Academic literature on the topic 'Monoidal structures'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Monoidal structures.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Monoidal structures"

1

Espalungue, d'Arros Sophie d'. "Operads in 2-categories and models of structure interchange." Electronic Thesis or Diss., Université de Lille (2022-....), 2023. http://www.theses.fr/2023ULILB053.

Full text
Abstract:
Le but de cette thèse est de fournir une construction explicite d'une résolution cofibrante des opérades de Balteanu-Fiedorowicz-Schwänzl-Vogt M_n, qui régissent les catégories monoidales itérées.Dans une première partie de la thèse, nous examinons en détail la définition des structures monoïdales dans les 2-catégories, ainsi que la définition des opérades dans les 2-catégories monoïdales, en prenant la 2-catégorie des catégories comme exemple principal. Ensuite, nous démontrons que la catégorie des opérades dans la catégorie des petites catégories hérite d'une structure de modèle par transfert de la structure de modèle folk sur la catégorie des petites catégories. Nous introduisons une notion de présentation polygraphique des opérades dans la catégorie des petites catégories afin de définir des opérades en terme de générateurs et relations à la fois dans la direction opératique et dans la direction catégorique au niveau des morphismes. Nous réexaminons la définition des opérades M_n en termes de présentations polygraphiques, et nous donnons une présentation de l'opérade M_1^infinity qui fournit une résolution cofibrante de l'opérade M_1 dans la structure de modèle folk. Enfin, nous étudions une généralisation du produit tensoriel de Boardman-Vogt dans le contexte des opérades dans la catégorie des catégories. Nous utilisons cette construction pour fournir une résolution cofibrante M_n^infinity de l'opérade M_n à partir de la résolution M_1^infinity de M_1, et ainsi répondre à la question initiale de la thèse<br>The goal of this thesis is to give an effective construction of a cofibrant resolution of the Balteanu-Fiedorowicz-Schwänzl-Vogt operads M_n, which govern iterated monoidal categories.In a first part of the thesis, we study thoroughly the definition of monoidal structures in 2-categories, and the definition of operads in monoidal 2-categories, with the 2-category of categories as a main motivating example. Then we prove that the category of operads in the category of small categories inherits a model structure by transfer of the folk model structure on the category of small categories. We introduce a notion of polygraphic presentation of operads in the category of small categories in order to define operads with generators and relations in both the operadic direction and the categorical direction at the morphism level. We revisit the definition of the operads M_n in terms of polygraphic presentations, and we gives a presentation of an operad M_1^infinity that provides a cofibrant resolution of the operad M_1 in the folk modelstructure. Eventually, we study a generalization of the Boardman-Vogt tensor product in the context of operads in the category of small categories. We use this construction to provide a cofibrant resolution M_n^infinity of the operad M_n from the resolution M_1^infinity of M_1, and hence, to address the initial question of the thesis
APA, Harvard, Vancouver, ISO, and other styles
2

Reischuk, Rebecca [Verfasser]. "The monoidal structure on strict polynomial functors / Rebecca Reischuk." Bielefeld : Universitätsbibliothek Bielefeld, 2016. http://d-nb.info/110564555X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Staten, Corey. "Structure diagrams for symmetric monoidal 3-categories: a computadic approach." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1525455392722049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aquilino, Cosima [Verfasser]. "On strict polynomial functors: monoidal structure and Cauchy filtration / Cosima Aquilino." Bielefeld : Universitätsbibliothek Bielefeld, 2016. http://d-nb.info/110754064X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kunhardt, Walter. "On infravacua and the superselection structure of theories with massless particles." Doctoral thesis, [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962816159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aquilino, Cosima [Verfasser]. "On strict polynomial functors: monoidal structure and Cauchy filtration. (Ergänzte Version) / Cosima Aquilino." Bielefeld : Universitätsbibliothek Bielefeld, 2016. http://nbn-resolving.de/urn:nbn:de:hbz:361-29054451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Zhuo. "Orbit structure of finite and reductive monoids." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21301.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zeng, William J. "The abstract structure of quantum algorithms." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:cace8fba-b533-42f7-b9fd-959f2412c2a7.

Full text
Abstract:
Quantum information brings together theories of physics and computer science. This synthesis challenges the basic intuitions of both fields. In this thesis, we show that adopting a unified and general language for process theories advances foundations and practical applications of quantum information. Our first set of results analyze quantum algorithms with a process theoretic structure. We contribute new constructions of the Fourier transform and Pontryagin duality in dagger symmetric monoidal categories. We then use this setting to study generalized unitary oracles and give a new quantum blackbox algorithm for the identification of group homomorphisms, solving the GROUPHOMID problem. In the remaining section, we construct a novel model of quantum blackbox algorithms in non-deterministic classical computation. Our second set of results concerns quantum foundations. We complete work begun by Coecke et al., definitively connecting the Mermin non-locality of a process theory with a simple algebraic condition on that theory's phase groups. This result allows us to offer new experimental tests for Mermin non-locality and new protocols for quantum secret sharing. In our final chapter, we exploit the shared process theoretic structure of quantum information and distributional compositional linguistics. We propose a quantum algorithm adapted from Weibe et al. to classify sentences by meaning. The clarity of the process theoretic setting allows us to recover a speedup that is lost in the naive application of the algorithm. The main mathematical tools used in this thesis are group theory (esp. Fourier theory on finite groups), monoidal category theory, and categorical algebra.
APA, Harvard, Vancouver, ISO, and other styles
9

Emtander, Eric. "Chordal and Complete Structures in Combinatorics and Commutative Algebra." Doctoral thesis, Stockholms universitet, Matematiska institutionen, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-48241.

Full text
Abstract:
This thesis is divided into two parts. The first part is concerned with the commutative algebra of certain combinatorial structures arising from uniform hypergraphs. The main focus lies on two particular classes of hypergraphs called chordal hypergraphs and complete hypergraphs, respectively. Both these classes arise naturally as generalizations of the corresponding well known classes of simple graphs. The classes of chordal and complete hypergraphs are introduced and studied in Chapter 2 and Chapter 3 respectively. Chapter 4, that is the content of \cite{E5}, answers a question posed at the P.R.A.G.MAT.I.C. summer school held in Catania, Italy, in 2008. In Chapter 5 we study hypergraph analogues of line graphs and cycle graphs. Chapter 6 is concerned with a connectedness notion for hypergraphs and in Chapter 7 we study a weak version of shellability.The second part is concerned with affine monoids and their monoid rings. Chapter 8 provide a combinatorial study of a class of positive affine monoids that behaves in some sense like numerical monoids. Chapter 9 is devoted to the class of numerical monoids of maximal embedding dimension. A combinatorial description of the graded Betti numbers of the corresponding monoid rings in terms of the minimal generators of the monoids is provided. Chapter 10 is concerned with monomial subrings generated by edge sets of complete hypergraphs.
APA, Harvard, Vancouver, ISO, and other styles
10

Gay, Joël. "Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS209/document.

Full text
Abstract:
La combinatoire algébrique est le champ de recherche qui utilise des méthodes combinatoires et des algorithmes pour étudier les problèmes algébriques, et applique ensuite des outils algébriques à ces problèmes combinatoires. L’un des thèmes centraux de la combinatoire algébrique est l’étude des permutations car elles peuvent être interprétées de bien des manières (en tant que bijections, matrices de permutations, mais aussi mots sur des entiers, ordre totaux sur des entiers, sommets du permutaèdre…). Cette riche diversité de perspectives conduit alors aux généralisations suivantes du groupe symétrique. Sur le plan géométrique, le groupe symétrique engendré par les transpositions élémentaires est l’exemple canonique des groupes de réflexions finis, également appelés groupes de Coxeter. Sur le plan monoïdal, ces même transpositions élémentaires deviennent les opérateurs du tri par bulles et engendrent le monoïde de 0-Hecke, dont l’algèbre est la spécialisation à q=0 de la q-déformation du groupe symétrique introduite par Iwahori. Cette thèse se consacre à deux autres généralisations des permutations. Dans la première partie de cette thèse, nous nous concentrons sur les matrices de permutations partielles, en d’autres termes les placements de tours ne s’attaquant pas deux à deux sur un échiquier carré. Ces placements de tours engendrent le monoïde de placements de tours, une généralisation du groupe symétrique. Dans cette thèse nous introduisons et étudions le 0-monoïde de placements de tours comme une généralisation du monoïde de 0-Hecke. Son algèbre est la dégénérescence à q=0 de la q-déformation du monoïde de placements de tours introduite par Solomon. On étudie par la suite les propriétés monoïdales fondamentales du 0-monoïde de placements de tours (ordres de Green, propriété de treillis du R-ordre, J-trivialité) ce qui nous permet de décrire sa théorie des représentations (modules simples et projectifs, projectivité sur le monoïde de 0-Hecke, restriction et induction le long d’une fonction d’inclusion).Les monoïdes de placements de tours sont en fait l’instance en type A de la famille des monoïdes de Renner, définis comme les complétés des groupes de Weyl (c’est-à-dire les groupes de Coxeter cristallographiques) pour la topologie de Zariski. Dès lors, dans la seconde partie de la thèse nous étendons nos résultats du type A afin de définir les monoïdes de 0-Renner en type B et D et d’en donner une présentation. Ceci nous conduit également à une présentation des monoïdes de Renner en type B et D, corrigeant ainsi une présentation erronée se trouvant dans la littérature depuis une dizaine d’années. Par la suite, nous étudions comme en type A les propriétés monoïdales de ces nouveaux monoïdes de 0-Renner de type B et D : ils restent J-triviaux, mais leur R-ordre n’est plus un treillis. Cela ne nous empêche pas d’étudier leur théorie des représentations, ainsi que la restriction des modules projectifs sur le monoïde de 0-Hecke qui leur est associé. Enfin, la dernière partie de la thèse traite de différentes généralisations des permutations. Dans une récente séries d’articles, Châtel, Pilaud et Pons revisitent la combinatoire algébrique des permutations (ordre faible, algèbre de Hopf de Malvenuto-Reutenauer) en terme de combinatoire sur les ordres partiels sur les entiers. Cette perspective englobe également la combinatoire des quotients de l’ordre faible tels les arbres binaires, les séquences binaires, et de façon plus générale les récents permutarbres de Pilaud et Pons. Nous généralisons alors l’ordre faibles aux éléments des groupes de Weyl. Ceci nous conduit à décrire un ordre sur les sommets des permutaèdres, associaèdres généralisés et cubes dans le même cadre unifié. Ces résultats se basent sur de subtiles propriétés des sommes de racines dans les groupes de Weyl qui s’avèrent ne pas fonctionner pour les groupes de Coxeter qui ne sont pas cristallographiques<br>Algebraic combinatorics is the research field that uses combinatorial methods and algorithms to study algebraic computation, and applies algebraic tools to combinatorial problems. One of the central topics of algebraic combinatorics is the study of permutations, interpreted in many different ways (as bijections, permutation matrices, words over integers, total orders on integers, vertices of the permutahedron…). This rich diversity of perspectives leads to the following generalizations of the symmetric group. On the geometric side, the symmetric group generated by simple transpositions is the canonical example of finite reflection groups, also called Coxeter groups. On the monoidal side, the simple transpositions become bubble sort operators that generate the 0-Hecke monoid, whose algebra is the specialization at q=0 of Iwahori’s q-deformation of the symmetric group. This thesis deals with two further generalizations of permutations. In the first part of this thesis, we first focus on partial permutations matrices, that is placements of pairwise non attacking rooks on a n by n chessboard, simply called rooks. Rooks generate the rook monoid, a generalization of the symmetric group. In this thesis we introduce and study the 0-Rook monoid, a generalization of the 0-Hecke monoid. Its algebra is a proper degeneracy at q = 0 of the q-deformed rook monoid of Solomon. We study fundamental monoidal properties of the 0-rook monoid (Green orders, lattice property of the R-order, J-triviality) which allow us to describe its representation theory (simple and projective modules, projectivity on the 0-Hecke monoid, restriction and induction along an inclusion map).Rook monoids are actually type A instances of the family of Renner monoids, which are completions of the Weyl groups (crystallographic Coxeter groups) for Zariski’s topology. In the second part of this thesis we extend our type A results to define and give a presentation of 0-Renner monoids in type B and D. This also leads to a presentation of the Renner monoids of type B and D, correcting a misleading presentation that appeared earlier in the litterature. As in type A we study the monoidal properties of the 0-Renner monoids of type B and D : they are still J-trivial but their R-order are not lattices anymore. We study nonetheless their representation theory and the restriction of projective modules over the corresponding 0-Hecke monoids. The third part of this thesis deals with different generalizations of permutations. In a recent series of papers, Châtel, Pilaud and Pons revisit the algebraic combinatorics of permutations (weak order, Malvenuto-Reutenauer Hopf algebra) in terms of the combinatorics of integer posets. This perspective encompasses as well the combinatorics of quotients of the weak order such as binary trees, binary sequences, and more generally the recent permutrees of Pilaud and Pons. We generalize the weak order on the elements of the Weyl groups. This enables us to describe the order on vertices of the permutahedra, generalized associahedra and cubes in the same unified context. These results are based on subtle properties of sums of roots in Weyl groups, and actually fail for non-crystallographic Coxeter groups
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography