To see the other types of publications on this topic, follow the link: Monodomain.

Journal articles on the topic 'Monodomain'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Monodomain.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Coudière, Yves, Yves Bourgault, and Myriam Rioux. "Optimal monodomain approximations of the bidomain equations used in cardiac electrophysiology." Mathematical Models and Methods in Applied Sciences 24, no. 06 (2014): 1115–40. http://dx.doi.org/10.1142/s0218202513500784.

Full text
Abstract:
The bidomain model is the current most sophisticated model used in cardiac electrophysiology. The monodomain model is a simplification of the bidomain model that is less computationally intensive but only valid under equal conductivity ratio. We propose in this paper optimal monodomain approximations of the bidomain model. We first prove that the error between the bidomain and monodomain solutions is bounded by the error ‖B - A‖ between the bidomain and monodomain conductivity operators. Optimal monodomain approximations are defined by minimizing the distance ‖B - A‖, which reduces for solutio
APA, Harvard, Vancouver, ISO, and other styles
2

Fan, Wei, Zhijian Wang, and Shengqiang Cai. "Rupture of Polydomain and Monodomain Liquid Crystal Elastomer." International Journal of Applied Mechanics 08, no. 07 (2016): 1640001. http://dx.doi.org/10.1142/s1758825116400019.

Full text
Abstract:
Liquid crystal elastomer (LCE) has been recently explored extensively to make diverse active structures and devices. Depending on synthetic process, LCE can be made either polydomain or monodomain when ambient temperature is below isotropic clearing temperature. In the applications, LCE may be subjected to large mechanical stretch or force and break apart. The capability of predicting the rupture of LCE under different loading conditions is crucial for the applications. However, according to our knowledge, there is no report on fracture energy measurement of LCE. In this paper, we measured fra
APA, Harvard, Vancouver, ISO, and other styles
3

Ng, Kin Wei, and Ahmad Rohanin. "Solving Optimal Control Problem of Monodomain Model Using Hybrid Conjugate Gradient Methods." Mathematical Problems in Engineering 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/734070.

Full text
Abstract:
We present the numerical solutions for the PDE-constrained optimization problem arising in cardiac electrophysiology, that is, the optimal control problem of monodomain model. The optimal control problem of monodomain model is a nonlinear optimization problem that is constrained by the monodomain model. The monodomain model consists of a parabolic partial differential equation coupled to a system of nonlinear ordinary differential equations, which has been widely used for simulating cardiac electrical activity. Our control objective is to dampen the excitation wavefront using optimal applied e
APA, Harvard, Vancouver, ISO, and other styles
4

Hernández Montero, Ozkar, Andrés Fraguela Collar, and Raúl Felipe Sosa. "Existence of global solutions in a model of electrical activity of the monodomain type for a ventricle." Nova Scientia 10, no. 21 (2018): 17–44. http://dx.doi.org/10.21640/ns.v10i21.1531.

Full text
Abstract:
Introduction: A monodomain model of electrical activity for an isolated ventricle is formulated. This model is written as a reaction diffusion PDE coupled to an ODE, The Rogers-Mculloch model is used to represent the electrical activity through the cell membrane. Method: We give a definition of weak and strong solution of the variational Cauchy problem associated to the monodomain model. A sequence of approximate solutions of Faedo-Galerkin type is proposed.Results: It is shown that the sequence of approximate solutions converge to a weak solution according to the proposed definition. Finally,
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Heye, Huajun Ye, and Wenhua Huang. "A Meshfree Method for Simulating Myocardial Electrical Activity." Computational and Mathematical Methods in Medicine 2012 (2012): 1–16. http://dx.doi.org/10.1155/2012/936243.

Full text
Abstract:
An element-free Galerkin method (EFGM) is proposed to simulate the propagation of myocardial electrical activation without explicit mesh constraints using a monodomain model. In our framework the geometry of myocardium is first defined by a meshfree particle representation that is, a sufficient number of sample nodes without explicit connectivities are placed in and inside the surface of myocardium. Fiber orientations and other material properties of myocardium are then attached to sample nodes according to their geometrical locations, and over the meshfree particle representation spatial vari
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Jiajia, Weidong Zhao, Zhou Yang, et al. "Printable photonic polymer coating based on a monodomain blue phase liquid crystal network." Journal of Materials Chemistry C 7, no. 44 (2019): 13764–69. http://dx.doi.org/10.1039/c9tc05052c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Khan, Riasat, and Kwong T. Ng. "Numerical study of POD-Galerkin-DEIM reduced order modeling of cardiac monodomain formulation." Biomedical Physics & Engineering Express 8, no. 1 (2021): 015012. http://dx.doi.org/10.1088/2057-1976/ac3c0b.

