Academic literature on the topic 'Molecular Targeted Therapy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Molecular Targeted Therapy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Molecular Targeted Therapy"
Eto, Masatoshi. "PD2-5 The Role of Cytokine Therapy at the Age of Molecular Targeted Therapy." Japanese Journal of Urology 99, no. 2 (2008): 134. http://dx.doi.org/10.5980/jpnjurol.99.134_2.
Full textDong, Bing, and Yi-Min Zhu. "Molecular-targeted therapy for cancer." Chinese Journal of Cancer 29, no. 3 (March 5, 2010): 340–45. http://dx.doi.org/10.5732/cjc.009.10313.
Full textPark, Hee-Sook, and Nam-Su Lee. "Molecular Targeted Therapy in Cancer." Journal of the Korean Medical Association 46, no. 6 (2003): 542. http://dx.doi.org/10.5124/jkma.2003.46.6.542.
Full textFestuccia, Claudio, Assunta Leda Biordi, Vincenzo Tombolini, Akira Hara, and David Bailey. "Targeted Molecular Therapy in Glioblastoma." Journal of Oncology 2020 (January 14, 2020): 1–3. http://dx.doi.org/10.1155/2020/5104876.
Full textGala, Kinisha, and Sarat Chandarlapaty. "Molecular Pathways: HER3 Targeted Therapy." Clinical Cancer Research 20, no. 6 (February 11, 2014): 1410–16. http://dx.doi.org/10.1158/1078-0432.ccr-13-1549.
Full textPuzanov, Igor, and Keith T. Flaherty. "Targeted Molecular Therapy in Melanoma." Seminars in Cutaneous Medicine and Surgery 29, no. 3 (September 2010): 196–201. http://dx.doi.org/10.1016/j.sder.2010.06.005.
Full textLe Rhun, Emilie, Matthias Preusser, Patrick Roth, David A. Reardon, Martin van den Bent, Patrick Wen, Guido Reifenberger, and Michael Weller. "Molecular targeted therapy of glioblastoma." Cancer Treatment Reviews 80 (November 2019): 101896. http://dx.doi.org/10.1016/j.ctrv.2019.101896.
Full textMischel, Paul S., and Timothy F. Cloughesy. "Targeted Molecular Therapy of GBM." Brain Pathology 13, no. 1 (April 5, 2006): 52–61. http://dx.doi.org/10.1111/j.1750-3639.2003.tb00006.x.
Full textStadler, Walter. "IL-6 (S) Progress in Molecular Targeted Therapy for Renal Cell Cancer." Japanese Journal of Urology 98, no. 2 (2007): 59. http://dx.doi.org/10.5980/jpnjurol.98.59.
Full textKarczmarek-Borowska, Bożenna, and Agata Sałek-Zań. "Review Hepatotoxicity of molecular targeted therapy." Współczesna Onkologia 2 (2015): 87–92. http://dx.doi.org/10.5114/wo.2014.43495.
Full textDissertations / Theses on the topic "Molecular Targeted Therapy"
Mckiver, Bryan D. "SND1-Targeted Gene Therapy for Hepatocellular Carcinoma." VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5676.
Full textHonarvar, Hadis. "Development of Affibody molecules for radionuclide molecular imaging and therapy of cancer." Doctoral thesis, Uppsala universitet, Medicinsk strålningsvetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-298740.
Full textJokinen, E. (Elina). "Targeted therapy sensitivity and resistance in solid malignancies." Doctoral thesis, Oulun yliopisto, 2014. http://urn.fi/urn:isbn:9789526205755.
