Journal articles on the topic 'Molecular spin qubits and qudits'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Molecular spin qubits and qudits.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chiesa, A., P. Santini, E. Garlatti, F. Luis, and S. Carretta. "Molecular nanomagnets: a viable path toward quantum information processing?" Reports on Progress in Physics 87, no. 3 (2024): 034501. http://dx.doi.org/10.1088/1361-6633/ad1f81.
Full textCastro, Alberto, Adrián García-Carrizo, Sebastián Roca, David Zueco, and Fernando Luis. "Optimal Control of Molecular Spin Qudits." Physical Review Applied 17 (June 22, 2022): 064028. https://doi.org/10.1103/PhysRevApplied.17.064028.
Full textGómez-León, Álvaro, Fernando Luis, and David Zueco. "Dispersive Readout of Molecular Spin Qudits." Physical Review Applied 17 (June 14, 2022): 064030. https://doi.org/10.1103/PhysRevApplied.17.064030.
Full textLuis, Fernando, Pablo J. Alonso, Olivier Roubeau, et al. "A dissymmetric [Gd2] coordination molecular dimer hosting six addressable spin qubits." Communications Chemistry 3 (November 20, 2020): 176 1–11. https://doi.org/10.1038/s42004-020-00422-w.
Full textMayländer, Maximilian, Su Chen, Emmaline R. Lorenzo, Michael R. Wasielewski, and Sabine Richert. "Exploring Photogenerated Molecular Quartet States as Spin Qubits and Qudits." Journal of the American Chemical Society 143, no. 18 (2021): 7050–58. http://dx.doi.org/10.1021/jacs.1c01620.
Full textPorfyrakis, Kyriakos. "(Invited) N@C60 and N@C70 for Quantum Information Processing: Beyond Qubits." ECS Meeting Abstracts MA2022-01, no. 11 (2022): 817. http://dx.doi.org/10.1149/ma2022-0111817mtgabs.
Full textMoreno-Pineda, Eufemio, Clément Godfrin, Franck Balestro, Wolfgang Wernsdorfer, and Mario Ruben. "Molecular spin qudits for quantum algorithms." Chemical Society Reviews 47, no. 2 (2018): 501–13. http://dx.doi.org/10.1039/c5cs00933b.
Full textChizzini, Mario, Luca Crippa, Luca Zaccardi, et al. "Quantum error correction with molecular spin qudits." Phys. Chem. Chem. Phys. 24 (July 14, 2022): 20030–39. https://doi.org/10.1039/d2cp01228f.
Full textTacchino, Francesco, Alessandro Chiesa, Roberta Sessoli, Ivano Tavernelli, and Stefano Carretta. "A proposal for using molecular spin qudits as quantum simulators of light–matter interactions." J. Mater. Chem. C 9 (July 29, 2021): 10266. https://doi.org/10.1039/d1tc00851j.
Full textChicco, Simone, Alessandro Chiesa, Giuseppe Allodi, et al. "Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear qudit with an electronic ancilla." Chem. Sci. 12 (August 5, 2021): 12046. https://doi.org/10.1039/d1sc01358k.
Full textDAS, RANABIR, AVIK MITRA, S. VIJAY KUMAR, and ANIL KUMAR. "QUANTUM INFORMATION PROCESSING BY NMR: PREPARATION OF PSEUDOPURE STATES AND IMPLEMENTATION OF UNITARY OPERATIONS IN A SINGLE-QUTRIT SYSTEM." International Journal of Quantum Information 01, no. 03 (2003): 387–94. http://dx.doi.org/10.1142/s0219749903000292.
Full textDaoud, Mohammed, and Maurice R. Kibler. "Generalized Weyl-Heisenberg Algebra, Qudit Systems and Entanglement Measure of Symmetric States via Spin Coherent States. Part II: The Perma-Concurrence Parameter." Symmetry 11, no. 7 (2019): 875. http://dx.doi.org/10.3390/sym11070875.
Full textGimeno, Ignacio, Ainhoa Urtizberea, Juan Román-Roche, et al. "Broad-band spectroscopy of a vanadyl porphyrin: a model electronuclear spin qudit." Chemical Science 12, no. 15 (2021): 5621–30. http://dx.doi.org/10.1039/d1sc00564b.
Full textCarvalho, A. R. R., F. Mintert, S. Palzer, and A. Buchleitner. "Entanglement dynamics under decoherence: from qubits to qudits." European Physical Journal D 41, no. 2 (2006): 425–32. http://dx.doi.org/10.1140/epjd/e2006-00246-4.
Full textRau, A. R. P. "Symmetries and Geometries of Qubits, and Their Uses." Symmetry 13, no. 9 (2021): 1732. http://dx.doi.org/10.3390/sym13091732.
Full textTacchino, F., A. Chiesa, R. Sessoli, I. Tavernelli, and S. Carretta. "A proposal for using molecular spin qudits as quantum simulators of light–matter interactions." Journal of Materials Chemistry C 9, no. 32 (2021): 10266–75. http://dx.doi.org/10.1039/d1tc00851j.
