Academic literature on the topic 'Molecular docking. eng'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Molecular docking. eng.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Molecular docking. eng"
Kanwar, Gurtej, Anish Kumar, and Anshika Mahajan. "Open source software tools for computer aided drug design." International Journal of Research in Pharmaceutical Sciences 9, no. 1 (March 12, 2018): 86. http://dx.doi.org/10.26452/ijrps.v9i1.1191.
Full textXiao, Wei, Disha Wang, Zihao Shen, Shiliang Li, and Honglin Li. "Multi-Body Interactions in Molecular Docking Program Devised with Key Water Molecules in Protein Binding Sites." Molecules 23, no. 9 (September 11, 2018): 2321. http://dx.doi.org/10.3390/molecules23092321.
Full textBai, Donglin, and Ao Hong Wang. "Extracellular domains play different roles in gap junction formation and docking compatibility." Biochemical Journal 458, no. 1 (January 20, 2014): 1–10. http://dx.doi.org/10.1042/bj20131162.
Full textWorachartcheewan, Apilak, Napat Songtawee, Suphakit Siriwong, Supaluk Prachayasittikul, Chanin Nantasenamat, and Virapong Prachayasittikul. "Rational Design of Colchicine Derivatives as anti-HIV Agents via QSAR and Molecular Docking." Medicinal Chemistry 15, no. 4 (May 20, 2019): 328–40. http://dx.doi.org/10.2174/1573406414666180924163756.
Full textHamzeh-Mivehroud, Maryam, Zoha Khoshravan-Azar, and Siavoush Dastmalchi. "QSAR and Molecular Docking Studies on Non-Imidazole-Based Histamine H3 Receptor Antagonists." Pharmaceutical Sciences 26, no. 2 (June 27, 2020): 165–74. http://dx.doi.org/10.34172/ps.2019.64.
Full textMalinak, David, Eugenie Nepovimova, Daniel Jun, Kamil Musilek, and Kamil Kuca. "Novel Group of AChE Reactivators—Synthesis, In Vitro Reactivation and Molecular Docking Study." Molecules 23, no. 9 (September 7, 2018): 2291. http://dx.doi.org/10.3390/molecules23092291.
Full textTemelkovski, Damjan, Tamas Kiss, Gabor Terstyanszky, and Pamela Greenwell. "Building Science Gateways for Analysing Molecular Docking Results Using a Generic Framework and Methodology." Journal of Grid Computing 18, no. 3 (July 5, 2020): 529–46. http://dx.doi.org/10.1007/s10723-020-09529-9.
Full textVazquez-Morado, Luis E., Ramon E. Robles-Zepeda, Adrian Ochoa-Leyva, Aldo A. Arvizu-Flores, Adriana Garibay-Escobar, Francisco Castillo-Yañez, and Alonso A. Lopez-zavala. "Biochemical characterization and inhibition of thermolabile hemolysin from Vibrio parahaemolyticus by phenolic compounds." PeerJ 9 (January 6, 2021): e10506. http://dx.doi.org/10.7717/peerj.10506.
Full textLópez-López, Edgar, Fernando Prieto-Martínez, and José Medina-Franco. "Activity Landscape and Molecular Modeling to Explore the SAR of Dual Epigenetic Inhibitors: A Focus on G9a and DNMT1." Molecules 23, no. 12 (December 11, 2018): 3282. http://dx.doi.org/10.3390/molecules23123282.
Full textGaffin, Robert D., Kuppan Gokulan, James C. Sacchettini, Timothy E. Hewett, Raisa Klevitsky, Jeffrey Robbins, Vandana Sarin, David C. Zawieja, Gerald A. Meininger, and Mariappan Muthuchamy. "Changes in end-to-end interactions of tropomyosin affect mouse cardiac muscle dynamics." American Journal of Physiology-Heart and Circulatory Physiology 291, no. 2 (August 2006): H552—H563. http://dx.doi.org/10.1152/ajpheart.00688.2005.
Full textDissertations / Theses on the topic "Molecular docking. eng"
Sabbag, Mariana Pela. "Caracterização estrutural e das interações entre a Proteína G do hRSV e potenciais inibidores /." São José do Rio Preto : [s.n.], 2012. http://hdl.handle.net/11449/94808.
