To see the other types of publications on this topic, follow the link: Momento angular orbital.

Journal articles on the topic 'Momento angular orbital'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Momento angular orbital.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Acevedo Cáceres, Cristian Hernando, Carlos Fernando Díaz Meza, and Yezid Torres Moreno. "Intensity of a beam with integer and non-integer charge angular orbital momentum in far field." ingeniería y desarrollo 32, no. 2 (June 1, 2014): 161–78. http://dx.doi.org/10.14482/inde.32.2.5308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Carreño, Sandra J. M., André L. Moura, and Vladimir Jerez. "Generación de haz con momento angular orbital registrado en cristal fotorrefractivo." I+D Revista de Investigaciones 9, no. 1 (June 6, 2017): 146–49. http://dx.doi.org/10.33304/revinv.v09n1-2017014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Amaral, Mylena Marins do, Rosa María García Márquez, and Jorge Corrêa de Araújo. "Algumas velocidades de órbitas planetárias." REMAT: Revista Eletrônica da Matemática 6, no. 1 (December 30, 2019): 1–14. http://dx.doi.org/10.35819/remat2020v6i1id3512.

Full text
Abstract:
No presente trabalho são apresentados dados coletados na literatura científica em relação ao afélio e ao periélio de alguns corpos celestes, e com base na primeira lei de Kepler, são determinadas as equações elípticas que descrevem suas trajetórias ao redor do Sol. Utilizando o binômio de Newton, e conceitos básicos de conservação de energia e do momento angular de um sistema físico, pode ser obtida a velocidade máxima orbital de cada corpo celeste aqui analisado em função da excentricidade de sua órbita elíptica e de seu eixo. Obtido o tempo orbital de cada um desses corpos celestes e o comprimento de suas trajetórias em torno do Sol, sua velocidade média orbital foi calculada usando a cinemática do movimento. Os resultados obtidos usando essa metodologia simplificada encontram-se em boa concordância com os divulgados pelos astrônomos.
APA, Harvard, Vancouver, ISO, and other styles
4

Dubeibe, Fredy L., Sandra M. Martínez-Sicachá, and Guillermo A. González. "Orbital dynamics in realistic galaxy models: NGC 3726, NGC 3877 and NGC 4010." Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 43, no. 166 (April 9, 2019): 24. http://dx.doi.org/10.18257/raccefyn.774.

Full text
Abstract:
En el presente trabajo, utilizando una generalización del potencial de Miyamoto-Nagai, se ajustan las curvas de rotación observadas de tres galaxias espirales a las velocidades circulares analiticas. Los datos observacionales se tomaron de un conjunto de imágenes de línea de 21 centímetros (o línea HI) obtenidos con el Westerbork Synthesis Radio Telescope (WSRT), para tres galaxias particulares en el grupo de la Ursa Major: NGC 3726, NGC 3877 y NGC 4010. Seguidamente, se analiza la dinámica del sistema en términos del método de secciones de Poincaré, encontrando que para valores grandes del momento angular de la partícula de prueba o valores bajos su energía total, la din´amica es principalmente regular, mientras que en los casos opuestos, la dinámica es principalmente ca´otica. Nuestro modelo abre la posibilidad de encontrar órbitas caóticas acotadas para estrellas presentes en esas galaxias partículares. © 2019. Acad. Colomb. Cienc. Fis. Nat.
APA, Harvard, Vancouver, ISO, and other styles
5

Díaz Meza, Carlos Fernando, Diego Fernando Motta Nieto, Yezid Torres Moreno, and Fernando Martínez Ortega. "Seguimiento de una reacción fotocatalítica modelo expuesta a la propagación de la superposición de dos vórtices ópticos con momento angular orbital entero definido y opuesto, por medio de espectroscopía UV-VIS." Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 42, no. 163 (June 28, 2018): 194. http://dx.doi.org/10.18257/raccefyn.615.

