To see the other types of publications on this topic, follow the link: Molecular dynamics.

Journal articles on the topic 'Molecular dynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Molecular dynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Gough, Craig A., Takashi Gojobori, and Tadashi Imanishi. "1P563 Consistent dynamic phenomena in amyloidogenic forms of transthyretin : a molecular dynamics study(27. Molecular dynamics simulation,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)." Seibutsu Butsuri 46, supplement2 (2006): S287. http://dx.doi.org/10.2142/biophys.46.s287_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Biyani, Manish, T. Aoyama, and K. Nishigaki. "1M1330 Solution structure dynamics of single-stranded oligonucleotides : Experiments and molecular dynamics." Seibutsu Butsuri 42, supplement2 (2002): S76. http://dx.doi.org/10.2142/biophys.42.s76_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Okumura, Hisashi, Satoru G. Itoh, and Yuko Okamoto. "1P585 Explicit Symplectic Molecular Dynamics Simulation for Rigid-Body Molecules in the Canonical Ensemble(27. Molecular dynamics simulation,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)." Seibutsu Butsuri 46, supplement2 (2006): S293. http://dx.doi.org/10.2142/biophys.46.s293_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sugiyama, Ayumu, Tetsunori Yamamoto, Hidemi Nagao, et al. "1P567 Molecular dynamics study of dynamical structure stability of giant hemoglobin from Oligobrachia mashikoi(27. Molecular dynamics simulation,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)." Seibutsu Butsuri 46, supplement2 (2006): S288. http://dx.doi.org/10.2142/biophys.46.s288_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Slavgorodska, Maria, and Alexander Kyrychenko. "Structure and Dynamics of Pyrene-Labeled Poly(acrylic acid): Molecular Dynamics Simulation Study." Chemistry & Chemical Technology 14, no. 1 (2020): 76–80. http://dx.doi.org/10.23939/chcht14.01.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Davies, Matt. "Molecular dynamics." Biochemist 26, no. 4 (2004): 53–54. http://dx.doi.org/10.1042/bio02604053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bergstra, J. A., and I. Bethke. "Molecular dynamics." Journal of Logic and Algebraic Programming 51, no. 2 (2002): 193–214. http://dx.doi.org/10.1016/s1567-8326(02)00021-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Goodfellow, Julia M., and Mark A. Williams. "Molecular dynamics." Current Biology 2, no. 5 (1992): 257–58. http://dx.doi.org/10.1016/0960-9822(92)90373-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Goodfellow, Julia M., and Mark A. Williams. "Molecular dynamics." Current Opinion in Structural Biology 2, no. 2 (1992): 211–16. http://dx.doi.org/10.1016/0959-440x(92)90148-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Alder, Berni J. "Slow dynamics by molecular dynamics." Physica A: Statistical Mechanics and its Applications 315, no. 1-2 (2002): 1–4. http://dx.doi.org/10.1016/s0378-4371(02)01220-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Williams, Sarah L., César Augusto F. de Oliveira, and J. Andrew McCammon. "Coupling Constant pH Molecular Dynamics with Accelerated Molecular Dynamics." Journal of Chemical Theory and Computation 6, no. 2 (2010): 560–68. http://dx.doi.org/10.1021/ct9005294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Righini, R. "Molecular dynamics and lattice dynamics calculations in molecular crystals." Physica B+C 131, no. 1-3 (1985): 234–48. http://dx.doi.org/10.1016/0378-4363(85)90156-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Zakharov, A. Yu, M. A. Zakharov, and V. V. Zubkov. "PRINCIPLES OF RELATIVISTIC MOLECULAR DYNAMICS." Vestnik NovSU, no. 3 (2024): 425–35. https://doi.org/10.34680/2076-8052.2024.3(137).425-435.

Full text
Abstract:
A relativistic dynamic theory of a system of interacting atoms is constructed based on the concept of an auxiliary field. Variational formulation of problems of relativistic molecular dynamics. An exact closed relativistic system of equations is obtained that describes the evolution of the system of atoms and the auxiliary field. An analysis of the qualitative properties of solutions to the system dynamics equations has been carried out.
APA, Harvard, Vancouver, ISO, and other styles
14

Phares, Denis J., and Arun R. Srinivasa. "Molecular Dynamics with Molecular Temperature." Journal of Physical Chemistry A 108, no. 29 (2004): 6100–6108. http://dx.doi.org/10.1021/jp037910y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wagner, Geri, Eirik Flekkøy, Jens Feder, and Torstein Jøssang. "Coupling molecular dynamics and continuum dynamics." Computer Physics Communications 147, no. 1-2 (2002): 670–73. http://dx.doi.org/10.1016/s0010-4655(02)00371-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Erban, Radek. "From molecular dynamics to Brownian dynamics." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2167 (2014): 20140036. http://dx.doi.org/10.1098/rspa.2014.0036.

Full text
Abstract:
Three coarse-grained molecular dynamics (MD) models are investigated with the aim of developing and analysing multi-scale methods which use MD simulations in parts of the computational domain and (less detailed) Brownian dynamics (BD) simulations in the remainder of the domain. The first MD model is formulated in one spatial dimension. It is based on elastic collisions of heavy molecules (e.g. proteins) with light point particles (e.g. water molecules). Two three-dimensional MD models are then investigated. The obtained results are applied to a simplified model of protein binding to receptors
APA, Harvard, Vancouver, ISO, and other styles
17

Brooks, Charles L., David A. Case, Steve Plimpton, Benoît Roux, David van der Spoel, and Emad Tajkhorshid. "Classical molecular dynamics." Journal of Chemical Physics 154, no. 10 (2021): 100401. http://dx.doi.org/10.1063/5.0045455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

SHINTO, Hiroyuki. "Molecular Dynamics Simulation." Journal of the Japan Society of Colour Material 86, no. 10 (2013): 380–85. http://dx.doi.org/10.4011/shikizai.86.380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Hoover. "Nonequilibrium molecular dynamics." Condensed Matter Physics 8, no. 2 (2005): 247. http://dx.doi.org/10.5488/cmp.8.2.247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Binder, Kurt, Jürgen Horbach, Walter Kob, Wolfgang Paul, and Fathollah Varnik. "Molecular dynamics simulations." Journal of Physics: Condensed Matter 16, no. 5 (2004): S429—S453. http://dx.doi.org/10.1088/0953-8984/16/5/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ashfold, M. N. R., and D. H. Parker. "Imaging molecular dynamics." Phys. Chem. Chem. Phys. 16, no. 2 (2014): 381–82. http://dx.doi.org/10.1039/c3cp90161k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Thomas, David D. "Molecular dynamics resolved." Nature 321, no. 6069 (1986): 539–40. http://dx.doi.org/10.1038/321539a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

STADLER, BÄRBEL M. R., and PETER F. STADLER. "MOLECULAR REPLICATOR DYNAMICS." Advances in Complex Systems 06, no. 01 (2003): 47–77. http://dx.doi.org/10.1142/s0219525903000724.

Full text
Abstract:
Template-dependent replication at the molecular level is the basis of reproduction in nature. A detailed understanding of the peculiarities of the chemical reaction kinetics associated with replication processes is therefore an indispensible prerequisite for any understanding of evolution at the molecular level. Networks of interacting self-replicating species can give rise to a wealth of different dynamical phenomena, from competitive exclusion to permanent coexistence, from global stability to multi-stability and chaotic dynamics. Nevertheless, there are some general principles that govern t
APA, Harvard, Vancouver, ISO, and other styles
24