Full textBanca: Karina Alves de Toledo
Banca: Tereza Cristina Cardoso
Resumo: As infecções respiratórias agudas (IRAs) constituem a principal causa de mortalidade infantil no mundo, e o Vírus Respiratório Sincicial Humano (hRSV - Human Respiratory Syncytial Virus) é um dos principais agentes etiológicos das IRAs. Este vírus pertencente à família Paramyxoviridae, é envelopado, de simetria helicoidal, cujo genoma é RNA de fita simples não segmentada. A infectividade do vírus está relacionada com suas proteínas de membrana e dentre elas a glicoproteína G, que é responsável pela ligação do vírus à célula hospedeira e conseqüente instalação da infecção. Esta glicoproteína exerce um importante papel como antígeno de reconhecimento, sendo alvo para identificação do RSV através de anticorpos. Existem evidências de que esta proteína se liga a receptores glicosilados na célula hospedeira, porém ainda não foi descrito um receptor para a proteína G na célula. Para elucidar estes mecanismos de interação, foram realizados estudos experimentais e teóricos desta proteína. Os domínios solúveis da região N-terminal (1 a 38 aa) e C-terminal (67 a 298 aa), com 231 aminoácidos da glicoproteína G do hRSV foram clonados e a região N-terminal foi expressa em bactéria BL21 pLysS. Em paralelo, foi realizada a caracterização teórica desta proteína, e foram avaliados os possíveis sítios de interação da mesma com glicosaminoglicanos (heparina). Foram obtidos dois modelos teóricos para a proteína G do hRSV, bem como dois modelos de interação com heparina, determinando portanto, um possível sítio de ocorrência de interação. O conhecimento da estrutura da proteína G é de grande importância para elucidar a composição da estrutura e os mecanismos de interação com potenciais ligantes e deste modo, em um passo posterior, propor mecanismos de reconhecimento celular pelo hRSV, através de glicosaminoglicanos
Abstract: Acute Respiratory Infections (ARI) are the leading cause of infant mortality in the world, and the Human Respiratory Syncytial Virus (hRSV) is one of the main agents of ARI. This virus belongs to Paramyxoviridae family, has a lipidic envelope, helical symmetry and its genome is a single-stranded RNA. The viral infectivity is related to its membrane proteins and among them the G glycoprotein, which is responsible for binding the virus to the host cell and consequent infection. This glycoprotein plays an important role as antigen recognition, being the target for hRSV identification through antibodies. There are evidences that this protein binds to host cell glycosylated receptors, but it has not been described a receptor for G protein in the cell yet. To elucidate these interaction mechanisms and understand the process of viral infectivity, we performed experimental and theoretical studies of this protein. The soluble domains of the N-terminal (1-38 aa) and C-terminal regions (67-298 aa), with 231 amino acids of the hRSV G glycoprotein have been cloned and the N-terminal region was expressed in BL21 pLysS bacteria. In a later trial these peptides will be purified and biophysical tests will be done. It was also performed a theoretical characterization of this protein, to assess the possible interaction sites with glycosaminoglycan (heparin). It were obtained two theoretical models for the hRSV G protein as well as two interaction models with heparin, in order to determine a possible site of occurrence of interaction. Knowledge of G protein structure is of great importance to elucidate the mechanism of viral infectivity and interaction mechanisms with potential ligants, and the results obtained in this work will allow us, in a later step, to propose mechanisms of cellular recognition by hRSV through glycosaminoglycans
Mestre
Daldrop, Peter. "Structure and molecular recognition in riboswitches." Thesis, University of Dundee, 2011. https://discovery.dundee.ac.uk/en/studentTheses/db338d42-75c1-43a6-be6a-11399f04989e.
Full textDembla, Ekta Mayur [Verfasser], and Ute [Akademischer Betreuer] Becherer. "Biogenesis of large dense core vesicles and molecular mechanisms of dead-end docking in mouse chromaffin cells / Ekta Mayur Dembla ; Betreuer: Ute Becherer." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2017. http://d-nb.info/1182312969/34.
Full textBook chapters on the topic "Molecular docking. eng"
Basu, Anamika, Piyali Basak, and Anasua Sarkar. "Molecular-Docking-Based Anti-Allergic Drug Design." In Pharmaceutical Sciences, 711–26. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1762-7.ch027.
Full textBasu, Anamika, Piyali Basak, and Anasua Sarkar. "Molecular-Docking-Based Anti-Allergic Drug Design." In Advances in Medical Technologies and Clinical Practice, 232–48. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0362-0.ch009.
Full textKumar, Ashwani, Ruchika Goyal, and Sandeep Jain. "Docking Methodologies and Recent Advances." In Methods and Algorithms for Molecular Docking-Based Drug Design and Discovery, 295–319. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0115-2.ch012.
Full textKumar, Ashwani, Ruchika Goyal, and Sandeep Jain. "Docking Methodologies and Recent Advances." In Oncology, 804–28. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0549-5.ch031.
Full textConference papers on the topic "Molecular docking. eng"
Jensen-McMullin, Cynthia, Mark Bachman, and Guann-Pyng Li. "Universal Microcarriers for Microfluidic Assays." In ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2007. http://dx.doi.org/10.1115/icnmm2007-30226.
Full text