Full text
Abstract:
Abstract The three-dimensional cardiac monodomain model with inhomogeneous and anisotropic conductivity characterizes a complicated system that contains spatial and temporal approximation coefficients along with a nonlinear ionic current term. These complexities make its numerical modeling computationally challenging, and therefore, the formation of an efficient computational approximation is important for studying cardiac propagation. In this paper, a reduced order modeling approach has been developed for the simplified cardiac monodomain model, which yields a significant reduction of the ful
APA, Harvard, Vancouver, ISO, and other styles
8

GRELL, M., M. REDECKER, K. S. WHITEHEAD, D. D. C. BRADLEY, M. INBASEKARAN, and E. P. WOO. "Monodomain alignment of thermotropic fluorene copolymers." Liquid Crystals 26, no. 9 (1999): 1403–7. http://dx.doi.org/10.1080/026782999204084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fridrikh, S. V., and E. M. Terentjev. "Polydomain-monodomain transition in nematic elastomers." Physical Review E 60, no. 2 (1999): 1847–57. http://dx.doi.org/10.1103/physreve.60.1847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Förster, A., H. Hesse, S. Kapphan, and M. Wöhlecke. "OH stretching vibrations in monodomain KNbO3." Solid State Communications 57, no. 5 (1986): 373–75. http://dx.doi.org/10.1016/0038-1098(86)90110-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Langridge, S., W. G. Stirling, G. H. Lander, and O. Vogt. "Magnetic excitations in monodomain ferromagnetic USb0.8Te0.2." Physica B: Condensed Matter 180-181 (June 1992): 194–96. http://dx.doi.org/10.1016/0921-4526(92)90704-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lander, G. H., W. G. Stirling, J. M. Rossat-Mignod, M. Hagen, and O. Vogt. "Magnetic excitations in monodomain ferromagnetic UTe." Physica B: Condensed Matter 156-157 (January 1989): 826–28. http://dx.doi.org/10.1016/0921-4526(89)90805-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hanzon, Drew W., Nicholas A. Traugutt, Matthew K. McBride, Christopher N. Bowman, Christopher M. Yakacki, and Kai Yu. "Adaptable liquid crystal elastomers with transesterification-based bond exchange reactions." Soft Matter 14, no. 6 (2018): 951–60. http://dx.doi.org/10.1039/c7sm02110k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Guégan, R., K. Sueyoshi, S. Anraku, S. Yamamoto, and N. Miyamoto. "Sandwich organization of non-ionic surfactant liquid crystalline phases as induced by large inorganic K4Nb6O17 nanosheets." Chemical Communications 52, no. 8 (2016): 1594–97. http://dx.doi.org/10.1039/c5cc08948d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lin, Xiao Ying, Zhi Jian Wang, Pengju Pan, Zi Liang Wu, and Qiang Zheng. "Monodomain hydrogels prepared by shear-induced orientation and subsequent gelation." RSC Advances 6, no. 97 (2016): 95239–45. http://dx.doi.org/10.1039/c6ra17103f.

Full text
Abstract:
Shear-induced orientation of liquid crystalline hydroxypropylcellulose solution with reactants is frozen by subsequent polymerization and gelation process, resulting in monodomain hydrogel with anisotropic optical, swelling, and mechanical properties.
APA, Harvard, Vancouver, ISO, and other styles
16

Chen, Ling, Meng Wang, Ling-Xiang Guo, Bao-Ping Lin, and Hong Yang. "A cut-and-paste strategy towards liquid crystal elastomers with complex shape morphing." Journal of Materials Chemistry C 6, no. 30 (2018): 8251–57. http://dx.doi.org/10.1039/c8tc01236a.