Full textLevi, Barbara Goss. "Making molecular-spin qubits more robust." Physics Today 69, no. 5 (2016): 17–21. http://dx.doi.org/10.1063/pt.3.3157.
Full textAffronte, Marco, Filippo Troiani, Alberto Ghirri, et al. "Molecular routes for spin cluster qubits." Dalton Transactions, no. 23 (2006): 2810. http://dx.doi.org/10.1039/b515731e.
Full textTahan, Charles. "Opinion: Democratizing Spin Qubits." Quantum 5 (November 18, 2021): 584. http://dx.doi.org/10.22331/q-2021-11-18-584.
Full textMani, Tomoyasu. "Molecular qubits based on photogenerated spin-correlated radical pairs for quantum sensing." Chemical Physics Reviews 3, no. 2 (2022): 021301. http://dx.doi.org/10.1063/5.0084072.
Full textBahari, Iskandar, Timothy P. Spiller, Shane Dooley, Anthony Hayes, and Francis McCrossan. "Collapse and revival of entanglement between qubits coupled to a spin coherent state." International Journal of Quantum Information 16, no. 02 (2018): 1850017. http://dx.doi.org/10.1142/s021974991850017x.
Full textYamamoto, Satoru, Shigeaki Nakazawa, Kenji Sugisaki, et al. "Adiabatic quantum computing with spin qubits hosted by molecules." Physical Chemistry Chemical Physics 17, no. 4 (2015): 2742–49. http://dx.doi.org/10.1039/c4cp04744c.
Full textAravena, Daniel, and Eliseo Ruiz. "Spin dynamics in single-molecule magnets and molecular qubits." Dalton Transactions 49, no. 29 (2020): 9916–28. http://dx.doi.org/10.1039/d0dt01414a.
Full textKintzel, Benjamin, Michael Böhme, Junjie Liu, et al. "Molecular electronic spin qubits from a spin-frustrated trinuclear copper complex." Chemical Communications 54, no. 92 (2018): 12934–37. http://dx.doi.org/10.1039/c8cc06741d.
Full textLunghi, Alessandro, and Stefano Sanvito. "Electronic spin-spin decoherence contribution in molecular qubits by quantum unitary spin dynamics." Journal of Magnetism and Magnetic Materials 487 (October 2019): 165325. http://dx.doi.org/10.1016/j.jmmm.2019.165325.
Full textAlessandro, Chiesa, Petiziol Francesco, Chizzini Mario, Santini Paolo, and Carretta Stefano. "Theoretical Design of Optimal Molecular Qudits for Quantum Error Correction." J. Phys. Chem. Lett. 13 (July 11, 2022): 6468–74. https://doi.org/10.1021/acs.jpclett.2c01602.
Full textRubín-Osanz, Marcos, Francois Lambert, Feng Shao, et al. "Chemical tuning of spin clock transitions in molecular monomers based on nuclear spin-free Ni(ii)." Chemical Science 12 (February 25, 2021): 5123–33. https://doi.org/10.1039/D0SC05856D.
Full textBaldoví, José J., Lorena E. Rosaleny, Vasanth Ramachandran, et al. "Molecular spin qubits based on lanthanide ions encapsulated in cubic polyoxopalladates: design criteria to enhance quantum coherence." Inorganic Chemistry Frontiers 2, no. 10 (2015): 893–97. http://dx.doi.org/10.1039/c5qi00142k.
Full textRogers, Ciaran, Deepak Asthana, Adam Brookfield, et al. "Modelling Conformational Flexibility in a Spectrally Addressable Molecular Multi-Qubit Model System." Angewandte Chemie Internation Edition 61, no. 45 (2022): e202207947. https://doi.org/10.1002/anie.202207947.
Full textWasielewski, Michael R. "Light-driven spin chemistry for quantum information science." Physics Today 76, no. 3 (2023): 28–34. http://dx.doi.org/10.1063/pt.3.5196.
Full textBenci, Tesi, Atzori, Sessoli, and Torre. "Spin Dynamics and Phonons, Insights into Potential Molecular Qubits." Proceedings 26, no. 1 (2019): 46. http://dx.doi.org/10.3390/proceedings2019026046.
Full textBonizzoni, C., A. Ghirri, K. Bader, et al. "Coupling molecular spin centers to microwave planar resonators: towards integration of molecular qubits in quantum circuits." Dalton Transactions 45, no. 42 (2016): 16596–603. http://dx.doi.org/10.1039/c6dt01953f.
Full textKoiller, Belita, Xuedong Hu, Rodrigo B. Capaz, Adriano S. Martins, and Sankar Das Sarma. "Silicon-based spin and charge quantum computation." Anais da Academia Brasileira de Ciências 77, no. 2 (2005): 201–22. http://dx.doi.org/10.1590/s0001-37652005000200002.