Full textTiivistelmä Syöpä on yksi johtavia kuolemanaiheuttajia ja tauti on maailmanlaajuinen haaste terveydenhuollolle. Perinteiset syöpähoidot käsittävät kirurgian, sädehoidon, kemoterapian ja hormonaalisen hoidon, mutta näiden rinnalle on noussut uusia, aktivoituneiden onkogeenien signaalien estoon perustuvia hoitoja. Tämä työ tutki kohdennettuja syöpähoitoja ja näihin hoitoihin liittyvää resistenssiä keuhko-, rinta- ja paksusuolen syövän sekä melanooman solulinjoissa. Tulokset osoittavat, että joissakin ei-pienisoluisen keuhkosyövän solulinjoissa yhdistetty PI3K- ja MEK-esto aiheuttaa tehokkaamman vasteen kuin kummankaan signaalireitin esto yksistään. Tässä työssä näytettiin myös, että maksimaalinen vaste yhdistetylle PI3K- ja MEK-estolle voidaan saavuttaa vaihtoehtoisilla annostelutavoilla, jotka ovat voisivat olla paremmin siedettyjä kliinisessä käytössä kuin kahden lääkkeen jatkuva annostelu. Tämä tutkimus osoitti lisäksi, että kaksoiseston tehokkuutta voidaan lisätä yhdistämällä hoitoon kolmas lääkeaine, ABT-263, entinostaatti tai dasatinibi. Bcl-xl proteiinilla on keskeinen rooli apoptoottisen vasteen määrittäjänä näille kolmen lääkkeen käsittelyille. Tämä työ osoitti, että syövän kantasolut voivat välittää resistenssiä kohdennetuille syöpähoidoille. Nämä solut noudattavat niin kutsuttua stokastista mallia, joten parhaan vasteen saaminen saattaa edellyttää että hoito kohdentuu sekä erilaistuneisiin että kantasolutyyppisiin syöpäsoluihin. Tässä tutkimuksessa osoitettin lisäksi, että Gö6976 toimii mutatoituneen EGFR:n estäjänä, huolimatta kehittyvää keuhkosyövissä resistenssiä välittävästä T90M mutaatiosta, sekä in vitro -että in vivo -malleissa
MAUCERI, MATTEO. "New Targeted Molecules for the Therapy of Ovarian Cancer." Doctoral thesis, Università degli Studi di Trieste, 2022. http://hdl.handle.net/11368/3031106.
Full textPatients with high-grade serous ovarian cancer (HGSOC), the most aggressive epithelial ovarian cancer (EOC) subtype, have a 5-year survival rate of about 93% when diagnosed at an early stage, but it drops to 30-40% when diagnosed in the advanced stage. HGSOC aggressiveness is mainly caused by the late diagnosis (51% stage III, 29% stage IV) when the tumor has already spread in the peritoneal cavity. PIN1 is a unique peptidyl-prolyl isomerase that targets the phosphorylated Ser/Thr(Pro) motifs to regulate several key proteins in different signaling pathways. Pin1 is overexpressed in several cancer types and it regulates more than 40 oncogenes and 20 tumor suppressors. Many functions are modulated through PIN1-mediated isomerization such as cell cycle progression, cellular proliferation, invasion, migration, and apoptosis. Downregulation of Pin1 decreases tumor progression. Recently, Pin1 was shown to be overexpressed in ovarian cancer (OC) which, together with the high number of interactions with other proteins, makes Pin1 a promising target for HGSOC. The aim of this work is to investigate the effects of the PIN1 inhibitor VS10 on cancer cell lines and to find the molecular signaling pathways in which Pin1 is involved. Migration, mesothelial clearance assay, and the effects on spheroid formation and preformed spheroids were studied to better understand the effects on the metastatic process. Furthermore, in order to clarify the molecular mechanism that triggers the cytotoxicity induced by Pin1 inhibition in several OC cell lines, silencing Pin1 has been demonstrated to be associated with Ser473pAkt dephosphorylation by Western Blot (WB) analysis. Additionally, cell viability and colony-forming assays showed that Akt overexpression rescued the lethal phenotype due to Pin1 knockdown in OVCAR3 and KURAMOCHI OC cell lines. Among PIN1 inhibitors, All-trans retinoic acid (ATRA), a drug in clinic for the treatment of acute promyelocytic leukemia, has been demonstrated to be active on PIN1. Our group developed many PIN1 inhibitors including VS10, a non-covalent and selective molecule, which is active in killing cancer cells. ATRA and VS10 have been combined with first- and second-line chemotherapy drugs to treat SKOV3 cell line whether these drug combinations could work synergistically to improve current therapy. This drug combination screening showed that Doxorubicin and Caelyx act in synergy with both VS10 and ATRA. This drug combination was studied in 5 sensible and 2 OC cell lines resistant to cisplatin treatment. These results candidate Pin1 as a promising new molecular target for HGSOC patients' therapy.
