Journal articles on the topic 'Monodomain'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Monodomain.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Coudière, Yves, Yves Bourgault, and Myriam Rioux. "Optimal monodomain approximations of the bidomain equations used in cardiac electrophysiology." Mathematical Models and Methods in Applied Sciences 24, no. 06 (2014): 1115–40. http://dx.doi.org/10.1142/s0218202513500784.
Full textFan, Wei, Zhijian Wang, and Shengqiang Cai. "Rupture of Polydomain and Monodomain Liquid Crystal Elastomer." International Journal of Applied Mechanics 08, no. 07 (2016): 1640001. http://dx.doi.org/10.1142/s1758825116400019.
Full textNg, Kin Wei, and Ahmad Rohanin. "Solving Optimal Control Problem of Monodomain Model Using Hybrid Conjugate Gradient Methods." Mathematical Problems in Engineering 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/734070.
Full textHernández Montero, Ozkar, Andrés Fraguela Collar, and Raúl Felipe Sosa. "Existence of global solutions in a model of electrical activity of the monodomain type for a ventricle." Nova Scientia 10, no. 21 (2018): 17–44. http://dx.doi.org/10.21640/ns.v10i21.1531.
Full textZhang, Heye, Huajun Ye, and Wenhua Huang. "A Meshfree Method for Simulating Myocardial Electrical Activity." Computational and Mathematical Methods in Medicine 2012 (2012): 1–16. http://dx.doi.org/10.1155/2012/936243.
Full textYang, Jiajia, Weidong Zhao, Zhou Yang, et al. "Printable photonic polymer coating based on a monodomain blue phase liquid crystal network." Journal of Materials Chemistry C 7, no. 44 (2019): 13764–69. http://dx.doi.org/10.1039/c9tc05052c.
Full textKhan, Riasat, and Kwong T. Ng. "Numerical study of POD-Galerkin-DEIM reduced order modeling of cardiac monodomain formulation." Biomedical Physics & Engineering Express 8, no. 1 (2021): 015012. http://dx.doi.org/10.1088/2057-1976/ac3c0b.
Full textGRELL, M., M. REDECKER, K. S. WHITEHEAD, D. D. C. BRADLEY, M. INBASEKARAN, and E. P. WOO. "Monodomain alignment of thermotropic fluorene copolymers." Liquid Crystals 26, no. 9 (1999): 1403–7. http://dx.doi.org/10.1080/026782999204084.
Full textFridrikh, S. V., and E. M. Terentjev. "Polydomain-monodomain transition in nematic elastomers." Physical Review E 60, no. 2 (1999): 1847–57. http://dx.doi.org/10.1103/physreve.60.1847.
Full textFörster, A., H. Hesse, S. Kapphan, and M. Wöhlecke. "OH stretching vibrations in monodomain KNbO3." Solid State Communications 57, no. 5 (1986): 373–75. http://dx.doi.org/10.1016/0038-1098(86)90110-9.
Full textLangridge, S., W. G. Stirling, G. H. Lander, and O. Vogt. "Magnetic excitations in monodomain ferromagnetic USb0.8Te0.2." Physica B: Condensed Matter 180-181 (June 1992): 194–96. http://dx.doi.org/10.1016/0921-4526(92)90704-v.
Full textLander, G. H., W. G. Stirling, J. M. Rossat-Mignod, M. Hagen, and O. Vogt. "Magnetic excitations in monodomain ferromagnetic UTe." Physica B: Condensed Matter 156-157 (January 1989): 826–28. http://dx.doi.org/10.1016/0921-4526(89)90805-3.
Full textHanzon, Drew W., Nicholas A. Traugutt, Matthew K. McBride, Christopher N. Bowman, Christopher M. Yakacki, and Kai Yu. "Adaptable liquid crystal elastomers with transesterification-based bond exchange reactions." Soft Matter 14, no. 6 (2018): 951–60. http://dx.doi.org/10.1039/c7sm02110k.
Full textGuégan, R., K. Sueyoshi, S. Anraku, S. Yamamoto, and N. Miyamoto. "Sandwich organization of non-ionic surfactant liquid crystalline phases as induced by large inorganic K4Nb6O17 nanosheets." Chemical Communications 52, no. 8 (2016): 1594–97. http://dx.doi.org/10.1039/c5cc08948d.
Full textLin, Xiao Ying, Zhi Jian Wang, Pengju Pan, Zi Liang Wu, and Qiang Zheng. "Monodomain hydrogels prepared by shear-induced orientation and subsequent gelation." RSC Advances 6, no. 97 (2016): 95239–45. http://dx.doi.org/10.1039/c6ra17103f.
Full textChen, Ling, Meng Wang, Ling-Xiang Guo, Bao-Ping Lin, and Hong Yang. "A cut-and-paste strategy towards liquid crystal elastomers with complex shape morphing." Journal of Materials Chemistry C 6, no. 30 (2018): 8251–57. http://dx.doi.org/10.1039/c8tc01236a.