Rapaport, D. C. "Interactive molecular dynamics." Physica A: Statistical Mechanics and its Applications 240, no. 1-2 (1997): 246–54. http://dx.doi.org/10.1016/s0378-4371(97)00148-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Tidor, Bruce. "Molecular dynamics simulations." Current Biology 7, no. 9 (1997): R525—R527. http://dx.doi.org/10.1016/s0960-9822(06)00269-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hansson, Tomas, Chris Oostenbrink, and WilfredF van Gunsteren. "Molecular dynamics simulations." Current Opinion in Structural Biology 12, no. 2 (2002): 190–96. http://dx.doi.org/10.1016/s0959-440x(02)00308-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Matthews, G. Peter. "Molecular dynamics simulator." Journal of Chemical Education 70, no. 5 (1993): 387. http://dx.doi.org/10.1021/ed070p387.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Krienke, Hartmut. "Molecular dynamics simulation." Journal of Molecular Liquids 75, no. 3 (1998): 271–72. http://dx.doi.org/10.1016/s0167-7322(97)00106-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bandrauk, André D., Jörn Manz, and M. J. J. Vrakking. "Attosecond molecular dynamics." Chemical Physics 366, no. 1-3 (2009): 1. http://dx.doi.org/10.1016/j.chemphys.2009.10.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

DUMITRICA, T., and R. JAMES. "Objective molecular dynamics." Journal of the Mechanics and Physics of Solids 55, no. 10 (2007): 2206–36. http://dx.doi.org/10.1016/j.jmps.2007.03.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Mitchell, P. J., and D. Fincham. "Multicomputer molecular dynamics." Future Generation Computer Systems 9, no. 1 (1993): 5–10. http://dx.doi.org/10.1016/0167-739x(93)90020-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Casavecchia, Piergiorgio, Mark Brouard, Michel Costes, David Nesbitt, Evan Bieske, and Scott Kable. "Molecular collision dynamics." Physical Chemistry Chemical Physics 13, no. 18 (2011): 8073. http://dx.doi.org/10.1039/c1cp90049h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Schroeder, Daniel V. "Interactive molecular dynamics." American Journal of Physics 83, no. 3 (2015): 210–18. http://dx.doi.org/10.1119/1.4901185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Straatsma, T. P. "Scalable molecular dynamics." Journal of Physics: Conference Series 16 (January 1, 2005): 287–99. http://dx.doi.org/10.1088/1742-6596/16/1/040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hoffman, Mark B., and Peter V. Coveney. "Lattice Molecular Dynamics." Molecular Simulation 27, no. 3 (2001): 157–68. http://dx.doi.org/10.1080/08927020108023021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Rapaport, D. C. "Molecular dynamics simulation." Computing in Science & Engineering 1, no. 1 (1999): 70–71. http://dx.doi.org/10.1109/5992.743625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

D.P. "Molecular photodissociation dynamics." Journal of Molecular Structure 213 (October 1989): 321. http://dx.doi.org/10.1016/0022-2860(89)85133-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Feldmeier, H. "Fermionic molecular dynamics." Nuclear Physics A 515, no. 1 (1990): 147–72. http://dx.doi.org/10.1016/0375-9474(90)90328-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ritchie, Burke. "Quantum molecular dynamics." International Journal of Quantum Chemistry 111, no. 1 (2010): 1–7. http://dx.doi.org/10.1002/qua.22371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Heermann, Dieter W., Peter Nielaba, and Mauro Rovere. "Hybrid molecular dynamics." Computer Physics Communications 60, no. 3 (1990): 311–18. http://dx.doi.org/10.1016/0010-4655(90)90030-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Hoover, Wm G. "Nonequilibrium molecular dynamics." Nuclear Physics A 545, no. 1-2 (1992): 523–36. http://dx.doi.org/10.1016/0375-9474(92)90490-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Tully, John C. "Nonadiabatic molecular dynamics." International Journal of Quantum Chemistry 40, S25 (1991): 299–309. http://dx.doi.org/10.1002/qua.560400830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Schulman, Stephen J. "Molecular Photodissociation Dynamics." Journal of Pharmaceutical Sciences 78, no. 5 (1989): 435. http://dx.doi.org/10.1002/jps.2600780520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Braeckmans, Kevin, Dries Vercauteren, Jo Demeester, and Stefaan C. De Smedt. "Measuring Molecular Dynamics." Imaging & Microscopy 11, no. 2 (2009): 26–28. http://dx.doi.org/10.1002/imic.200990033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Proctor, Elizabeth A., Feng Ding, and Nikolay V. Dokholyan. "Discrete molecular dynamics." WIREs Computational Molecular Science 1, no. 1 (2011): 80–92. http://dx.doi.org/10.1002/wcms.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