Almqvist, Ylva. "Targeted Therapy of Colorectal Cancer : Preclinical Evaluation of a Radiolabelled Antibody." Doctoral thesis, Uppsala University, Radiology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8657.
Full textTargeted radiotherapy (TRT) of cancer is a promising approach that enables selective treatment of tumour cells, while sparing normal tissue. The humanized monoclonal antibody A33 (huA33) is a potential targeting agent for TRT of colorectal cancer, since its antigen is expressed in more than 95 % of all colorectal carcinomas. The aim of this thesis was to evaluate the therapeutic potential of the two huA33-based TRT-conjugates, 177Lu-huA33, and 211At-huA33.
The conjugates 177Lu-huA33, and 211At-huA33, bound specifically to colorectal cancer cells, both in vitro and in vivo. A dose dependent cytotoxic effect of 211At-huA33 was also demonstrated in vitro. From a therapeutic perspective, both conjugates had a favourable biodistribution in tumour-bearing nude mice, with high tumour uptake and a low uptake in normal organs (with the exception of an expected thyroid uptake of 211At). After injection of 211At-huA33, the blood absorbed a slightly higher dose than the tumour, but for 177Lu-huA33, the tumour received a 12 times higher dose than blood. Two days after intravenous injection of 177Lu-huA33 in tumour-bearing mice, the tumours could be clearly visualised by gamma camera imaging, with very low interference from normal tissue radioactivity. In an experimental therapy study, also performed in tumour-bearing mice, there was an excellent therapeutic effect of 177Lu-huA33. About 50 % of the treated animals were tumour free 140 days after injection of 177Lu-huA33, while none of the non-radioactive controls survived beyond 20 days after injection of treatment substances.
In conclusion, this thesis demonstrates that the therapeutic conjugates 177Lu-huA33, and 211At-huA33, are promising targeting agents that might help improve therapy of colorectal cancer.
Pak, Ekaterina. "Resistance to Targeted Therapy in Sonic Hedgehog Subgroup Medulloblastoma: Mechanisms and Treatment Strategies." Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493334.
Full textMedical Sciences
Fröhner, Michael, Oliver W. Hakenberg, and Manfred P. Wirth. "Molecular Therapy in Urologic Oncology." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-133789.
Full textDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Fröhner, Michael, Oliver W. Hakenberg, and Manfred P. Wirth. "Molecular Therapy in Urologic Oncology." Karger, 2007. https://tud.qucosa.de/id/qucosa%3A27535.
Full textDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Trisolini, Elena. "Targeted molecular characterization of adult midline and circumscribed gliomas for the identification of new potential targets for personalized therapy." Doctoral thesis, Università del Piemonte Orientale, 2020. http://hdl.handle.net/11579/114872.
Full textZhang, Zhenfeng. "Study of Molecular Mechanisms of Sensitivity and Resistance to EGFR-Targeted Therapy in Lung Cancer." Case Western Reserve University School of Graduate Studies / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1278615774.
Full textBooks on the topic "Molecular Targeted Therapy"
Vallabhajosula, Shankar. Molecular Imaging and Targeted Therapy. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23205-3.
Full textTakiguchi, Yuichi, ed. Molecular Targeted Therapy of Lung Cancer. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2002-5.
Full textN, Syrigos Konstantinos, and Harrington Kevin J. 1958-, eds. Targeted therapy for cancer. Oxford: Oxford University Press, 2003.
Find full textAnderson, Kenneth C., Razelle Kurzrock, and Apostolia-Maria Tsimberidou. Targeted therapy in translational cancer research. Hoboken, New Jersey: John Wiley & Sons, Inc., 2016.
