Academic literature on the topic 'Molecular radiotherapy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Molecular radiotherapy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Molecular radiotherapy"
Buscombe, John, and Shaunak Navalkissoor. "Molecular radiotherapy." Clinical Medicine 12, no. 4 (August 2012): 381–86. http://dx.doi.org/10.7861/clinmedicine.12-4-381.
Full textBuscombe, JohnR. "Clinical Trials and Molecular Radiotherapy." World Journal of Nuclear Medicine 14, no. 2 (2015): 73. http://dx.doi.org/10.4103/1450-1147.154227.
Full textD’Arienzo, Marco, Marco Capogni, Vere Smyth, Maurice Cox, Lena Johansson, Jaroslav Solc, Christophe Bobin, Hans Rabus, and Leila Joulaeizadeh. "Metrological Issues in Molecular Radiotherapy." EPJ Web of Conferences 77 (2014): 00022. http://dx.doi.org/10.1051/epjconf/20147700022.
Full textGaze, M. N., and G. D. Flux. "Molecular radiotherapy — the radionuclide raffle?" British Journal of Radiology 83, no. 996 (December 2010): 995–97. http://dx.doi.org/10.1259/bjr/32706189.
Full textGlatting, Gerhard, Manuel Bardiès, and Michael Lassmann. "Treatment planning in molecular radiotherapy." Zeitschrift für Medizinische Physik 23, no. 4 (December 2013): 262–69. http://dx.doi.org/10.1016/j.zemedi.2013.03.005.
Full textPrice, Pat. "Molecular imaging to improve radiotherapy." Radiotherapy and Oncology 78, no. 3 (March 2006): 233–35. http://dx.doi.org/10.1016/j.radonc.2006.01.004.
Full textMarples, B., O. Greco, M. C. Joiner, and S. D. Scott. "Molecular approaches to chemo-radiotherapy." European Journal of Cancer 38, no. 2 (January 2002): 231–39. http://dx.doi.org/10.1016/s0959-8049(01)00367-7.
Full textWadsley, J., and G. Flux. "Molecular Radiotherapy Comes of Age." Clinical Oncology 33, no. 2 (February 2021): 65–67. http://dx.doi.org/10.1016/j.clon.2020.12.004.
Full textChorna, Inna. "MOLECULAR MECHANISMS UNDERLYING CANCER CELL RADIORESISTANCE." Scientific Journal of Polonia University 48, no. 5 (January 17, 2022): 142–51. http://dx.doi.org/10.23856/4818.
Full textMurray, Iain, and Glenn Flux. "Applying radiobiology to clinical molecular radiotherapy." Nuclear Medicine and Biology 100-101 (September 2021): 1–3. http://dx.doi.org/10.1016/j.nucmedbio.2021.05.005.
Full textDissertations / Theses on the topic "Molecular radiotherapy"
Evert, Jasmine. "Molecular studies of radiotherapy and chemotherapy in colorectal cancer." Doctoral thesis, Örebro universitet, Institutionen för hälsovetenskap och medicin, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-43635.
Full textPower, Olive Mary. "Cellular and molecular mechanisms affecting tumour radiosensitivity : an in vitro study." Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286344.
Full textObeidat, Mohammad Ali. "Radiotherapy Measurements with a Deoxyribonucleic Acid Doublestrand-Break Dosimeter." Thesis, The University of Texas Health Science Center at San Antonio, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10281552.