VASHISHTA, PRIYA, RAJIV K. KALIA, AIICHIRO NAKANO, and JIN YU. "MOLECULAR DYNAMICS AND QUANTUM MOLECULAR DYNAMICS SIMULATIONS ON PARALLEL ARCHITECTURES." International Journal of Modern Physics C 05, no. 02 (1994): 281–83. http://dx.doi.org/10.1142/s0129183194000325.

Full text
Abstract:
Efficient parallel molecular dynamics (MD) algorithm based on the multiple-time-step (MTS) approach is developed. The MTS-MD algorithm is used to study structural correlations in porous silica at densities 2.2 g/cm3 to 1.6 g/cm3. Nature of phonons and effects of hydrostatic pressure in solid C60 is studied using the tight-binding MD method within a unified interaction model which includes intermolecular and intra-molecular interactions.
APA, Harvard, Vancouver, ISO, and other styles
47

Narumi, Tetsu, Ryutaro Susukita, Toshikazu Ebisuzaki, Geoffrey McNiven, and Bruce Elmegreen. "Molecular Dynamics Machine: Special-Purpose Computer for Molecular Dynamics Simulations." Molecular Simulation 21, no. 5-6 (1999): 401–15. http://dx.doi.org/10.1080/08927029908022078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wu, Jian-Bo, Shu-Jia Li, Hong Liu, Hu-Jun Qian, and Zhong-Yuan Lu. "Dynamics and reaction kinetics of coarse-grained bulk vitrimers: a molecular dynamics study." Physical Chemistry Chemical Physics 21, no. 24 (2019): 13258–67. http://dx.doi.org/10.1039/c9cp01766f.

Full text
Abstract:
We used the hybrid molecular dynamics–Monte Carlo (MD–MC) algorithm to establish a molecular dynamics model that can accurately reflect bond exchange reactions, and reveal the intrinsic mechanism of the dynamic behavior of the vitrimer system.
APA, Harvard, Vancouver, ISO, and other styles
49

Anam, Muhammad Syaekhul, and S. Suwardi. "Hydration Structures and Dynamics of Ga3+ Ion Based on Molecular Mechanics Molecular Dynamics Simulation (Classical DM)." Indonesian Journal of Chemistry and Environment 4, no. 2 (2022): 49–56. http://dx.doi.org/10.21831/ijoce.v4i2.48401.

Full text
Abstract:
The structure and hydration dynamics of Ga3+ ion have been studied using classical Molecular Dynamics (MD) simulations. The data collection procedure includes determining the best base set, constructing 2-body and 3-body potential equations, classical molecular dynamics simulations based on 2-body potentials, classical molecular dynamics simulations based on 2-body + 3 potential-body. The trajectory file data analysis was done to obtain structural properties parameters such as RDF, CND, ADF, and dynamic properties, namely the movement of H2O ligands between hydrations shells. The results of th
APA, Harvard, Vancouver, ISO, and other styles
50

Dwiastuti, Rini, Muhammad Radifar, Marchaban Marchaban, Sri Noegrohati, and Enade Perdana Istyastono. "Molecular Dynamics Simulations and Empirical Observations on Soy Lecithin Liposome Preparation." Indonesian Journal of Chemistry 16, no. 2 (2018): 222. http://dx.doi.org/10.22146/ijc.21167.

Full text
Abstract:
Soy lecithin is a phospholipid often used in liposome formulations. Determination of water and phospholipid composition is one of the problems in the liposome formulation. This study is using molecular dynamics simulation and empirical observation in producing liposome preparations. Phospholipids 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE) were objected in molecular dynamics simulations using Coarse Grained Molecular Dynamics (CGMD) approaches. The result showed that the molecular dynamic simulations could be employed to predict the liposome size. The molecular dynamic simulations re
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!