity, and microfibril angle. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2007. http://dx.doi.org/10.2737/fpl-rn-307.
Full textOlek, J., Menashi Cohen, and Charles Scholer. Use of Modulus of Rupture, Fatigue Resistance and Maturity in Determining Opening to Traffic Time for Concrete Pavements. West Lafayette, IN: Purdue University, 2003. http://dx.doi.org/10.5703/1288284313341.
Full text