Full textMany types of dosimeters are used in the clinic to measure radiation dose for therapy but none of them directly measures the biological effect of this dose. The overall purpose of this work was to develop a dosimeter that measures biological damage in the form of double-strand breaks to deoxyribonucleic acid. This dosimeter could provide a more biologically relevant measure of radiation damage than the currently utilized dosimeters. A pair of oligonucleotides was designed to fabricate this dosimeter. One is labeled with a 5’-end biotin and the other with a 5’-end 6 Fluorescein amidite (fluorescent dye excited at 495?nanometer, with a peak emission at 520 nanometer). These were designed to adhere to certain locations on the pRS316 vector and serve as the primers for polymerase chain reactions. The end product of this reaction is a 4 kilo-base pair double strands deoxyribonucleic acid fragment with biotin on one end and 6 Fluorescein amidite oligonucleotide on the other attached to streptavidin beads. The biotin end connects the double strands deoxyribonucleic acid to the streptavidin bead. These bead-connected double strands deoxyribonucleic acid were suspended in 50 microliter of phosphate-buffered saline and placed into a tube for irradiation. Following irradiation of the deoxyribonucleic acid dosimeter, we take advantage of the magnetic properties of the streptavidin bead by placing our sample microtube against a magnet. The magnetic field pulls the streptavidin beads against the side of the tube. If a double-strand-break has occurred for a double strands deoxyribonucleic acid, the fluorescein end of the double strands deoxyribonucleic acid becomes free and is no longer attached to the bead or held against the side of the microtube. The free fluorescein following a double-strand-break in double strands deoxyribonucleic acid is referred to here as supernatant. The supernatant is extracted and placed in another microtube, while the unbroken double strands deoxyribonucleic acid remain attached to the beads and stay in the microtube (Fig. 4). Those beads were re-suspended with 50 microliter of phosphate-buffered saline again (called beads), then we placed both supernatant and beads in a reader microplate and we read the fluorescence signal for both with a fluorescence reader (BioTek Synergy 2). These beads and supernatant fluorescence signals are denoted by B and S, respectively. The relative amount of supernatant fluorescence counts is proportional to the probability of a double-strand-break. The probability of double-strand-break was calculated with the following equation:
(S-BG)/(S+B-2BG) (1)
where S was the supernatant fluorescence intensity (related to the number of double strands deoxyribonucleic acid with double-strand breaks), B was the re-suspended beads fluorescence intensity (related to the number of double strands deoxyribonucleic acid without double-strand breaks), and BG was the phosphate-buffered saline fluorescence intensity (related to the background signal). There are two advantages that this type of dosimeter has over the gel separation technique. First, it is important to irradiate deoxyribonucleic acid in a solution that has similar osmolarity and ion concentrations to that in a human, such as phosphate-buffered saline. A gel dosimeter would require a transfer to gel to separate deoxyribonucleic acid, whereas our dosimeter can be separated in this solution. Currently, we use pipettes to manually perform this separation, but this step could be automated. Second, the magnetic deoxyribonucleic acid separation technique is much faster than that for gel electrophoresis. Calibration of radiotherapy equipment isn’t something that happens in national science laboratories, with only world-leading experts. This is something that happens locally at every cancer clinic, with physicists that do not have the luxury of focusing solely on this one measurement. For this reason, ease of use is critical for this type of technology. (Abstract shortened by ProQuest.)
Watchman, Christopher J. "Skeletal dosimetry models for alpha-particles for use in molecular radiotherapy." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0012165.
Full textSirzén, Florin. "Molecular aspects of cellular radiosensitivity in small cell lung carcinoma /." Stockholm, 1998. http://diss.kib.ki.se/1998/19981204sirz/.
Full textFinocchiaro, Domenico <1993>. "Applications of metrological techniques for clinical implementation of dosimetry and radiobiology in molecular radiotherapy." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amsdottorato.unibo.it/9250/3/PhD_Thesis_Finocchiaro.pdf.
Full textShukla, Lipi. "Uncovering the cellular and molecular mechanisms of radiotherapy soft tissue injury and fat graft treatment." Phd thesis, Australian Catholic University, 2018. https://acuresearchbank.acu.edu.au/download/3366f35e7cf70efbda7b83341ffc736dd57db88f2ae4bce72a3467ad86e840b5/165644017/Shukla_2018_Uncovering_cellular_and_molecular_mechanisms_of.pdf.
Full textTrigila, Carlotta. "Development of a portable gamma imaging system for absorbed radiation dose control in molecular radiotherapy." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS285.
