Academic literature on the topic 'Molecularly Imprinted Polymers (MIP)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Molecularly Imprinted Polymers (MIP).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Molecularly Imprinted Polymers (MIP)"

1

Vu, Hoang Yen, and A. N. Zyablov. "Determination of preservatives in liquids by piezosensors." Аналитика и контроль 26, no. 2 (2022): 134–40. http://dx.doi.org/10.15826/analitika.2022.26.2.001.

Full text
Abstract:
In the current study, piezosensors based on the molecularly imprinted polyimides with imprints of potassium sorbate and sodium benzoate were obtained. Molecularly Imprinted Polymers (MIPs) were synthesized using a polyimide and a non-covalent imprinting technique. It was established that the use of 0.1 g/mL template concentration at the thermochemical stage led to the formation of the maximum number of molecular imprints on the film surface. Using the scanning force microscopy, it was found that the reference polymer film had a uniform surface with a small height difference from 1.4 to 2.6 nm
APA, Harvard, Vancouver, ISO, and other styles
2

Bhawani, Showkat Ahmad, Nur'Izzah Binti Juarah, Salma Bakhtiar, et al. "Synthesis of Molecularly Imprinted Polymer Nanoparticles for Removal of Sudan III Dye." Asian Journal of Chemistry 34, no. 12 (2022): 3269–74. http://dx.doi.org/10.14233/ajchem.2022.24052.

Full text
Abstract:
Molecularly imprinted polymer (MIP) nanoparticles of Sudan III dye as template were synthesized by using non-covalent approach. The molecularly imprinted polymers were synthesized in a microemulsion contained Sudan III as a template, acrylic acid (AA) as a monomer, 1,4-butanediol dimethacrylate as a cross-linker and 2,2-azo-bisisobutyronitrile (AIBN) as an initiator. The synthesized beads were characterized by TEM and FTIR. The TEM results revealed the nanosize beads of polymers were produced. The efficiency of imprinted and non-imprinted polymers was evaluated by batch binding studies. The re
APA, Harvard, Vancouver, ISO, and other styles
3

Shumyantseva, V. V., T. V. Bulko, I. Kh Baychorov, and A. I. Archakov. "Molecularly imprinted polymers in electro analysis of proteins." Biomeditsinskaya Khimiya 61, no. 3 (2015): 325–31. http://dx.doi.org/10.18097/pbmc20156103325.

Full text
Abstract:
In the review the main approaches to creation of recognition materials capable of competing with biological specific receptors, (polymeric analogs of antibodies or molecularly imprinted polymers, MIP) for the electro analysis of functionally significant proteins such as a myoglobin, troponin T, albumin, human ferritin, calmodulin are considered. The main types of monomers for MIP fabrication, and methods for MIP/protein interactions, such as a surface plasmon resonance (SPR), nanogravimetry with use of the quartz crystal resonator (QCM), spectral and electrochemical methods are discussed. Expe
APA, Harvard, Vancouver, ISO, and other styles
4

Wolska, Joanna, and Nasim Jalilnejad Falizi. "Membrane Emulsification Process as a Method for Obtaining Molecularly Imprinted Polymers." Polymers 13, no. 16 (2021): 2830. http://dx.doi.org/10.3390/polym13162830.

Full text
Abstract:
The membrane emulsification process (ME) using a metallic membrane was the first stage for preparing a spherical and monodisperse thermoresponsive molecularly imprinted polymer (TSMIP). In the second step of the preparation, after the ME process, the emulsion of monomers was then polymerized. Additionally, the synthesized TSMIP was fabricated using as a functional monomer N-isopropylacrylamide, which is thermosensitive. This special type of polymer was obtained for the recognition and determination of trace bisphenol A (BPA) in aqueous media. Two types of molecularly imprinted polymers (MIPs)
APA, Harvard, Vancouver, ISO, and other styles
5

Ramanavičius, Simonas, Inga Morkvėnaitė-Vilkončienė, Urtė Samukaitė-Bubnienė, et al. "Electrochemically Deposited Molecularly Imprinted Polymer-Based Sensors." Sensors 22, no. 3 (2022): 1282. http://dx.doi.org/10.3390/s22031282.