Full text
Abstract:
El presente artículo realiza un análisis espectral de un conjunto de ensayos efectuados sobre una reacción foto catalítica modelo basada en la actividad de fenol disuelto en agua con oxido de titanio dopado como catalizador e irradiada con un haz de luz coherente, cuyo frente de onda corresponde a la superposición de dos vórtices ópticos con momento angular orbital entero definido de sentido opuesto.Como primera instancia se describe la arquitectura opto electro-química empleada en el estudio, luego se selecciona por medio de un barrido discreto de haces propagados de 405 y 450 nm, la longitud de onda adecuada para proyectar los vórtices ópticos sobre la muestra. Por último se realiza el tratamiento y análisis de las señales adquiridas a través de espectrofotometría UV de las muestras irradiadas con las distribuciones espaciales de luz de interés controladas por un holograma generado por computador. © 2018. Acad. Colomb. Cienc. Ex. Fis. Nat.
APA, Harvard, Vancouver, ISO, and other styles
6

Wu Qiong, 吴琼, 李海英 Li Haiying, 丁炜 Ding Wei, 白璐 Bai Lu, and 吴振森 Wu Zhensen. "基于ResNeXt网络的扰动轨道角动量谱识别." Chinese Journal of Lasers 48, no. 17 (2021): 1706003. http://dx.doi.org/10.3788/cjl202148.1706003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Haozhe Yan, Haozhe Yan, Shangyuan Li Shangyuan Li, Zhengyang Xie Zhengyang Xie, Xiaoping Zheng Xiaoping Zheng, Cheng Du Cheng Du, Hanyi Zhang Hanyi Zhang, and and Bingkun Zhou and Bingkun Zhou. "Deformation of orbital angular momentum modes in bending ring-core fiber." Chinese Optics Letters 15, no. 3 (2017): 030501–30505. http://dx.doi.org/10.3788/col201715.030501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kai Wang, Kai Wang, Wei Zhang Wei Zhang, Zhiyuan Zhou Zhiyuan Zhou, Mingxing Dong Mingxing Dong, Shuai Shi Shuai Shi, Shilong Liu Shilong Liu, Dongsheng Ding Dongsheng Ding, and and Baosen Shi and Baosen Shi. "Optical storage of orbital angular momentum via Rydberg electromagnetically induced transparency." Chinese Optics Letters 15, no. 6 (2017): 060201–60204. http://dx.doi.org/10.3788/col201715.060201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Shasha, Baifei Shen, Wenpeng Wang, Zhigang Bu, Hao Zhang, Hui Zhang, and Shuhua Zhai. "Diffraction of relativistic vortex harmonics with fractional average orbital angular momentum." Chinese Optics Letters 17, no. 5 (2019): 050501. http://dx.doi.org/10.3788/col201917.050501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ye Yuer, 叶玉儿, 李军依 Li Junyi, 曹萌 Cao Meng, and 夏勇 Xia Yong. "双模式涡旋光束的轨道角动量的精确识别." Laser & Optoelectronics Progress 58, no. 18 (2021): 1811021. http://dx.doi.org/10.3788/lop202158.1811021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ma, Xiang, Shuang Zheng, Jia Liu, Quanan Chen, Qiaoyin Lu, and Weihua Guo. "Design of a single-mode directly modulated orbital angular momentum laser." Chinese Optics Letters 19, no. 8 (2021): 081401. http://dx.doi.org/10.3788/col202119.081401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Yongqiang Li, Yongqiang Li, Hua Yang Hua Yang, Jiao Liu Jiao Liu, Longyan Gong Longyan Gong, Yubo Sheng Yubo Sheng, Weiwen Cheng Weiwen Cheng, and Shengmei Zhao Shengmei Zhao. "Colored object encoding scheme in ghost imaging system using orbital angular momentum." Chinese Optics Letters 11, no. 2 (2013): 021104–21107. http://dx.doi.org/10.3788/col201311.021104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Yixiao Zhu, Yixiao Zhu, and Fan Zhang Fan Zhang. "Solving characteristic equation of orbital angular momentum modes in a ring fiber." Chinese Optics Letters 13, no. 3 (2015): 030501–30505. http://dx.doi.org/10.3788/col201513.030501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Pan, Yue, Xu-Zhen Gao, Rende Ma, Chenghou Tu, Yongnan Li, and Hui-Tian Wang. "Tunable azimuthally non-uniform orbital angular momentum carried by vector optical fields." Chinese Optics Letters 18, no. 12 (2020): 122601. http://dx.doi.org/10.3788/col202018.122601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Pile, David. "Orbital angular momentum." Nature Photonics 6, no. 5 (May 2012): 268. http://dx.doi.org/10.1038/nphoton.2012.92.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hammami, Besma, Habib Fathallah, and Houria Rezig. "Numerical Analysis of Orbital Angular Momentum based Next Generation Optical SDM Communications System." International Journal of Information and Electronics Engineering 6, no. 1 (2015): 1–6. http://dx.doi.org/10.18178/ijiee.2016.6.1.583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Spektor, Grisha, Eva Prinz, Michael Hartelt, Anna-Katharina Mahro, Martin Aeschlimann, and Meir Orenstein. "Orbital angular momentum multiplication in plasmonic vortex cavities." Science Advances 7, no. 33 (August 2021): eabg5571. http://dx.doi.org/10.1126/sciadv.abg5571.

Full text
Abstract:
Orbital angular momentum of light is a core feature in photonics. Its confinement to surfaces using plasmonics has unlocked many phenomena and potential applications. Here, we introduce the reflection from structural boundaries as a new degree of freedom to generate and control plasmonic orbital angular momentum. We experimentally demonstrate plasmonic vortex cavities, generating a succession of vortex pulses with increasing topological charge as a function of time. We track the spatiotemporal dynamics of these angularly decelerating plasmon pulse train within the cavities for over 300 femtoseconds using time-resolved photoemission electron microscopy, showing that the angular momentum grows by multiples of the chiral order of the cavity. The introduction of this degree of freedom to tame orbital angular momentum delivered by plasmonic vortices could miniaturize pump probe–like quantum initialization schemes, increase the torque exerted by plasmonic tweezers, and potentially achieve vortex lattice cavities with dynamically evolving topology.
APA, Harvard, Vancouver, ISO, and other styles
18

Ong, Tzen, Piers Coleman, and Jörg Schmalian. "Concealed d-wave pairs in the s± condensate of iron-based superconductors." Proceedings of the National Academy of Sciences 113, no. 20 (May 2, 2016): 5486–91. http://dx.doi.org/10.1073/pnas.1523064113.

Full text
Abstract:
A central question in iron-based superconductivity is the mechanism by which the paired electrons minimize their strong mutual Coulomb repulsion. In most unconventional superconductors, Coulomb repulsion is minimized through the formation of higher angular momentum Cooper pairs, with Fermi surface nodes in the pair wavefunction. The apparent absence of such nodes in the iron-based superconductors has led to a belief they form an s-wave (s±) singlet state, which changes sign between the electron and hole pockets. However, the multiorbital nature of these systems opens an alternative possibility. Here, we propose a new class of s± state containing a condensate of d-wave Cooper pairs, concealed by their entanglement with the iron orbitals. By combining the d-wave (L=2) motion of the pairs with the internal angular momenta I=2 of the iron orbitals to make a singlet (J=L+I=0), an s± superconductor with a nontrivial topology is formed. This scenario allows us to understand the development of octet nodes in potassium-doped Ba1−x KXFe2As2 as a reconfiguration of the orbital and internal angular momentum into a high spin (J=L+I=4) state; the reverse transition under pressure into a fully gapped state can then be interpreted as a return to the low-spin singlet. The formation of orbitally entangled pairs is predicted to give rise to a shift in the orbital content at the Fermi surface, which can be tested via laser-based angle-resolved photoemission spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
19

Xiao Yueyu, 肖悦娱, 汤莹 Tang Ying, and 朱朝晖 Zhu Zhaohui. "轨道角动量模间干涉的少模光纤温度传感研究." Laser & Optoelectronics Progress 58, no. 9 (2021): 0906003. http://dx.doi.org/10.3788/lop202158.0906003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

MAVROMATIS, HARRY A. "ON THE EQUALITY OF ELECTRIC MULTIPOLE MOMENT EXPECTATION VALUES FOR SINGLE-PARTICLE STATES WITH EQUAL TOTAL ANGULAR MOMENTUM." International Journal of Modern Physics E 02, no. 04 (December 1993): 893–98. http://dx.doi.org/10.1142/s021830139300042x.

Full text
Abstract:
The expectation value of single-particle electric multipole moments is shown to be independent of the orbital angular momentum for pairs with the same total angular momentum. Thus, the well-known equality of the expectation value of the electric quadrupole moment of such pairs is shown to extend to all electric multipoles.
APA, Harvard, Vancouver, ISO, and other styles
21

Barnett, Stephen M., Mohamed Babiker, and Miles J. Padgett. "Optical orbital angular momentum." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2087 (February 28, 2017): 20150444. http://dx.doi.org/10.1098/rsta.2015.0444.