Full textBreiten, Tobias, and Karl Kunisch. "Boundary feedback stabilization of the monodomain equations." Mathematical Control & Related Fields 7, no. 3 (2017): 369–91. http://dx.doi.org/10.3934/mcrf.2017013.
Full textSchönmann, K., B. Seebacher, and K. Andres. "Magnetic anisotropy in monodomain crystals of YBa2Cu3O7." Physica B: Condensed Matter 165-166 (August 1990): 1445–46. http://dx.doi.org/10.1016/s0921-4526(09)80308-6.
Full textMenyeh, A., and W. O'Reilly. "Thermoremanent magnetization in monodomain monoclinic pyrrhotite Fe7S8." Journal of Geophysical Research: Solid Earth 101, B11 (1996): 25045–51. http://dx.doi.org/10.1029/96jb01188.
Full textHotta, A., and E. M. Terentjev. "Dynamic soft elasticity in monodomain nematic elastomers." European Physical Journal E 10, no. 4 (2003): 291–301. http://dx.doi.org/10.1140/epje/i2002-10005-5.
Full textDec., J. "Monodomain state formation in antiferroelectric NaNbO3and PbZrO3crystals." Ferroelectrics 97, no. 1 (1989): 197–200. http://dx.doi.org/10.1080/00150198908018092.
Full textManda, Ramesh, Srinivas Pagidi, Yun Jin Heo, Young Jin Lim, Min Su Kim, and Seung Hee Lee. "Polymer‐Stabilized Monodomain Blue Phase Diffraction Grating." Advanced Materials Interfaces 7, no. 9 (2020): 1901923. http://dx.doi.org/10.1002/admi.201901923.
Full textLander, G. H., W. G. Stirling, J. M. Rossat-Mignod, M. Hagen, and O. Vogt. "Magnetic excitations in monodomain ferromagnetic uranium telluride." Physical Review B 41, no. 10 (1990): 6899–906. http://dx.doi.org/10.1103/physrevb.41.6899.
Full textNedkov, I., L. Slavov, T. Merodiiska, et al. "Size effects in monodomain magnetite based ferrofluids." Journal of Nanoparticle Research 10, no. 5 (2007): 877–80. http://dx.doi.org/10.1007/s11051-007-9311-x.
Full textP ¸ekała, M., J. Mucha, P. Vanderbemden, R. Cloots, and M. Ausloos. "Magneto-transport characterization of Dy123 monodomain superconductors." Applied Physics A 81, no. 5 (2005): 1001–7. http://dx.doi.org/10.1007/s00339-004-3014-2.
Full textNielsen, Bjørn Fredrik, Tomas Syrstad Ruud, Glenn Terje Lines, and Aslak Tveito. "Optimal monodomain approximations of the bidomain equations." Applied Mathematics and Computation 184, no. 2 (2007): 276–90. http://dx.doi.org/10.1016/j.amc.2006.05.158.
Full textRuhl, Tilmann, Peter Spahn, Holger Winkler, and Goetz P. Hellmann. "Large Area Monodomain Order in Colloidal Crystals." Macromolecular Chemistry and Physics 205, no. 10 (2004): 1385–93. http://dx.doi.org/10.1002/macp.200400009.
Full textRen, Wanting, Philip J. McMullan, and Anselm C. Griffin. "Poisson's Ratio of Monodomain Liquid Crystalline Elastomers." Macromolecular Chemistry and Physics 209, no. 18 (2008): 1896–99. http://dx.doi.org/10.1002/macp.200800265.
Full textYakacki, C. M., M. Saed, D. P. Nair, T. Gong, S. M. Reed, and C. N. Bowman. "Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol–acrylate reaction." RSC Advances 5, no. 25 (2015): 18997–9001. http://dx.doi.org/10.1039/c5ra01039j.
Full textWang, Li, Wei Liu, Ling-Xiang Guo, et al. "A room-temperature two-stage thiol–ene photoaddition approach towards monodomain liquid crystalline elastomers." Polymer Chemistry 8, no. 8 (2017): 1364–70. http://dx.doi.org/10.1039/c6py02096h.
Full textMUNTEANU, MARILENA, and LUCA F. PAVARINO. "DECOUPLED SCHWARZ ALGORITHMS FOR IMPLICIT DISCRETIZATIONS OF NONLINEAR MONODOMAIN AND BIDOMAIN SYSTEMS." Mathematical Models and Methods in Applied Sciences 19, no. 07 (2009): 1065–97. http://dx.doi.org/10.1142/s0218202509003723.
Full textCuccuru, Gianmauro, Giorgio Fotia, Fabio Maggio, and James Southern. "Simulating Cardiac Electrophysiology Using Unstructured All-Hexahedra Spectral Elements." BioMed Research International 2015 (2015): 1–15. http://dx.doi.org/10.1155/2015/473279.
Full textRoth, Bradley John. "Mechanotransduction caused by a point force in the extracellular space." BIOMATH 7, no. 2 (2018): 1810197. http://dx.doi.org/10.11145/j.biomath.2018.10.197.
Full textChen, Yuan, and Shin-Tson Wu. "Electric field-induced monodomain blue phase liquid crystals." Applied Physics Letters 102, no. 17 (2013): 171110. http://dx.doi.org/10.1063/1.4803922.
Full textvan Breemen, Albert J. J. M., Peter T. Herwig, Ceciel H. T. Chlon, et al. "Large Area Liquid Crystal Monodomain Field-Effect Transistors." Journal of the American Chemical Society 128, no. 7 (2006): 2336–45. http://dx.doi.org/10.1021/ja055337l.
Full textKákay, Attila, and L. K. Varga. "Monodomain critical radius for soft-magnetic fine particles." Journal of Applied Physics 97, no. 8 (2005): 083901. http://dx.doi.org/10.1063/1.1844612.
Full textZhang, Shuming, Megan A. Greenfield, Alvaro Mata, et al. "A self-assembly pathway to aligned monodomain gels." Nature Materials 9, no. 7 (2010): 594–601. http://dx.doi.org/10.1038/nmat2778.
Full textBeyer, Patrick, Eugene M. Terentjev, and Rudolf Zentel. "Monodomain Liquid Crystal Main Chain Elastomers by Photocrosslinking." Macromolecular Rapid Communications 28, no. 14 (2007): 1485–90. http://dx.doi.org/10.1002/marc.200700210.
Full textNagaiah, Chamakuri, Karl Kunisch, and Gernot Plank. "Numerical solutions for optimal control of monodomain equations." PAMM 9, no. 1 (2009): 609–10. http://dx.doi.org/10.1002/pamm.200910276.
Full textKim, Dong Jik, and Marin Alexe. "Bulk photovoltaic effect in monodomain BiFeO3 thin films." Applied Physics Letters 110, no. 18 (2017): 183902. http://dx.doi.org/10.1063/1.4983032.
Full textBrunsman, E. M., J. H. Scott, S. A. Majetich, M. E. McHenry, and M. Q. Huang. "Magnetic properties of monodomain Nd-Fe-B-C nanoparticles." Journal of Applied Physics 79, no. 8 (1996): 5293. http://dx.doi.org/10.1063/1.361355.
Full textCasalta, H., P. Schleger, C. Bellouard, M. Hennion, I. Mirebeau, and B. Farago. "Direct measurement of superparamagnetic fluctuations in monodomain Fe particles." Physica B: Condensed Matter 241-243 (December 1997): 576–78. http://dx.doi.org/10.1016/s0921-4526(97)00648-0.
Full textDeak, J. G., R. H. Koch, G. E. Guthmiller, and R. E. Fontana. "Dynamic calculation of the responsivity of monodomain fluxgate magnetometers." IEEE Transactions on Magnetics 36, no. 4 (2000): 2052–56. http://dx.doi.org/10.1109/20.875331.
Full textMelenev, P. V., V. V. Rusakov, and Yu L. Raikher. "Magnetic structure of a spherical cluster of monodomain particles." Technical Physics Letters 34, no. 3 (2008): 248–50. http://dx.doi.org/10.1134/s1063785008030218.
Full textGodefroy, G. "Photorefractive properties of monodomain single crystal doped barium titanate." Ferroelectrics 92, no. 1 (1989): 205–9. http://dx.doi.org/10.1080/00150198908211327.
Full textLacey, D., H. N. Beattie, G. R. Mitchell, and J. A. Pople. "Orientation effects in monodomain nematic liquid crystalline polysiloxane elastomers." Journal of Materials Chemistry 8, no. 1 (1998): 53–60. http://dx.doi.org/10.1039/a705570f.
Full textGreen, Kevin R., and Raymond J. Spiteri. "Gating-enhanced IMEX splitting methods for cardiac monodomain simulation." Numerical Algorithms 81, no. 4 (2019): 1443–57. http://dx.doi.org/10.1007/s11075-019-00669-y.
Full textBaek, S. H., and C. B. Eom. "Reliable polarization switching of BiFeO 3." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, no. 1977 (2012): 4872–89. http://dx.doi.org/10.1098/rsta.2012.0197.
Full textStephanovich, V. A., and Yu G. Semenov. "The Magnetic Domain Structure Properties in Diluted Magnetic Semiconductors." Ukrainian Journal of Physics 65, no. 10 (2020): 881. http://dx.doi.org/10.15407/ujpe65.10.881.
Full textMoosmann, Philipp, Felix Ecker, Stefan Leopold-Messer, et al. "A monodomain class II terpene cyclase assembles complex isoprenoid scaffolds." Nature Chemistry 12, no. 10 (2020): 968–72. http://dx.doi.org/10.1038/s41557-020-0515-3.
Full text