Full text
Abstract:
This review is dedicated to the development of molecularly imprinted polymers (MIPs) and the application of MIPs in sensor design. MIP-based biological recognition parts can replace receptors or antibodies, which are rather expensive. Conducting polymers show unique properties that are applicable in sensor design. Therefore, MIP-based conducting polymers, including polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polyaniline and ortho-phenylenediamine are frequently applied in sensor design. Some other materials that can be molecularly imprinted are also overviewed in this review.
APA, Harvard, Vancouver, ISO, and other styles
6

Hasanah, Aliya Nur, Nisa Safitri, Aulia Zulfa, Neli Neli, and Driyanti Rahayu. "Factors Affecting Preparation of Molecularly Imprinted Polymer and Methods on Finding Template-Monomer Interaction as the Key of Selective Properties of the Materials." Molecules 26, no. 18 (2021): 5612. http://dx.doi.org/10.3390/molecules26185612.

Full text
Abstract:
Molecular imprinting is a technique for creating artificial recognition sites on polymer matrices that complement the template in terms of size, shape, and spatial arrangement of functional groups. The main advantage of Molecularly Imprinted Polymers (MIP) as the polymer for use with a molecular imprinting technique is that they have high selectivity and affinity for the target molecules used in the molding process. The components of a Molecularly Imprinted Polymer are template, functional monomer, cross-linker, solvent, and initiator. Many things determine the success of a Molecularly Imprint
APA, Harvard, Vancouver, ISO, and other styles
7

Dong, Hong Xing, Qiu Li Jiang, Fei Tong, Zhen Xing Wang, and Jin Yong Tang. "Preparation of Imprinted Polymer with D-Phenylalanin on Silica Surface." Key Engineering Materials 419-420 (October 2009): 541–44. http://dx.doi.org/10.4028/www.scientific.net/kem.419-420.541.

Full text
Abstract:
Silica gel was modified with polymerizable double bonds on the surface. Then the molecular imprinting polymer imprinted with D-Phenylalanin was grafted on the surface of modified silica gel. The molecularly imprinted polymer (MIP) based on the surface of silica gel was characterized by IR and scanning electron microscopy (SEM). The adsorption property of D-Phenylalanin by MIP was mearsured. The MIP with the combined functional monomers exhibited better adsorption properties and selectivity compared with the corresponding non-imprinted polymers or MIP with the single functional monomer. The mat
APA, Harvard, Vancouver, ISO, and other styles
8

Zhou, Qingqing, Zhigang Xu, and Zhimin Liu. "Molecularly Imprinting–Aptamer Techniques and Their Applications in Molecular Recognition." Biosensors 12, no. 8 (2022): 576. http://dx.doi.org/10.3390/bios12080576.

Full text
Abstract:
Molecular imprinting–aptamer techniques exhibit the advantages of molecular imprinting and aptamer technology. Hybrids of molecularly imprinted polymer–aptamer (MIP–aptamer) prepared by this technique have higher stability, binding affinity and superior selectivity than conventional molecularly imprinted polymers or aptamers. In recent years, molecular imprinting–aptamer technologies have attracted considerable interest for the selective recognition of target molecules in complex sample matrices and have been used in molecular recognition such as antibiotics, proteins, viruses and pesticides.
APA, Harvard, Vancouver, ISO, and other styles
9

Baek, In-Hyuk, Hyung-Seop Han, Seungyun Baik, Volkhard Helms, and Youngjun Kim. "Detection of Acidic Pharmaceutical Compounds Using Virus-Based Molecularly Imprinted Polymers." Polymers 10, no. 9 (2018): 974. http://dx.doi.org/10.3390/polym10090974.

Full text
Abstract:
Molecularly imprinted polymers (MIPs) have proven to be particularly effective chemical probes for the molecular recognition of proteins, DNA, and viruses. Here, we started from a filamentous bacteriophage to synthesize a multi-functionalized MIP for detecting the acidic pharmaceutic clofibric acid (CA) as a chemical pollutant. Adsorption and quartz crystal microbalance with dissipation monitoring experiments showed that the phage-functionalized MIP had a good binding affinity for CA, compared with the non-imprinted polymer and MIP. In addition, the reusability of the phage-functionalized MIP
APA, Harvard, Vancouver, ISO, and other styles
10

Le Noir, M., B. Guieysse, and B. Mattiasson. "Removal of trace contaminants using molecularly imprinted polymers." Water Science and Technology 53, no. 11 (2006): 205–12. http://dx.doi.org/10.2166/wst.2006.354.

Full text
Abstract:
This work was conducted to study the potential of molecularly imprinted polymers (MIPs) for the removal of oestradiol at trace concentrations (1 ppm–1 ppb). An MIP synthesised with 17β-oestradiol as template was compared to non-imprinted polymers (NIP) synthesised under the same conditions but without template, a commercial C18 extraction phase and granulated activated carbon. At 1 ppb oestradiol was recovered by 98±2% when using the MIP, compared to 90±1, 79±1, and 84±2% when using the NIP, a C18 phase, or granulated activated carbon, respectively. According to these levels, the MIP was capab
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Molecularly Imprinted Polymers (MIP)"

1

Wagner, Sabine. "Sensory molecularly imprinted polymer (MIP) coatings for nanoparticle- and fiber optic-based assays." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/19808.

Full text
Abstract:
Für den Nachweis dieser Schadstoffe in niedrigen Konzentrationsbereichen sind schnelle und empfindliche Analysemethoden erforderlich. Molekular geprägte Polymere (MIPs) wurden als synthetische Materialien entwickelt, um die molekulare Erkennung von natürlichen Rezeptoren nachzuahmen, aufgrund ihrer Fähigkeit, selektiv eine Vielzahl von Analyten zu erkennen, ihre Stabilität und ihrer einfachen Herstellung. Sie sind zunehmend in der chemischen Sensorik als Rezeptormaterial für den Nachweis bestimmter Analyten bei niedrigen Konzentrationen zu finden, insbesondere in Kombination mit Fluoreszenz au
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Bin. "Molecularly imprinted polymers for applications in cosmetology." Thesis, Compiègne, 2013. http://www.theses.fr/2013COMP2083.

Full text
Abstract:
Un polymère à empreintes moléculaires (MIP) est un récepteur synthétique supramoléculaire, un matériau possédant des cavités pouvant reconnaître spécifiquement une molécule cible. Il est synthétisé en mettant en contact la molécule cible, avec un mélange de monomères fonctionnels et réticulants qui permettent d'obtenir un réseau polymérique tridimensionnel rigide. L'élimination de la molécule empreinte laissera des sites vides complémentaires de cette dernière. Ces cavités sont maintenant capables de la recapturer spécifiquement. Ces polymères sont utilisés dans les domaines tels que l’extract
APA, Harvard, Vancouver, ISO, and other styles
3

Leibl, Nadja. "Development of molecularly imprinted polymers for chemical sensors." Thesis, Compiègne, 2018. http://www.theses.fr/2018COMP2446.

Full text
Abstract:
Cette thèse propose une approche rationnelle pour le design de polymères à empreintes moléculaires (MIPs) pour la détection de nitro-explosifs. Les polymères à empreintes moléculaires qui miment la reconnaissance moléculaire biologique, ont l’avantage d’être stables dans des environnements sévères et peuvent adopter différentes formes physiques pour le couplage avec des transducteurs. Leur synthèse est basée sur la co-polymérisation de monomères fonctionnels et réticulants en présence de la molécule cible, ou comme dans cette thèse, d’un analogue ayant une structure proche de celle de la moléc
APA, Harvard, Vancouver, ISO, and other styles
4

Krstulja, Aleksandra. "Development of molecularly imprinted polymers for the recognition of urinary nucleoside cancer biomarkers." Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2009.

Full text
Abstract:
Ce rapport de thèse présente l’étude de la technologie des empreintes moléculaires pour le développement de polymères spécifiques et sélectifs envers des biomarqueurs urinaires nucléosidiques du cancer colorectal chez l’Homme. L’objectif principal était de développer des polymères à empreintes moléculaires compatibles aux milieux aqueux en utilisant la technique du « dummy template », l’approche non-covalente and la polymérisation radicalaire en masse. Nous nous sommes concentrés principalement sur la qualité des polymères à partir de leur formulation, c’est-à-dire la spécificité et la sélecti
APA, Harvard, Vancouver, ISO, and other styles
5

Nestora, Sofia. "Molecularly imprinted polymers as selective sorbents for recognition in complex aqueous samples." Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2346/document.