Full text
Abstract:
We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45 , 8185 ( doi:10.1103/PhysRevA.45.8185 )). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next. This article is part of the themed issue ‘Optical orbital angular momentum’.
APA, Harvard, Vancouver, ISO, and other styles
22

Miao, Pei, Zhifeng Zhang, Jingbo Sun, Wiktor Walasik, Stefano Longhi, Natalia M. Litchinitser, and Liang Feng. "Orbital angular momentum microlaser." Science 353, no. 6298 (July 28, 2016): 464–67. http://dx.doi.org/10.1126/science.aaf8533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Burkardt, Matthias. "Quark Orbital Angular Momentum." EPJ Web of Conferences 85 (2015): 02009. http://dx.doi.org/10.1051/epjconf/20158502009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Padgett, Miles, Johannes Courtial, and Les Allen. "Light’s Orbital Angular Momentum." Physics Today 57, no. 5 (May 2004): 35–40. http://dx.doi.org/10.1063/1.1768672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Burkardt, Matthias. "Quark Orbital Angular Momentum." Few-Body Systems 57, no. 6 (March 10, 2016): 385–89. http://dx.doi.org/10.1007/s00601-016-1064-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Giovanni Milione, Giovanni Milione, Ting Wang Ting Wang, Jing Han Jing Han, and and Lianfa Bai and Lianfa Bai. "Remotely sensing an object’s rotational orientation using the orbital angular momentum of light (Invited Paper)." Chinese Optics Letters 15, no. 3 (2017): 030012–30016. http://dx.doi.org/10.3788/col201715.030012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Chen, Dong-Xu, Pei Zhang, Rui-Feng Liu, Hong-Rong Li, Hong Gao, and Fu-Li Li. "Orbital angular momentum filter of photon based on spin-orbital angular momentum coupling." Physics Letters A 379, no. 39 (October 2015): 2530–34. http://dx.doi.org/10.1016/j.physleta.2015.06.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Guanghui Wu, Guanghui Wu, Chuangming Tong Chuangming Tong, Mingjian Cheng Mingjian Cheng, and and Peng Peng and Peng Peng. "Superimposed orbital angular momentum mode of multiple Hankel–Bessel beam propagation in anisotropic non-Kolmogorov turbulence." Chinese Optics Letters 14, no. 8 (2016): 080102–80107. http://dx.doi.org/10.3788/col201614.080102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wang, Zhouxiang, Yuchen Xie, Shuangyin Huang, Han Zhou, Rui Liu, Zhifeng Liu, Min Wang, et al. "Propagation characteristics of orbital angular momentum modes at 810 nm in step-index few-mode fibers." Chinese Optics Letters 17, no. 12 (2019): 120601. http://dx.doi.org/10.3788/col201917.120601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Li, Lanting, Yuanlin Zheng, Haigang Liu, and Xianfeng Chen. "Reconstitution of optical orbital angular momentum through strongly scattering media via feedback-based wavefront shaping method." Chinese Optics Letters 19, no. 10 (2021): 100101. http://dx.doi.org/10.3788/col202119.100101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Momeni-Feili, Maryam, Firooz Arash, Fatemeh Taghavi-Shahri, and Abolfazl Shahveh. "Contribution of orbital angular momentum to the nucleon spin." International Journal of Modern Physics A 32, no. 06n07 (March 8, 2017): 1750036. http://dx.doi.org/10.1142/s0217751x17500361.

Full text
Abstract:
We have calculated the orbital angular momentum of quarks and gluons in the nucleon. The calculations are carried out in the next to leading order utilizing the so-called valon model. It is found that the average quark orbital angular momentum is positive, but small, and the average gluon orbital angular momentum is negative and large. We also report on some regularities about the total angular momentum of the quarks and the gluon, as well as on the orbital angular momentum of the separate partons. We have also provided partonic angular momentum, [Formula: see text] as a function of [Formula: see text].
APA, Harvard, Vancouver, ISO, and other styles
32

Aldoshin, Sergey M., Denis V. Korchagin, Andrew V. Palii, and Boris S. Tsukerblat. "Some new trends in the design of single molecule magnets." Pure and Applied Chemistry 89, no. 8 (July 26, 2017): 1119–43. http://dx.doi.org/10.1515/pac-2017-0103.