Full textTargeted radionuclide therapy is still a developing area among the different treatment modalities against cancer. However, its range of applications is rapidly expanding thanks to the emergence of new radiopharmaceuticals labeled with beta or alpha emitters (peptides, ²²³ Ra alpha-therapy, ²²¹ As alpha- immunotherapy, ...) (Ersahin 2011). In that context, the large heterogeneity of absorbed doses and the range of effects observed, both in terms of toxicity and response, demonstrate that individualized patient dosimetry is essential to optimize this therapy (Strigari 2011). In clinical practice, patient-specific dosimetry of tumors and organs-at-risk (liver, kidney, ...) is image-based and rely on the quantification of radio- pharmaceutical uptake as a function of time. These images can be obtained from either a pre-therapy tracer study or from a previous therapy procedure. The detection constraints imposed by the treatment protocols are very different from those associated with diagnostic imaging. (Flux 2011 Konijnenberg 2011). Thus, conventional gamma cameras are not suited for detecting high activity of gamma emitters with energy below 100 keV (²²³ Ra) or greater than 300 keV (¹³¹ I, ⁹⁰Y ). Moreover, high activities of the injected tracer typically require isolation of the patient, making the use of standard imaging devices difficult. Finally, the availability of these devices is incompatible with an accurate temporal sampling of the kinetics of the tracer, which is a key parameter for the quantification of the absorbed doses. The objective of my thesis was precisely to propose new instrumental and methodological approaches aiming to strengthen the control of the dose released to patients during molecular radiotherapy. This is achieved by reducing the uncertainties associated to activity quantification (and therefore to the absorbed dose calculation) through the use of a compact and highly optimized imaging system. Specifically, the work consisted in the development and optimization of a miniaturized, high-resolution mobile gamma camera specifically designed to improve the individual quantitative assessment of the heterogeneous distribution and biokinetics of the radiotracer before and after treatment administration. The study was focused on the treatment of benign and malign thyroid disease with ¹³¹ I. The first prototype of the mobile camera, with a field of view of 5x5 cm², consists of a high-energy parallel- hole collimator, optimized with Monte Carlo simulation and made with 3D printing, coupled to a 6 mm thick continuous CeBr3 scintillator readout by a recent and well-suited technology based on arrays of Silicon Pho- tomultiplier (SiPMs) detectors. Its intrinsic properties, in term of energy and spatial response, have been tested with collimated point source of ⁵⁷Co and ¹³³Ba. The first feasibility prototype has been then calibrated with a line and five cylindrical sources filled with ¹³¹ I. The system calibration leads to an overall spatial resolution of (3.14±0.03) mm at a distance of 5 cm and a sensitivity that decreases with distance and slightly changes with source size. An average sensitivity of (1.23±0.01) cps/MBq has been found at 5 cm. In order to test the quantification capability of the camera, the first preclinical planar studies involved the use of different 3D-printed thyroid phantoms filled with ¹³¹ I, with and without nodules. Although corresponding to a relatively ideal, but realistic, clinical situation (no superimposition of background activity), the optimized imaging features of the camera leads to very promising results, with activity recovery factors that deviate of around 2% from the unity
Storer, Kingsley Paul School of Medicine UNSW. "Cerebral arteriovenous malformations: molecular biology and enhancement of radiosurgical treatment." Awarded by:University of New South Wales. School of Medicine, 2006. http://handle.unsw.edu.au/1959.4/31942.
Full textStanzani, Elisabetta. "Molecular mechanisms underlying radioresistance of glioblastoma initiating cells." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/401869.
Full textEl Glioblastoma (GBM) es el tumor cerebral primario maligno más frecuente en adultos. El tratamiento actual, consiste en cirugía seguida de radioterapia (RT) más quimioterapia, no evita las recidivas a largo plazo. Para investigar los mecanismos moleculares que subyacen a la resistencia de GBM a la RT, se ha desarrollado un modelo in-vitro basado en dos pilares fundamentales: (i) la dualidad entre las Glioblastoma Initiating Cells (GICs) y el resto de células neoplásicas (células diferenciadas, DGC); y (ii) la heterogeneidad intratumoral. Los cultivos de GICs y las muestras de tumor homólogas se clasificaron como de tipo mesenquimal. Se compararon los cultivos DGC y GICs por sus características funcionales y metabólicas, la expresión de marcadores de células madres tumorales y la respuesta a la RT. Los cultivos GICs demostraron estar enriquecidos en CSCs, y el patrón de expresión de marcadores de CSCs evidenció su heterogeneidad, a diferencia de lo observado en DGC. Además, todos los cultivos enriquecidos en GICs fueron, a largo plazo, más resistentes a la RT en comparación con sus homólogos diferenciados. Es importante destacar que la radioresistencia de las GICs, pero no de las DGC, se correlaciona con el pronóstico de los pacientes, apoyando así el papel de las GICs en la respuesta al tratamiento. En conclusión, se propone un método rápido y económico para determinar fielmente la respuesta al tratamiento con RT de las células tumorales y potencialmente predecir la evolución del paciente basado en datos empíricos. Para entender mejor el fenómeno de la resistencia a la RT de las GICs se realizó un análisis transcriptómico de DGC y GICs postirradiación. Exclusivamente en las GICs se detectó una activación significativa de las vías relacionadas con la inflamación, remodelación de la matriz extracelular, migración celular, interacción célula-célula y transición epitelio- mesénquima mediado por STAT3 y NF-κβ. Se identificó un grupo de genes asociados al perfil mesenquimal e inducidos por la radiación en GICs: ICAM1, COX2, CTGF, IL-6, LIF y NNMT. Finalmente, se investigó la posible implicación de ITGA6, previamente descrito como marcador de CSCs en GBM, en la respuesta de GICs a la RT. La inhibición de ITGA6 en los cultivos enriquecidos en GICs aumentó la sensibilidad a la RT, mejorando potencialmente la respuesta al tratamiento.
Books on the topic "Molecular radiotherapy"
J, Piccart Martine, ed. Breast cancer and molecular medicine. Berlin: Springer, 2006.
Find full textMolecular imaging for integrated medical therapy and drug development. Tokyo: Springer, 2010.
Find full textMarikki, Laiho, and SpringerLink (Online service), eds. Molecular Determinants of Radiation Response. New York, NY: Springer Science+Business Media, LLC, 2011.
Find full textD, Ford Thomas, ed. New cancer research developments. Hauppauge, NY: Nova Science Publishers, 2009.
Find full text1965-, Shumate Mark J., Kooby David A. 1967-, and Society of Nuclear Medicine (1953- ), eds. A clinician's guide to nuclear oncology: Practical molecular imaging and radionuclide therapies. Reston, VA: SNM, 2007.
Find full textMolls, Michael. The Impact of Tumor Biology on Cancer Treatment and Multidisciplinary Strategies. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Find full textVohra, Akhtar Abdullah. Observations on intercellular adhesion molecules in patients undergoing radiotherapy for cancer. Manchester: University of Manchester, 1996.
Find full textSchwaiger, Markus. From Morphological Imaging to Molecular Targeting. Springer, 2013.
Find full textCordes, Nils, Michael Baumann, and Mechthild Krause. Molecular Radio-Oncology. Springer London, Limited, 2016.
Find full textBook chapters on the topic "Molecular radiotherapy"
Strigari, Lidia. "Molecular Radiotherapy." In Introduction to Medical Physics, 357–83. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429155758-11.
Full textGrégoire, Vincent, Karin Haustermans, and John Lee. "Molecular image guided radiotherapy." In Basic Clinical Radiobiology, 254–71. Fifth edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9780429490606-22.
Full textKwong, Dora L. W., and K. O. Lam. "Radiotherapy for Esophageal Adenocarcinoma." In Methods in Molecular Biology, 7–17. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7734-5_2.
Full textChang, David S., Foster D. Lasley, Indra J. Das, Marc S. Mendonca, and Joseph R. Dynlacht. "Molecular Biology and Signaling." In Basic Radiotherapy Physics and Biology, 181–89. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06841-1_17.
Full textChang, David S., Foster D. Lasley, Indra J. Das, Marc S. Mendonca, and Joseph R. Dynlacht. "Molecular Biology and Signaling." In Basic Radiotherapy Physics and Biology, 197–206. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61899-5_19.
Full textStokke, Caroline. "Radionuclide Selection for Targeted Molecular Radiotherapy." In Handbook of Radiotherapy Physics, Vol2:1155—Vol2:1160. 2nd ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429201493-66.
Full textFennell, Jamina Tara, Eleni Gkika, and Anca L. Grosu. "Molecular Imaging in Photon Radiotherapy." In Molecular Imaging in Oncology, 845–63. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42618-7_27.
Full textYazlovitskaya, Eugenia M., and Dennis E. Hallahan. "Molecular Targeted Drug Delivery Radiotherapy." In Molecular Determinants of Radiation Response, 187–200. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8044-1_9.
Full textFlux, Glenn, and Alan Nahum. "Targeted Molecular Radiotherapy – Clinical Considerations and Dosimetry*." In Handbook of Radiotherapy Physics, Vol2:1161—Vol2:1168. 2nd ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429201493-67.
Full textChang, David S., Foster D. Lasley, Indra J. Das, Marc S. Mendonca, and Joseph R. Dynlacht. "Cancer Genetic and Molecular Characteristics." In Basic Radiotherapy Physics and Biology, 191–99. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06841-1_18.
Full textConference papers on the topic "Molecular radiotherapy"
Kanai, Tatsuaki. "Heavy-ion radiotherapy." In Second international conference on atomic and molecular data and their applications. AIP, 2000. http://dx.doi.org/10.1063/1.1336267.
Full textFu, Yabo, Yang Lei, Jun Zhou, Tonghe Wang, David S. Yu, Jonathan J. Beitler, Walter J. Curran, Tian Liu, and Xiaofeng Yang. "Synthetic CT-aided MRI-CT image registration for head and neck radiotherapy." In Biomedical Applications in Molecular, Structural, and Functional Imaging, edited by Barjor S. Gimi and Andrzej Krol. SPIE, 2020. http://dx.doi.org/10.1117/12.2549092.
Full textOweida, Ayman J., Jack Xu, Siham Sabri, and Bassam Abdulkarim. "Abstract A66: Ablative radiotherapy increases invasion potential in EGFR-wildtype non-small cell lung cancer cells compared to fractionated radiotherapy." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Oct 19-23, 2013; Boston, MA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1535-7163.targ-13-a66.
Full textFu, Yabo, Yang Lei, Tonghe Wang, Pretesh Patel, Ashesh B. Jani, Hui Mao, Walter J. Curran, Tian Liu, and Xiaofeng Yang. "A learning-based nonrigid MRI-CBCT image registration method for MRI-guided prostate cancer radiotherapy." In Biomedical Applications in Molecular, Structural, and Functional Imaging, edited by Barjor S. Gimi and Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2580786.
Full textUngur, Petru, Elisabeta Patcas, Petru A. Pop, Silviu Corbu, and Florin M. Marcu. "Theoretical and Practical Aspects About Bio-Lubrication of Synovial Joints by Radioactive Molecular Treatment." In ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59160.
Full textShen, Yuxiaotong, Jie Zhang, Yun Ge, Ying Chen, Haiwei Li, Wei Sun, Mingxi Ji, Quanbo Wei, Jing Cai, and Bing Li. "Clinical feasibility of using an electronic portal imaging device for position verification during conventional radiotherapy." In 2016 IEEE 10th International Conference on Nano/Molecular Medicine and Engineering (NANOMED). IEEE, 2016. http://dx.doi.org/10.1109/nanomed.2016.7883574.
Full textFernandes, Jennifer Marx, Anamaria A. Camargo, and Fernanda C. Koyama. "Abstract A51: Evaluation of Akt molecular targets in colorectal tumors after radiotherapy and MK2206 treatment." In Abstracts: AACR International Conference held in cooperation with the Latin American Cooperative Oncology Group (LACOG) on Translational Cancer Medicine; May 4-6, 2017; São Paulo, Brazil. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1557-3265.tcm17-a51.
Full textRivera, Sofia, Conchita Vens, Philippe Maingon, Anne Sophie Govaerts, Emad Shash, Denis Lacombe, Warren Grant, and Vincent Grégoire. "Abstract C220: Combining novel targeted therapies and radiotherapy: A challenge to overcome." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Oct 19-23, 2013; Boston, MA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1535-7163.targ-13-c220.
Full textMarill, Julie, Naeemunnisa Mohamed, Audrey Darmon, Laurent Levy, Elsa Borghi, Agnès Pottier, and Sébastien Paris. "Abstract LB-A30: Hafnium oxide nanoparticles with radiotherapy induce immunogenic cell death." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; October 26-30, 2017; Philadelphia, PA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1535-7163.targ-17-lb-a30.
Full textRen, Xi, Luca Egoriti, Nolan Esplen, Stephanie Rädel, Brandon Humphries, Hui-Wen Koay, Thomas Planche, et al. "Using in vivo respiratory-gated micro-computed tomography imaging to monitor pulmonary side effects in 10 MV FLASH and conventional radiotherapy." In Biomedical Applications in Molecular, Structural, and Functional Imaging, edited by Barjor S. Gimi and Andrzej Krol. SPIE, 2023. http://dx.doi.org/10.1117/12.2654427.
Full textReports on the topic "Molecular radiotherapy"
Pollack, Alan. The Molecular Mechanism of the Supra-Additive Response of Prostate Cancer to Androgen Ablation and Radiotherapy. Fort Belvoir, VA: Defense Technical Information Center, August 1999. http://dx.doi.org/10.21236/ada377922.
Full textSong, Kwang. Molecularly Targeted Dose-Enhancement Radiotherapy Using Gold and Luminescent Nanoparticles in an Orthotopic Human Prostate Cancer Rat Model. Fort Belvoir, VA: Defense Technical Information Center, October 2013. http://dx.doi.org/10.21236/ada596724.
Full text