Full textSproules, Stephen. "Electronic structure study of divanadium complexes with rigid covalent coordination: potential molecular qubits with slow spin relaxation." Dalton Transactions 50, no. 14 (2021): 4778–82. http://dx.doi.org/10.1039/d1dt00709b.
Full textHuo, Jian-Li, and Shun-Jin Wang. "Quantum logic gates for spin cluster qubits." Journal of Physics B: Atomic, Molecular and Optical Physics 43, no. 12 (2010): 125503. http://dx.doi.org/10.1088/0953-4075/43/12/125503.
Full textEscalera-Moreno, Luis, José J. Baldoví, Alejandro Gaita-Ariño, and Eugenio Coronado. "Spin states, vibrations and spin relaxation in molecular nanomagnets and spin qubits: a critical perspective." Chemical Science 9, no. 13 (2018): 3265–75. http://dx.doi.org/10.1039/c7sc05464e.
Full textYan, Xiruo, Sebastian Gitt, Becky Lin, et al. "Silicon photonic quantum computing with spin qubits." APL Photonics 6, no. 7 (2021): 070901. http://dx.doi.org/10.1063/5.0049372.
Full textSantanni, Fabio, Andrea Albino, Matteo Atzori, et al. "Probing Vibrational Symmetry Effects and Nuclear Spin Economy Principles in Molecular Spin Qubits." Inorganic Chemistry 60, no. 1 (2020): 140–51. http://dx.doi.org/10.1021/acs.inorgchem.0c02573.
Full textBao, Yicheng, Scarlett S. Yu, Loïc Anderegg, et al. "Dipolar spin-exchange and entanglement between molecules in an optical tweezer array." Science 382, no. 6675 (2023): 1138–43. http://dx.doi.org/10.1126/science.adf8999.
Full textTimco, Grigore A., Stefano Carretta, Filippo Troiani, et al. "Engineering the coupling between molecular spin qubits by coordination chemistry." Nature Nanotechnology 4, no. 3 (2009): 173–78. http://dx.doi.org/10.1038/nnano.2008.404.
Full textBader, K., S. H. Schlindwein, D. Gudat, and J. van Slageren. "Molecular qubits based on potentially nuclear-spin-free nickel ions." Physical Chemistry Chemical Physics 19, no. 3 (2017): 2525–29. http://dx.doi.org/10.1039/c6cp08161d.
Full textShiddiq, Muhandis, Dorsa Komijani, Yan Duan, Alejandro Gaita-Ariño, Eugenio Coronado, and Stephen Hill. "Enhancing coherence in molecular spin qubits via atomic clock transitions." Nature 531, no. 7594 (2016): 348–51. http://dx.doi.org/10.1038/nature16984.
Full textYu, Chung-Jui, Stephen von Kugelgen, Matthew D. Krzyaniak, et al. "Spin and Phonon Design in Modular Arrays of Molecular Qubits." Chemistry of Materials 32, no. 23 (2020): 10200–10206. http://dx.doi.org/10.1021/acs.chemmater.0c03718.
Full textAtzori, Matteo, Stefano Benci, Elena Morra, et al. "Structural Effects on the Spin Dynamics of Potential Molecular Qubits." Inorganic Chemistry 57, no. 2 (2017): 731–40. http://dx.doi.org/10.1021/acs.inorgchem.7b02616.
Full textLunghi, Alessandro, and Stefano Sanvito. "How do phonons relax molecular spins?" Science Advances 5, no. 9 (2019): eaax7163. http://dx.doi.org/10.1126/sciadv.aax7163.
Full textChiesa, Alessandro, Paolo Santini, Elena Garlatti, Fernando Luis, and Stefano Carretta. "Molecular nanomagnets: a viable path toward quantum information processing?" Reports on Progress in Physics 87, no. 034501 (2024). https://doi.org/10.1088/1361-6633/ad1f81.
Full textLuis, Fernando, Pablo J. Alonso, Olivier Roubeau, et al. "A dissymmetric [Gd2] coordination molecular dimer hosting six addressable spin qubits." Communications Chemistry 3, no. 1 (2020). http://dx.doi.org/10.1038/s42004-020-00422-w.
Full textRollano, Victor, Marina C. de Ory, Christian D. Buch, et al. "High cooperativity coupling to nuclear spins on a circuit quantum electrodynamics architecture." Communications Physics 5, no. 1 (2022). http://dx.doi.org/10.1038/s42005-022-01017-8.
Full textChiesa, Alessandro, Alberto Privitera, Emilio Macaluso, et al. "Chirality-Induced Spin Selectivity: An Enabling Technology for Quantum Applications." Advanced Materials 2300472 (May 12, 2023). https://doi.org/10.1002/adma.202300472.
Full textRoca-Jerat, Sebastián, Emilio Macaluso, Alessandro Chiesa, Paolo Santini, and Stefano Carretta. "Simulating open quantum systems with molecular spin qudits." Materials Horizons, 2025. https://doi.org/10.1039/d4mh01512f.
Full text