Full text
Abstract:
Dans cette thèse, nous avons démontré la faisabilité de la préparation de polymères à empreinte moléculaires (MIP) hautement sélectifs pour la reconnaissance dans des matrices aqueuses complexes avec des applications dans les cosmétiques et en technologie alimentaire. Les MIP (de l'anglais molecularly imprinted polymers) sont des récepteurs synthétiques comparables aux anticorps, qui sont synthétisés par co-polymérisation de monomères fonctionnels et réticulants en présence d'un gabarit moléculaire. Leurs propriétés de reconnaissance moléculaire, associées à leur grande stabilité, robustesse m
APA, Harvard, Vancouver, ISO, and other styles
6

Zhao, Yi. "Degradable molecularly imprinted polymers-synthetic antibody mimics for the vectorization of active molecules." Thesis, Compiègne, 2015. http://www.theses.fr/2015COMP2189.

Full text
Abstract:
Les polymères à empreintes moléculaires (MIP) sont des matériaux synthétiques capables de mimer les anticorps biologiques. En effet, ils possèdent deux des principales caractéristiques de ces derniers, à savoir : la capacité de reconnaître et de se lier spécifiquement à des molécules cibles. De plus, leur synthèse facile, leur bas coût de production, leur haute spécificité et stabilité par rapport aux anticorps naturels font des MIP une alternative intéressante. En effet, les propriétés de reconnaissance moléculaire des MIP permettent d'envisager leur utilisation dans une vaste gamme d’applica
APA, Harvard, Vancouver, ISO, and other styles
7

Tsai, Mei-Hsuan. "Boron containing molecular imprinted polymer (MIP) templates from symmetric and asymmetric diboration of olefins and other boron containing functional polymers." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kaya, Zeynep. "Controlled and localized synthesis of molecularly imprinted polymers for chemical sensors." Thesis, Compiègne, 2015. http://www.theses.fr/2015COMP2220.

Full text
Abstract:
Les polymères à empreintes moléculaires (MIP), également appelés "anticorps en plastique", sont des récepteurs biomimétiques synthétiques qui sont capables de reconnaître et lier une molécule cible avec une affinité et une spécificité comparables à celles des récepteurs naturels tels que des enzymes ou des anticorps. En effet, les MIP sont utilisés comme éléments de reconnaissance synthétiques dans les biocapteurs et biopuces pour la détection de petits analytes et les protéines. La technique d'impression moléculaire est basée sur la formation de cavités de reconnaissance spécifiques dans des
APA, Harvard, Vancouver, ISO, and other styles
9

Rajkumar, Rajagopal. "Development of a thermometric sensor for fructosyl valine and fructose using molecularly imprinted polymers as a recognition element." Phd thesis, Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2008/1727/.

Full text
Abstract:
Nature has always served as a model for mimicking and inspiration to humans in their efforts to improve their life. Researchers have been inspired by nature to produce biomimetic materials with molecular recognition properties by design rather than evolution. Molecular imprinting is one way to prepare such materials. Such smart materials with new functionalities are at the forefront of the development of a relevant number of ongoing and perspective applications ranging from consumer to space industry. Molecularly imprinted polymers were developed by mimicking the natural enzymes or antibodie
APA, Harvard, Vancouver, ISO, and other styles
10

Bompart, Marc. "Molecularly imprinted polymers and nano-composites by free radical and controlled/living radical polymerization : applications in optical sensors." Compiègne, 2010. http://www.theses.fr/2010COMP1870.

Full text
Abstract:
Cette thèse est organisée en trois chapitres basés sur trois publications et deux manuscrits en cours de soumission. Les polymères à empreintes moléculaires (MIP) sont des récepteurs produits à façon qui sont obtenues par polymérisation en présence de molécules modèles. Le premier papier décrit l'utilisation de la spectroscopie Raman pour la détection et la quantification de molécules modèles au sein d'une particule unique de polymères a empreintes moléculaires de taille micrométrique. Les particules de polymères ont eté imprimées avec comme molécules modèles S-propranolol. Des particules de t
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Molecularly Imprinted Polymers (MIP)"

1

Martín-Esteban, Antonio, ed. Molecularly Imprinted Polymers. Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1629-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mattiasson, Bo, and Lei Ye, eds. Molecularly Imprinted Polymers in Biotechnology. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20729-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kutner, Wlodzimierz, and Piyush Sindhu Sharma, eds. Molecularly Imprinted Polymers for Analytical Chemistry Applications. Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788010474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Zhaosheng, Yanping Huang, and Yi Yang, eds. Molecularly Imprinted Polymers as Advanced Drug Delivery Systems. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0227-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

KHAN, Singhal. Molecularly Imprinted Polymers Environhb. Institute of Physics Publishing, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mattiasson, Bo, and Lei Ye. Molecularly Imprinted Polymers in Biotechnology. Springer London, Limited, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Singh, Meenakshi. Molecularly Imprinted Polymers: Commercialization Prospects. Elsevier, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Handbook of Molecularly Imprinted Polymers. Smithers Rapra Technology, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mattiasson, Bo, and Lei Ye. Molecularly Imprinted Polymers in Biotechnology. Springer, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mattiasson, Bo, and Lei Ye. Molecularly Imprinted Polymers in Biotechnology. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Molecularly Imprinted Polymers (MIP)"

1

Furtado, Ana I., Raquel Viveiros, and Teresa Casimiro. "MIP Synthesis and Processing Using Supercritical Fluids." In Molecularly Imprinted Polymers. Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1629-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Feng, Jing, and Zhaosheng Liu. "MIP as Drug Delivery Systems of Anticancer Agents." In Molecularly Imprinted Polymers as Advanced Drug Delivery Systems. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0227-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhao, Long, and Zhaosheng Liu. "MIP as Drug Delivery Systems of Ophthalmic Drugs." In Molecularly Imprinted Polymers as Advanced Drug Delivery Systems. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0227-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wei, Zehui, Lina Mu, and Zhaosheng Liu. "MIP as Drug Delivery Systems for Dermal Delivery." In Molecularly Imprinted Polymers as Advanced Drug Delivery Systems. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0227-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ma, Li, and Zhaosheng Liu. "MIP as Drug Delivery Systems for Special Application." In Molecularly Imprinted Polymers as Advanced Drug Delivery Systems. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0227-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cieplak, Maciej, and Wlodzimierz Kutner. "CHAPTER 9. Protein Determination Using Molecularly Imprinted Polymer (MIP) Chemosensors." In Polymer Chemistry Series. Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788010474-00282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cyago, Allan, and Rigoberto Advincula. "Surface Plasmon Resonance Spectroscopy and Molecularly Imprinted Polymer (MIP) Sensors." In Handbook of Spectroscopy. Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527654703.ch33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ulubayram, Kezban. "Molecularly Imprinted Polymers." In Advances in Experimental Medicine and Biology. Springer US, 2004. http://dx.doi.org/10.1007/978-0-306-48584-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Piletsky, Sergey A., Iva Chianella, and Michael J. Whitcombe. "Molecularly Imprinted Polymers." In Encyclopedia of Biophysics. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Takeuchi, Toshifumi, and Hirobumi Sunayama. "Molecularly Imprinted Polymers." In Encyclopedia of Polymeric Nanomaterials. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_126-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Molecularly Imprinted Polymers (MIP)"

1

Pitayataratorn, Teerachote, Wannisa Sukjee, Chak Sangma, and Sarinporn Visitsattapongse. "Detection of Creatinine Using Molecularly Imprinted Polymers (MIP) Technique." In 2022 14th Biomedical Engineering International Conference (BMEiCON). IEEE, 2022. http://dx.doi.org/10.1109/bmeicon56653.2022.10011578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vitale, U., A. Rechichi, M. D’Alonzo, et al. "Selective Peptide Recognition With Molecularly Imprinted Polymers in Designing New Biomedical Devices." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95587.

Full text
Abstract:
Molecular imprinting is a technique for the synthesis of polymers capable to bind selectively specific molecules. The imprinting of large proteins, like cell adhesion proteins or cell receptors, can lead to important and innovative biomedical applications. However such molecules show such important conformational changes in the polymerisation environment that the recognition sites are poorly specific. The “epitope approach” can overcome this limit by adopting, as template, a stable short peptide sequence representative of an accessible fragment of a larger protein. The resulting imprinted poly
APA, Harvard, Vancouver, ISO, and other styles
3

Nurhamidah, Nurhamidah, Popo Marinda, and Erri Koryanti. "PEMBUATAN MOLECULARLY IMPRINTED POLYMER (MIP) MELAMIN MENGGUNAKAN METODE COOLING-HEATING." In SEMINAR NASIONAL FISIKA 2017 UNJ. Pendidikan Fisika dan Fisika FMIPA UNJ, 2017. http://dx.doi.org/10.21009/03.snf2017.02.mps.08.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Guć, Maria, and Grzegorz Schroeder. "Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as Cores for Molecularly Imprinted Polymers (MIP) in Trace Analysis." In The 5th World Congress on Recent Advances in Nanotechnology. Avestia Publishing, 2020. http://dx.doi.org/10.11159/icnnfc20.131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

García-Garibay, M., I. Méndez-Palacios, A. López-Luna, E. Bárzana, and J. Jiménez-Guzmán. "Development of a Molecularly Imprinted Polymer (MIP) for the Recovery of Lactoferrin." In 13th World Congress of Food Science & Technology. EDP Sciences, 2006. http://dx.doi.org/10.1051/iufost:20060639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Holthoff, Ellen L., Lily Li, Tobias Hiller, and Kimberly L. Turner. "A molecularly imprinted polymer (MIP)-coated microbeam MEMS sensor for chemical detection." In SPIE Defense + Security, edited by Augustus W. Fountain. SPIE, 2015. http://dx.doi.org/10.1117/12.2179694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kia, Solmaz. "A new Voltametric sensor, based on molecularly imprinted polymer (MIP) for vitamin D3 Detection." In 2019 International Conference on Biomedical Innovations and Applications (BIA). IEEE, 2019. http://dx.doi.org/10.1109/bia48344.2019.8967459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Aouled, N. Omar, H. Hallil, B. Plano, et al. "Love wave sensor based on thin film molecularly imprinted polymer : MIP layer morphology and nucleosides analogs detection." In 2013 IEEE Sensors. IEEE, 2013. http://dx.doi.org/10.1109/icsens.2013.6688280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Naskar, Hemanta, Sheikh Saharuk Ali, A. H. M. Toufique Ahmed, et al. "Detection of Curcumin using a Simple and Sensitive Molecularly Imprinted Polymer (MIP) Embedded Graphite Electrode Based Electrochemical Sensor." In 2020 International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET). IEEE, 2020. http://dx.doi.org/10.1109/icefeet49149.2020.9186985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sianita, Maria Monica, Ni Nyoman Tri Puspaningsih, Miratul Khazanah, and Gaden Supriyanto. "Comparison of the method used for extraction chloramphenicol from its Molecularly Imprinted Polymer (MIP) using chloroform as porogen." In Proceedings of the National Seminar on Chemistry 2019 (SNK-19). Atlantis Press, 2019. http://dx.doi.org/10.2991/snk-19.2019.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Molecularly Imprinted Polymers (MIP)"

1

Holthoff, Ellen L., Lily Li, Tobias Hiller, and Kimberly L. Turner. A Molecularly Imprinted Polymer (MIP)-Coated Microbeam MEMS Sensor for Chemical Detection. Defense Technical Information Center, 2015. http://dx.doi.org/10.21236/ada622335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Harvey, Scott D. Ultraselective Sorbents. Task 2: Molecularly Imprinted Polymers (MIPs)/Stabilized Antibody Fragments (STABs). Final Report FY 2004. Office of Scientific and Technical Information (OSTI), 2004. http://dx.doi.org/10.2172/15016482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Holthoff, Ellen, and Dimitra Stratis-Cullum. A Nanosensor for Explosives Detection Based on Molecularly Imprinted Polymers (MIPs) and Surfaced-enhanced Raman Scattering (SERS). Defense Technical Information Center, 2010. http://dx.doi.org/10.21236/ada516676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Harvey, Scott D. Ultraselective Sorbents. Task 2: Molecularly Imprinted Polymers (MIPs)/Stabilized Antibody Fragments (STABs). Final Report -- Fiscal Year (FY) 2005. Office of Scientific and Technical Information (OSTI), 2005. http://dx.doi.org/10.2172/860003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Glasscott, Matthew, Johanna Jernberg, Erik Alberts, and Lee Moores. Toward the electrochemical detection of 2,4-dinitroanisole (DNAN) and pentaerythritol tetranitrate (PETN). Engineer Research and Development Center (U.S.), 2022. http://dx.doi.org/10.21079/11681/43826.

Full text
Abstract:
Analytical methods to rapidly detect explosive compounds with high precision are paramount for applications ranging from national security to environmental remediation. This report demonstrates two proof-of-concept electroanalytical methods for the quantification of 2,4-dinitroanisol (DNAN) and pentaerythritol tetranitrate (PETN). For the first time, DNAN reduction was analyzed and compared at a bare graphitic carbon electrode, a polyaniline-modified (PANI) electrode, and a molecularly imprinted polymer (MIP) electrode utilizing PANI to explore the effect of surface-area and preconcentration a
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!