Full text
Abstract:
In this work, monodomain liquid crystal elastomer films with exchangeable disulfide crosslinkers are cut into pieces and pasted together through dynamic disulfide exchange to form versatile shaped soft actuator materials.
APA, Harvard, Vancouver, ISO, and other styles
17

Breiten, Tobias, and Karl Kunisch. "Boundary feedback stabilization of the monodomain equations." Mathematical Control & Related Fields 7, no. 3 (2017): 369–91. http://dx.doi.org/10.3934/mcrf.2017013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Schönmann, K., B. Seebacher, and K. Andres. "Magnetic anisotropy in monodomain crystals of YBa2Cu3O7." Physica B: Condensed Matter 165-166 (August 1990): 1445–46. http://dx.doi.org/10.1016/s0921-4526(09)80308-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Menyeh, A., and W. O'Reilly. "Thermoremanent magnetization in monodomain monoclinic pyrrhotite Fe7S8." Journal of Geophysical Research: Solid Earth 101, B11 (1996): 25045–51. http://dx.doi.org/10.1029/96jb01188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hotta, A., and E. M. Terentjev. "Dynamic soft elasticity in monodomain nematic elastomers." European Physical Journal E 10, no. 4 (2003): 291–301. http://dx.doi.org/10.1140/epje/i2002-10005-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dec., J. "Monodomain state formation in antiferroelectric NaNbO3and PbZrO3crystals." Ferroelectrics 97, no. 1 (1989): 197–200. http://dx.doi.org/10.1080/00150198908018092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Manda, Ramesh, Srinivas Pagidi, Yun Jin Heo, Young Jin Lim, Min Su Kim, and Seung Hee Lee. "Polymer‐Stabilized Monodomain Blue Phase Diffraction Grating." Advanced Materials Interfaces 7, no. 9 (2020): 1901923. http://dx.doi.org/10.1002/admi.201901923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lander, G. H., W. G. Stirling, J. M. Rossat-Mignod, M. Hagen, and O. Vogt. "Magnetic excitations in monodomain ferromagnetic uranium telluride." Physical Review B 41, no. 10 (1990): 6899–906. http://dx.doi.org/10.1103/physrevb.41.6899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Nedkov, I., L. Slavov, T. Merodiiska, et al. "Size effects in monodomain magnetite based ferrofluids." Journal of Nanoparticle Research 10, no. 5 (2007): 877–80. http://dx.doi.org/10.1007/s11051-007-9311-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

P ¸ekała, M., J. Mucha, P. Vanderbemden, R. Cloots, and M. Ausloos. "Magneto-transport characterization of Dy123 monodomain superconductors." Applied Physics A 81, no. 5 (2005): 1001–7. http://dx.doi.org/10.1007/s00339-004-3014-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Nielsen, Bjørn Fredrik, Tomas Syrstad Ruud, Glenn Terje Lines, and Aslak Tveito. "Optimal monodomain approximations of the bidomain equations." Applied Mathematics and Computation 184, no. 2 (2007): 276–90. http://dx.doi.org/10.1016/j.amc.2006.05.158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ruhl, Tilmann, Peter Spahn, Holger Winkler, and Goetz P. Hellmann. "Large Area Monodomain Order in Colloidal Crystals." Macromolecular Chemistry and Physics 205, no. 10 (2004): 1385–93. http://dx.doi.org/10.1002/macp.200400009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ren, Wanting, Philip J. McMullan, and Anselm C. Griffin. "Poisson's Ratio of Monodomain Liquid Crystalline Elastomers." Macromolecular Chemistry and Physics 209, no. 18 (2008): 1896–99. http://dx.doi.org/10.1002/macp.200800265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Yakacki, C. M., M. Saed, D. P. Nair, T. Gong, S. M. Reed, and C. N. Bowman. "Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol–acrylate reaction." RSC Advances 5, no. 25 (2015): 18997–9001. http://dx.doi.org/10.1039/c5ra01039j.

Full text
Abstract:
A methodology is introduced to synthesize main-chain liquid-crystalline elastomers (LCEs) using a thiol–acrylate-based reaction. This method can program an aligned LCE monodomain and offer spatio-temporal control over liquid-crystalline behavior.
APA, Harvard, Vancouver, ISO, and other styles
30

Wang, Li, Wei Liu, Ling-Xiang Guo, et al. "A room-temperature two-stage thiol–ene photoaddition approach towards monodomain liquid crystalline elastomers." Polymer Chemistry 8, no. 8 (2017): 1364–70. http://dx.doi.org/10.1039/c6py02096h.

Full text
Abstract:
Here we report a room-temperature, one-pot, two-stage thiol–ene photoaddition method to synthesize monodomain liquid crystalline elastomers. Starting from mesogenic monomers, the whole preparation process can be finished in less than 30 minutes.
APA, Harvard, Vancouver, ISO, and other styles
31

MUNTEANU, MARILENA, and LUCA F. PAVARINO. "DECOUPLED SCHWARZ ALGORITHMS FOR IMPLICIT DISCRETIZATIONS OF NONLINEAR MONODOMAIN AND BIDOMAIN SYSTEMS." Mathematical Models and Methods in Applied Sciences 19, no. 07 (2009): 1065–97. http://dx.doi.org/10.1142/s0218202509003723.

Full text
Abstract:
Novel decoupled Schwarz algorithms for the implicit discretizations of the Monodomain and Bidomain systems in three dimensions are constructed and analyzed. Both implicit Euler and linearly implicit Rosenbrock time discretizations are considered. Convergence rate estimates are proven for a domain decomposition preconditioner based on overlapping additive Schwarz techniques and employed in a Newton–Krylov–Schwarz method for the Euler scheme. An analogous result is proven for the same preconditioner applied to the linear systems originated in the Rosenbrock scheme. Several parallel numerical res
APA, Harvard, Vancouver, ISO, and other styles
32

Cuccuru, Gianmauro, Giorgio Fotia, Fabio Maggio, and James Southern. "Simulating Cardiac Electrophysiology Using Unstructured All-Hexahedra Spectral Elements." BioMed Research International 2015 (2015): 1–15. http://dx.doi.org/10.1155/2015/473279.

Full text
Abstract:
We discuss the application of the spectral element method to the monodomain and bidomain equations describing propagation of cardiac action potential. Models of cardiac electrophysiology consist of a system of partial differential equations coupled with a system of ordinary differential equations representing cell membrane dynamics. The solution of these equations requires solving multiple length scales due to the ratio of advection to diffusion that varies among the different equations. High order approximation of spectral elements provides greater flexibility in resolving multiple length sca
APA, Harvard, Vancouver, ISO, and other styles
33

Roth, Bradley John. "Mechanotransduction caused by a point force in the extracellular space." BIOMATH 7, no. 2 (2018): 1810197. http://dx.doi.org/10.11145/j.biomath.2018.10.197.

Full text
Abstract:
The mechanical bidomain model is a mathematical description of biological tissue that focuses on mechanotransduction. The model’s fundamental hypothesis is that differences in the intracellular and extracellular displacements activate integrins, causing a cascade of biological effects. This paper presents analytical solutions of the bidomain equations for an extracellular point force. The intra- and extracellular spaces are incompressible, isotropic, and coupled. The expressions for the intra- and extracellular displacements each contain three terms: a monodomain term that is identical in the
APA, Harvard, Vancouver, ISO, and other styles
34

Chen, Yuan, and Shin-Tson Wu. "Electric field-induced monodomain blue phase liquid crystals." Applied Physics Letters 102, no. 17 (2013): 171110. http://dx.doi.org/10.1063/1.4803922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

van Breemen, Albert J. J. M., Peter T. Herwig, Ceciel H. T. Chlon, et al. "Large Area Liquid Crystal Monodomain Field-Effect Transistors." Journal of the American Chemical Society 128, no. 7 (2006): 2336–45. http://dx.doi.org/10.1021/ja055337l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kákay, Attila, and L. K. Varga. "Monodomain critical radius for soft-magnetic fine particles." Journal of Applied Physics 97, no. 8 (2005): 083901. http://dx.doi.org/10.1063/1.1844612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zhang, Shuming, Megan A. Greenfield, Alvaro Mata, et al. "A self-assembly pathway to aligned monodomain gels." Nature Materials 9, no. 7 (2010): 594–601. http://dx.doi.org/10.1038/nmat2778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Beyer, Patrick, Eugene M. Terentjev, and Rudolf Zentel. "Monodomain Liquid Crystal Main Chain Elastomers by Photocrosslinking." Macromolecular Rapid Communications 28, no. 14 (2007): 1485–90. http://dx.doi.org/10.1002/marc.200700210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Nagaiah, Chamakuri, Karl Kunisch, and Gernot Plank. "Numerical solutions for optimal control of monodomain equations." PAMM 9, no. 1 (2009): 609–10. http://dx.doi.org/10.1002/pamm.200910276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kim, Dong Jik, and Marin Alexe. "Bulk photovoltaic effect in monodomain BiFeO3 thin films." Applied Physics Letters 110, no. 18 (2017): 183902. http://dx.doi.org/10.1063/1.4983032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Brunsman, E. M., J. H. Scott, S. A. Majetich, M. E. McHenry, and M. Q. Huang. "Magnetic properties of monodomain Nd-Fe-B-C nanoparticles." Journal of Applied Physics 79, no. 8 (1996): 5293. http://dx.doi.org/10.1063/1.361355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Casalta, H., P. Schleger, C. Bellouard, M. Hennion, I. Mirebeau, and B. Farago. "Direct measurement of superparamagnetic fluctuations in monodomain Fe particles." Physica B: Condensed Matter 241-243 (December 1997): 576–78. http://dx.doi.org/10.1016/s0921-4526(97)00648-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Deak, J. G., R. H. Koch, G. E. Guthmiller, and R. E. Fontana. "Dynamic calculation of the responsivity of monodomain fluxgate magnetometers." IEEE Transactions on Magnetics 36, no. 4 (2000): 2052–56. http://dx.doi.org/10.1109/20.875331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Melenev, P. V., V. V. Rusakov, and Yu L. Raikher. "Magnetic structure of a spherical cluster of monodomain particles." Technical Physics Letters 34, no. 3 (2008): 248–50. http://dx.doi.org/10.1134/s1063785008030218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Godefroy, G. "Photorefractive properties of monodomain single crystal doped barium titanate." Ferroelectrics 92, no. 1 (1989): 205–9. http://dx.doi.org/10.1080/00150198908211327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Lacey, D., H. N. Beattie, G. R. Mitchell, and J. A. Pople. "Orientation effects in monodomain nematic liquid crystalline polysiloxane elastomers." Journal of Materials Chemistry 8, no. 1 (1998): 53–60. http://dx.doi.org/10.1039/a705570f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Green, Kevin R., and Raymond J. Spiteri. "Gating-enhanced IMEX splitting methods for cardiac monodomain simulation." Numerical Algorithms 81, no. 4 (2019): 1443–57. http://dx.doi.org/10.1007/s11075-019-00669-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Baek, S. H., and C. B. Eom. "Reliable polarization switching of BiFeO 3." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, no. 1977 (2012): 4872–89. http://dx.doi.org/10.1098/rsta.2012.0197.

Full text
Abstract:
As a room temperature multi-ferroic with coexisting anti-ferromagnetic, ferroelectric and ferroelastic orders, BiFeO 3 has been extensively studied to realize magnetoelectric devices that enable manipulation of magnetic ordering by an electric field. Moreover, BiFeO 3 is a promising candidate for ferroelectric memory devices because it has the largest remanent polarization ( P r >100 μC cm −2 ) of all ferroelectric materials. For these applications, controlling polarization switching by an electric field plays a crucial role. However, BiFeO 3 has a complex switching behaviour owing to the r
APA, Harvard, Vancouver, ISO, and other styles
49

Stephanovich, V. A., and Yu G. Semenov. "The Magnetic Domain Structure Properties in Diluted Magnetic Semiconductors." Ukrainian Journal of Physics 65, no. 10 (2020): 881. http://dx.doi.org/10.15407/ujpe65.10.881.

Full text
Abstract:
We present a comprehensive analysis of the domain structure formation in the ferromagneticphase of diluted magnetic semiconductors (DMS) of the p-type. Our analysis is carried outon the base of the effective magnetic free energy of DMS calculated by us earlier. This freeenergy, substituting DMS (a disordered magnet) by an effective ordered substance, permits usto apply the standard phenomenological approach to the domain structure calculation. Usingthe coupled system of Maxwell equations with those obtained by the minimization of the freeenergy functional, we show the existence of the critical
APA, Harvard, Vancouver, ISO, and other styles
50

Moosmann, Philipp, Felix Ecker, Stefan Leopold-Messer, et al. "A monodomain class II terpene cyclase assembles complex isoprenoid scaffolds." Nature Chemistry 12, no. 10 (2020): 968–72. http://dx.doi.org/10.1038/s41557-020-0515-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!