Find full textHoughton, Peter J., and Robert Arceci. Molecularly targeted therapy for childhood cancer. New York: Springer, 2010.
Find full textInternational Washington Spring Symposium (10th 1990 George Washington University). Advances in molecular biology and targeted treatment for AIDS. New York: Plenum Press, 1991.
Find full textBo, Xuenong, and Joost Verhaagen. Gene delivery and therapy for neurological disorders. New York: Humana Press, 2015.
Find full text1950-, Cambrosio Alberto, ed. Cancer on trial: Oncology as a new style of practice. Chicago: The University of Chicago Press, 2012.
Find full textSlabý, Ondřej. MicroRNAs in solid cancer: From biomarkers to therapeutic targets. Hauppauge, N.Y: Nova Science, 2011.
Find full textPrazeres, Duarte Miguel F., and Sofia Aires M. Martins. G protein-coupled receptor screening assays: Methods and protocols. New York: Humana Press, 2015.
Find full textBook chapters on the topic "Molecular Targeted Therapy"
Hunt, Arabella, and Kate L. Newbold. "Targeted Molecular Therapy." In The Thyroid and Its Diseases, 647–54. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-72102-6_42.
Full textDougherty, Graeme J., and Shona T. Dougherty. "Vascular-Targeted Molecular Therapy." In Tumor Microenvironment, 401–19. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470669891.ch18.
Full textLiu, Jinhong. "Cancer Targeted Molecular Therapy." In Anesthesia for Oncological Surgery, 27–34. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-50977-3_4.
Full textCieszykowska, Izabela, Wioletta Wojdowska, Dariusz Pawlak, and Renata Mikołajczak. "Radiometals in Molecular Imaging and Therapy." In Targeted Metallo-Drugs, 319–46. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003272250-12.
Full textDeonarain, Mahendra, Ioanna Stamati, and Gokhan Yahioglu. "Antibody-Targeted Photodynamic Therapy." In Molecular and Cellular Therapeutics, 103–24. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781119967309.ch4.
Full textMossé, Yaël P., and John M. Maris. "Molecular Therapy for Neuroblastoma." In Molecularly Targeted Therapy for Childhood Cancer, 351–71. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-69062-9_17.
Full textKurmasheva, Raushan T., Hajime Hosoi, Ken Kikuchi, and Peter J. Houghton. "Molecular Therapy for Rhabdomyosarcoma." In Molecularly Targeted Therapy for Childhood Cancer, 425–58. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-69062-9_20.
Full textVallabhajosula, Shankar. "Radiopharmaceuticals for Therapy." In Molecular Imaging and Targeted Therapy, 461–99. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23205-3_17.
Full textLundqvist, Hans, Bo Stenerlöw, and Lars Gedda. "The Auger Effect in Molecular Targeting Therapy." In Targeted Radionuclide Tumor Therapy, 195–214. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8696-0_11.
Full textGown, Allen M. "Modern Immunohistochemistry in Targeted Therapy." In Molecular Genetic Pathology, 181–96. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4800-6_7.
Full textConference papers on the topic "Molecular Targeted Therapy"
Wang, Yu “Winston”, Soyoung Kang, and Jonathan T. C. Liu. "Multiplexed Molecular Imaging with Targeted SERS Nanoparticles for Rapid Tumor Detection." In Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.cth2a.4.
Full textBoppart, Stephen A. "Magnetomotive molecular probes for targeted contrast enhancement and therapy." In SPIE BiOS, edited by Samuel Achilefu and Ramesh Raghavachari. SPIE, 2011. http://dx.doi.org/10.1117/12.873862.
Full textVoloshynska, Katerina, Tetjana Ilashchuk, and Sergey Yermolenko. "Spectropolarimetry of blood plasma in optimal molecular targeted therapy." In Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies 2014, edited by Ionica Cristea, Marian Vladescu, and Razvan Tamas. SPIE, 2015. http://dx.doi.org/10.1117/12.2068189.
Full textShuming Nie. "Biomedical nanotechnology for molecular imaging, diagnostics, and targeted therapy." In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009. http://dx.doi.org/10.1109/iembs.2009.5332688.
Full textChen, Yongping, Toufic Jabbour, and Xingde Li. "Functional Fluorescent Nanocapsules for Molecular Imaging and Potential Targeted Therapy." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/cleo_at.2011.jme1.
Full textSorace, Anna G., Reshu Saini, Marshall J. Mahoney, and Kenneth Hoyt. "Targeted molecular ultrasound therapy improves chemotherapeutic drug delivery in cancer cells." In 2012 IEEE International Ultrasonics Symposium. IEEE, 2012. http://dx.doi.org/10.1109/ultsym.2012.0106.
Full textHanly, Elyse K., Neha Y. Tuli, Robert Suriano, Robert Bednarczyk, Zbigniew Darzynkiewicz, Augustine L. Moscatello, Edward J. Shin, Jan Geliebter, and Raj K. Tiwari. "Abstract 3709: Resistance mechanisms to targeted molecular therapy in thyroid cancer." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3709.
Full textMcCormick, Frank. "Abstract PL05-03: Future challenges of targeted therapy." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Nov 15-19, 2009; Boston, MA. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/1535-7163.targ-09-pl05-03.
Full textSchmidtlein, Charles Ross, Matthew K. Maroun, Andrzej Krol, Howard Gifford, Lisa Bodei, Joseph O'Donoghue, Ida Häggström, and Yuesheng Xu. "A deblurring/denoising corrected scintigraphic planar image reconstruction model for targeted alpha therapy." In Biomedical Applications in Molecular, Structural, and Functional Imaging, edited by Barjor S. Gimi and Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2584736.
Full textWang, Sijia, Gereon Hüttmann, Tayyaba Hasan, and Ramtin Rahmanzadeh. "Molecular targeted PDT with selective delivery of ICG Photo-Immunoconjugates (Conference Presentation)." In Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXV, edited by David H. Kessel and Tayyaba Hasan. SPIE, 2016. http://dx.doi.org/10.1117/12.2217572.
Full textReports on the topic "Molecular Targeted Therapy"
Xu, Liang. (-)-Gossypol, A Potent Small Molecule Inhibitor of BcL-XL as a Novel Molecular Targeted Therapy for Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, February 2006. http://dx.doi.org/10.21236/ada452527.
Full textWang, Xiaoyue, Hui Lu, Zhihao Liang, Liang Wang, and Ji Ma. Ixazomib combined with autologous stem cell transplantation for POEMS syndrome: a case report and meta‑analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, July 2022. http://dx.doi.org/10.37766/inplasy2022.7.0061.
Full textXu, Liang. Tumor-Targeted Silencing of Bcl-2/Bcl-xl by Self-Assembled Sirna-Nanovectors as a Novel Molecular Therapy for Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, August 2007. http://dx.doi.org/10.21236/ada475350.
Full textWang, Lu-Hai. Exploring the Molecular Targets for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada442297.
Full textTzfira, Tzvi, Michael Elbaum, and Sharon Wolf. DNA transfer by Agrobacterium: a cooperative interaction of ssDNA, virulence proteins, and plant host factors. United States Department of Agriculture, December 2005. http://dx.doi.org/10.32747/2005.7695881.bard.
Full textWahl, Geoffrey M. Amplified Genes in Breast Cancer: Molecular Targets for Investigation and Therapy. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada382811.
Full textLilly, Michael. PIM1: A Molecular Target to Modulate Cellular Resistance to Therapy in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, October 2008. http://dx.doi.org/10.21236/ada494338.
Full textLilly, Michael. Pim-1: A Molecular Target to Modulate Cellular Resistance to Therapy in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, October 2005. http://dx.doi.org/10.21236/ada453390.
Full textLilly, Michael B. Pim-1: A Molecular Target to Modulate Cellular Resistance to Therapy in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, October 2006. http://dx.doi.org/10.21236/ada465489.
Full textLilly, Michael. Pim-1: A Molecular Target to Modulate Cellular Resistance to Therapy in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, October 2007. http://dx.doi.org/10.21236/ada482582.
Full text