Full text
Abstract:
AbstractIn this review we briefly discuss some new trends in the design of single molecule magnets based on transition (3d, 4d, 5d) and rare-earth (4f) metal ions. Within this broad theme the emphasis of the present review is placed on the molecules which exhibit strong magnetic anisotropy originating from the unquenched orbital angular momenta in the ground orbitally degenerate (or quasi-degenerate) states. Along with the general concepts we consider selected examples of the systems comprising orbitally-degenerate metal ions and demonstrate how one can benefit from strong single-ion anisotropy arising from the first-order orbital angular momentum. The role of crystal fields, spin-orbit coupling and structural factors is discussed. Some observation stemming from the analysis of the isotropic exchange interactions, magnetic anisotropy and strongly anisotropic orbitally-dependent superexchange are summarized as guiding rules for the controlled design of single molecule magnets exhibiting high barriers for magnetization reversal and, consequently, high blocking temperatures.
APA, Harvard, Vancouver, ISO, and other styles
33

Mendonca, J. T., S. Ali, and B. Thidé. "Plasmons with orbital angular momentum." Physics of Plasmas 16, no. 11 (November 2009): 112103. http://dx.doi.org/10.1063/1.3261802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Bouchard, Frédéric, Harjaspreet Mand, Mohammad Mirhosseini, Ebrahim Karimi, and Robert W. Boyd. "Achromatic orbital angular momentum generator." New Journal of Physics 16, no. 12 (December 2, 2014): 123006. http://dx.doi.org/10.1088/1367-2630/16/12/123006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Clark, Charles W., Roman Barankov, Michael G. Huber, Muhammad Arif, David G. Cory, and Dmitry A. Pushin. "Controlling neutron orbital angular momentum." Nature 525, no. 7570 (September 2015): 504–6. http://dx.doi.org/10.1038/nature15265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ayub, M. K., S. Ali, and J. T. Mendonca. "Phonons with orbital angular momentum." Physics of Plasmas 18, no. 10 (October 2011): 102117. http://dx.doi.org/10.1063/1.3655429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Liboff, R. L. "Spin and orbital angular momentum." Europhysics Letters (EPL) 68, no. 4 (November 2004): 577–81. http://dx.doi.org/10.1209/epl/i2004-10231-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Boeyens, Jan C. A. "Angular Momentum in Chemistry." Zeitschrift für Naturforschung B 62, no. 3 (March 1, 2007): 373–85. http://dx.doi.org/10.1515/znb-2007-0311.

Full text
Abstract:
Noting that current chemical theory is based almost exclusively on electronic energy and spin variables the equal importance of orbital angular momentum is explored in this paper. From its classical definition the angular momentum of electrons in an atom is shown to obey Laplace’s equation, which automatically leads to discrete values in terms of spherical harmonics. This analysis assumes a continuous distribution of electronic charge, which resembles a fluid at equilibrium. It serves to elucidate the success and failure of Bohr’s conjecture and the origin of wave-particle duality. Applied to atoms, minimization of orbital angular momentum leads to Hund’s rules. The orientation of angular momenta in lower-symmetry molecular environments follows from the well-known Jahn-Teller theorem.
APA, Harvard, Vancouver, ISO, and other styles
39

Si, M. S., D. Z. Yang, D. S. Xue, and G. P. Zhang. "Femtosecond Magnetism When the Orbital Angular Momentum is Quenched." SPIN 05, no. 04 (December 2015): 1540009. http://dx.doi.org/10.1142/s2010324715400093.

Full text
Abstract:
In femtosecond magnetism, a femtosecond laser pulse affects the spin moment only indirectly through the orbital angular momentum and the spin–orbit coupling. A long-standing puzzle is what happens if the orbital angular momentum itself is quenched. Here, we employ a four-level system to resolve this puzzle. The results show that the quenching of the orbital angular moment in the ground state has no direct relation to the spin moment change. By contrast, the orbital moment can be restored partially after the pulsed optical excitation and can affect the demagnetization. Importantly, this study confirms that the orbital moment indeed responds to the laser field faster than spin if the pulse duration is short, consistent with the recent time-resolved X-ray magnetic circular dichroism experiment. Therefore, our finding shines new light on femtosecond magnetism.
APA, Harvard, Vancouver, ISO, and other styles
40

SONG, XIAOTONG. "QUARK ORBITAL ANGULAR MOMENTUM IN THE BARYON." International Journal of Modern Physics A 16, no. 22 (September 10, 2001): 3673–97. http://dx.doi.org/10.1142/s0217751x01005018.

Full text
Abstract:
Analytical and numerical results, for the orbital and spin content carried by different quark flavors in the baryons, are given in the chiral quark model with symmetry breaking. The reduction of the quark spin, due to the spin dilution in the chiral splitting processes, is transferred into the orbital motion of quarks and antiquarks. The orbital angular momentum for each quark flavor in the proton as a function of the partition factor κ and the chiral splitting probability a is shown. The cancellation between the spin and orbital contributions in the spin sum rule and in the baryon magnetic moments is discussed.
APA, Harvard, Vancouver, ISO, and other styles
41

Allen, L. "Orbital angular momentum: a personal memoir." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2087 (February 28, 2017): 20160280. http://dx.doi.org/10.1098/rsta.2016.0280.

Full text
Abstract:
A definitive statement of the model used to describe orbital angular momentum is essentially now available. Its early history, and the interaction of those who played key roles in its development over 20 years ago in its development, is outlined in this Memoir. This article is part of the themed issue ‘Optical orbital angular momentum’.
APA, Harvard, Vancouver, ISO, and other styles
42

BURKARDT, MATTHIAS. "QUARK ORBITAL ANGULAR MOMENTUM AND FINAL STATE INTERACTIONS." International Journal of Modern Physics: Conference Series 25 (January 2014): 1460029. http://dx.doi.org/10.1142/s2010194514600295.

Full text
Abstract:
Definitions of orbital angular momentum based on Wigner distributions are used to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. The difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.
APA, Harvard, Vancouver, ISO, and other styles
43

Burkardt, Matthias. "Quark Orbital Angular Momentum and Final State Interactions." International Journal of Modern Physics: Conference Series 37 (January 2015): 1560035. http://dx.doi.org/10.1142/s2010194515600356.

Full text
Abstract:
Definitions of orbital angular momentum based on Wigner distributions are used to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. The difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.
APA, Harvard, Vancouver, ISO, and other styles
44

Qin, Huawang, and Raylin Tso. "High-capacity quantum secret sharing based on orbital angular momentum." Quantum Information and Computation 18, no. 7&8 (June 2018): 579–91. http://dx.doi.org/10.26421/qic18.7-8-3.

Full text
Abstract:
A high-capacity quantum secret sharing scheme based on orbital angular momentum is proposed. The dealer uses single particles in the orbital angular momentum (OAM) basis to bring the secret and encodes the secret through performing the transformation between the orbital angular momentum (OAM) basis and the angular position (ANG) basis. In the recovery, the participants perform the single-particle measurements to reconstruct the secret. The proposed scheme can use the multi-dimension of OAM to reach higher information capacity and enhanced security.
APA, Harvard, Vancouver, ISO, and other styles
45

Gao, Chunqing, Guanghui Wei, and Horst Weber. "Orbital angular momentum of the laser beam and the second order intensity moments." Science in China Series A: Mathematics 43, no. 12 (December 2000): 1306–11. http://dx.doi.org/10.1007/bf02880068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Franke-Arnold, Sonja. "Optical angular momentum and atoms." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2087 (February 28, 2017): 20150435. http://dx.doi.org/10.1098/rsta.2015.0435.

Full text
Abstract:
Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’.
APA, Harvard, Vancouver, ISO, and other styles
47

ZHANG, Chao, and Lu MA. "Trellis Coded Orbital Angular Momentum Modulation." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E99.A, no. 8 (2016): 1618–21. http://dx.doi.org/10.1587/transfun.e99.a.1618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Lorcé, Cédric. "Wilson lines and orbital angular momentum." Physics Letters B 719, no. 1-3 (February 2013): 185–90. http://dx.doi.org/10.1016/j.physletb.2013.01.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

SAITOH, Koh, and Masaya UCHIDA. "Electron Beam Carrying Orbital Angular Momentum." Nihon Kessho Gakkaishi 58, no. 2 (2016): 79–84. http://dx.doi.org/10.5940/jcrsj.58.79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kovalev, A. A., and V. V. Kotlyar. "Pearcey beams carrying orbital angular momentum." Computer Optics 39, no. 4 (October 15, 2015): 453–58. http://dx.doi.org/10.18287/0134-2452-2015-39-4-453-458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography