Academic literature on the topic 'Monolithic structure'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Monolithic structure.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Monolithic structure"
Storodubtseva, Tamara. "Wood composite - improving its monolithic structure." Актуальные направления научных исследований XXI века: теория и практика 2, no. 3 (October 15, 2014): 253–56. http://dx.doi.org/10.12737/3967.
Full textChen, Ai Bing, Yun Hong Yu, Yi Feng Yu, Hai Jun Lv, Ting Ting Xing, Yue Tong Li, and Wen Wei Zang. "Monolithic Macroporous-Mesoporous Carbon Using Ionic Liquids as Carbon Source." Advanced Materials Research 988 (July 2014): 23–26. http://dx.doi.org/10.4028/www.scientific.net/amr.988.23.
Full textChen, Jiawei, Fangfang Liu, Yongfeng Li, Yongshen Dou, Sanmao Liu, and Liangjun Xiao. "Self-standing zeolite foam monoliths with hierarchical micro–meso–macroporous structures." Royal Society Open Science 7, no. 8 (August 2020): 200981. http://dx.doi.org/10.1098/rsos.200981.
Full textLi, Bao Hui, and Bao Juan Tian. "The Preparation and Characterization of Organic–Inorganic Hybrid Material Amino Monolithic Column for Capillary Electro Chromatography." Applied Mechanics and Materials 130-134 (October 2011): 410–13. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.410.
Full textKorol, Elena, Daniil Mostovoy, and Alexander Pleshivcev. "Technological parameter optimization of multilayer enclosure structures with the multiple-criteria decision analysis." MATEC Web of Conferences 170 (2018): 03031. http://dx.doi.org/10.1051/matecconf/201817003031.
Full textPrabhakaran, D., C. Subashini, and M. Akhila Maheswari. "Synthesis of Mesoporous Silica Monoliths — A Novel Approach Towards Fabrication of Solid-State Optical Sensors for Environmental Applications." International Journal of Nanoscience 15, no. 05n06 (October 2016): 1660014. http://dx.doi.org/10.1142/s0219581x16600140.
Full textChan, C., J. L. McCrea, G. Palumbo, and Uwe Erb. "Microstructural and Mechanical Characterization of Multilayered Iron Electrodeposits." Advanced Materials Research 409 (November 2011): 474–79. http://dx.doi.org/10.4028/www.scientific.net/amr.409.474.
Full textLeonov, A. N., O. L. Smorygo, and V. K. Sheleg. "Monolithic catalyst supports with foam structure." Reaction Kinetics and Catalysis Letters 60, no. 2 (March 1997): 259–67. http://dx.doi.org/10.1007/bf02475687.
Full textAlessandretti, Rodrigo, Raissa Ribeiro, Marcia Borba, and Alvaro Della Bona. "Fracture Load and Failure Mode of CAD-on Ceramic Structures." Brazilian Dental Journal 30, no. 4 (July 2019): 380–84. http://dx.doi.org/10.1590/0103-6440201902574.
Full textWang, Su Guo, and Chen Yu Yang. "The Crack Investigation and Analysis of Frame Structure Subjected to Lateral Loading." Applied Mechanics and Materials 71-78 (July 2011): 1885–88. http://dx.doi.org/10.4028/www.scientific.net/amm.71-78.1885.
Full textDissertations / Theses on the topic "Monolithic structure"
Sebag, J., W. Gressler, M. Liang, D. Neill, C. Araujo-Hauck, J. Andrew, G. Angeli, et al. "LSST primary/tertiary monolithic mirror." SPIE-INT SOC OPTICAL ENGINEERING, 2016. http://hdl.handle.net/10150/622513.
Full textLiu, Xinyang. "A Monolithic Lagrangian Meshfree Method for Fluid-Structure Interaction." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1459348741.
Full textChiang, Chen-Yu. "Transport in biological systems. Monolithic method for fluid-structure interaction." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS477.
Full textThe present work aims at developing a numerical solver for fluid-structure interaction (FSI) problems, especially those encountered in biology such as blood circulation in valved veins. Blood flow is investigated using anatomically and physically relevant models. The first aspect of FSI problems is related to management of algorithm stability. An Eulerian monolithic formulation based on the characteristic method unconditionally achieves stability and introduce a first order in time approximation with two distinct hyperelastic material models. The second aspect deals with between-solid domain contact such as that between valve leaflets during closure and in the closed state over a finite surface, which avoid vcusp tilting and back flow. A contact algorithm is proposed and validated using benchmarks. Computational study of blood flow in valved veins is investigated, once the solver was verified and validated. The 2D computational domain comprises a single basic unit or the ladder-like model of a deep and superficial veins communicating by a set of perforating veins. A 3D mesh of the basic unit was also built. Three-dimensional computation relies on high performance computing. Blood flow dynamics is strongly coupled to vessel wall mechanics. Deformable vascular walls of large veins and arteries are composed of three main layers (intima, media, and adventitia) that consist of composite material with a composition specific to each layer. In the present work, the wall rheology is assumed to be a Mooney-Rivlin material
Ishizuka, Norio. "Studies on structure control and chromatographic properties of monolithic silica column." 京都大学 (Kyoto University), 2002. http://hdl.handle.net/2433/149779.
Full textSelmadji, Anfel. "From monolithic architectural style to microservice one : structure-based and task-based approaches." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS026/document.
Full textSoftware technologies are constantly evolving to facilitate the development, deployment, and maintenance of applications in different areas. In parallel, these applications evolve continuously to guarantee an adequate quality of service, and they become more and more complex. Such evolution often involves increased development and maintenance costs, that can become even higher when these applications are deployed in recent execution infrastructures such as the cloud. Nowadays, reducing these costs and improving the quality of applications are main objectives of software engineering. Recently, microservices have emerged as an example of a technology or architectural style that helps to achieve these objectives.While microservices can be used to develop new applications, there are monolithic ones (i.e., monoliths) built as a single unit and their owners (e.g., companies, etc.) want to maintain and deploy them in the cloud. In this case, it is common to consider rewriting these applications from scratch or migrating them towards recent architectural styles. Rewriting an application or migrating it manually can quickly become a long, error-prone, and expensive task. An automatic migration appears as an evident solution.The ultimate aim of our dissertation is contributing to automate the migration of monolithic Object-Oriented (OO) applications to microservices. This migration consists of two steps: microservice identification and microservice packaging. We focus on microservice identification based on source code analysis. Specifically, we propose two approaches.The first one identifies microservices from the source code of a monolithic OO application relying on code structure, data accesses, and software architect recommendations. The originality of our approach can be viewed from three aspects. Firstly, microservices are identified based on the evaluation of a well-defined function measuring their quality. This function relies on metrics reflecting the "semantics" of the concept "microservice". Secondly, software architect recommendations are exploited only when they are available. Finally, two algorithmic models have been used to partition the classes of an OO application into microservices: clustering and genetic algorithms.The second approach extracts from an OO source code a workflow that can be used as an input of some existing microservice identification approaches. A workflow describes the sequencing of tasks constituting an application according to two formalisms: control flow and /or data flow. Extracting a workflow from source code requires the ability to map OO conceptsinto workflow ones.To validate both approaches, we implemented two prototypes and conducted experiments on several case studies. The identified microservices have been evaluated qualitatively and quantitatively. The extracted workflows have been manually evaluated relying on test suites. The obtained results show respectively the relevance of the identified microservices and the correctness of the extracted workflows
Bna', Simone <1985>. "Multilevel Domain Decomposition Algorithms for Monolithic Fluid-Structure Interaction Problems with Application to Haemodynamics." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6293/.
Full textGrew, Benjamin A. "Studies on monolithic tandem structure for low cost and high efficiency dye-sensitized solar cells." Thesis, Heriot-Watt University, 2016. http://hdl.handle.net/10399/3191.
Full textElsafti, Hisham [Verfasser], and H. [Akademischer Betreuer] Oumeraci. "Modelling and Analysis of Wave-Structure-Foundation Interaction for Monolithic Breakwaters / Hisham Elsafti ; Betreuer: H. Oumeraci." Braunschweig : Technische Universität Braunschweig, 2015. http://d-nb.info/117581959X/34.
Full textEverett, Judith Helen. "Structure of monolithic human insulin at 1.8A resolution and development of computer software for application in biophysics." Thesis, Liverpool John Moores University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.290739.
Full textEder, Felix. "Comparing Monolithic and Event-Driven Architecture when Designing Large-scale Systems." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300393.
Full textStrukturen som system och program designas efter är väldigt viktigt. När en arbetar med mindre grupper av system så kommer den valda arkitekturen inte att påverka prestandan mycket. Men när dessa system växter i storlek och komplexitet så kommer valet av arkitektur vara väldigt viktigt. Problem som kan uppstå när mjukvarukomplexiteten ökar är väntandet på dataaccesser, långa sekventiella exekveringar och potentiell förlust av data. Det finns ingen optimal mjukvaruarkitektur, det finns oräkneligt många sätt att designa program. Det är intressant att kolla på vilka arkitekturer som preseterar bäst sätt till exekveringstid när en hanterar ett flertal större system och stora mängder data. I den här avhandlingen kommer ett fall, kallat "Ingångsavdraget", att implementeras i en monolitisk och en event-driven arkitekturell stil och sedan köras igenom tre olika scenarion. Den monolitiska arkitekturen var vald på grund av dess enkelhet och populäritet vid utveckling av enklar program och system. Den event-drivna arkitekturen valdes på grund av vissa teoretiska fördelar, så som att kunna undvika sekventiell kommunikation mellan systemen och därmed reducera tiden som systemen väntar på svar från varandra. Den huvudsakliga forskningsfrågan som ska besvaras är vad de största fördelarna och nackdelarna är när man bygger större system med en event-driven arkitekturell stil. Andra forskningsfrågor inkludera hur arkitekturen påverkar effektiviteten hos en organisation och samarbetet mellan olika team, samt hur datasäkerheten hanteras. De två implementationerna sattes igång tre olika scenarion inom fallet, där exekveringstid, antal HTTP-anrop skickade, databasaccesser och event skickad mättes. Resultaten visar att den event-drivna arkitekturen presterade 9.4% långsamare i det första scenariot och 0.5% långsamare i det andra scenariot. I det tredje scenariot presterade den event-drivna lösningen 49.0% snabbare än den monolitiska lösningen och avslutade därmed scenariot under hälften av tiden. Den monolitiska implementationen presterade generellt väl under de simplare scenarion 1 och 2, där systemen hade färre integrationer till varandra. I dessa fallen så är den den föredragna lösningen eftersom det är lättare att designa och implementera. Den event-drivna lösningen presterade mycket bättre i det mer komplexa scenario 3, där många system och integrationer var inblandade, eftersom den kunde ta bort vissa kopplingar mellan system. Slutligen så diskuteras även hållbarhet och etik i studien, samt begränsningarna av forskningen och potentiellt framtida arbete.
Books on the topic "Monolithic structure"
Schuster, C. E. Test structure implementation document: DC parametric test structures and test methods for monolithic microwave integrated circuits (MMICs). Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1995.
Find full textSchuster, C. E. Test structure implementation document: DC parametric test structures and test methods for monolithic microwave integrated circuits (MMICs). Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1995.
Find full textSchuster, C. E. Test structure implementation document: DC parametric test structures and test methods for monolithic microwave integrated circuits (MMICs). Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1995.
Find full textPlural cultures and monolithic structures: Comprehending India. Delhi: Primus Books, 2013.
Find full textAmerican Concrete Institute. Committee 352. Recommendations for design of beam-column joints in monolithic reinforced concrete structures. [Detroit]: American Concrete Institute, 1985.
Find full textAmerican Concrete Institute. Committee 352. Recommendations for design of slab-column connections in monolithic reinforced concrete structures. [Detroit]: American Concrete Institute, 1988.
Find full textItoh, Tatsuo. Analysis and characterizations of planar transmission structures and components for superconducting and monolithic integrated circuits: For the period October 1, 1989 to November 12, 1990. Cleveland, Ohio: National Aeronautics and Space Administrtion, Lewis Research Center, 1990.
Find full textAlekseenko, Vasiliy, and Oksana Zhilenko. Design, construction and operation of buildings in seismic areas. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1000210.
Full textGli obelischi di Roma: Dalle sabbie dell'antico Egitto alle piazze della città eterna, dagli imponenti monoliti eretti dai faraoni alle imitazioni successive : un viaggio nella storia e nei segreti dei monumenti simbolo del potere. Roma: Newton Compton, 2007.
Find full textUnited States. Defense Advanced Research Projects Agency, Wright Laboratory (Wright-Patterson Air Force Base, Ohio), and National Institute of Standards and Technology (U.S.), eds. Test structure implementation document: DC parametric test structures and test methods for monolithic microwave integrated circuits (MMICs). Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1995.
Find full textBook chapters on the topic "Monolithic structure"
Skudas, Romas, Matthias Thommes, and Klaus K. Unger. "Characterization of the Pore Structure of Monolithic Silicas." In Monolithic Silicas in Separation Science, 47–80. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633241.ch4.
Full textKaliszan, Roman, and Michał J. Markuszewski. "Quantitative Structure-Retention Relationships in Studies of Monolithic Materials." In Monolithic Silicas in Separation Science, 157–72. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633241.ch8.
Full textMurea, Cornel Marius. "Monolithic Algorithm for Dynamic Fluid-Structure Interaction Problem." In Advanced Structured Materials, 135–46. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3764-1_9.
Full textPironneau, Olivier. "Numerical Study of a Monolithic Fluid–Structure Formulation." In Variational Analysis and Aerospace Engineering, 401–20. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45680-5_15.
Full textCerroni, D., D. Giommi, S. Manservisi, and F. Mengini. "Preliminary Monolithic Fluid Structure Interaction Model for Ventricle Contraction." In Biomedical Technology, 217–31. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59548-1_12.
Full textTezuka, Yojiro, Masanori Ueda, Yoshinobu Baba, Hiroaki Nakanishi, Takahiro Nishimoto, Yuzuru Takamura, and Yasuhiro Horiike. "DNA Size Separation Employing Micro-Fabricated Monolithic Nano-Structure." In Micro Total Analysis Systems 2002, 212–14. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0295-0_71.
Full textDarnieder, Maximilian, Thomas Fröhlich, and René Theska. "Tilt Sensitivity Modeling of a Monolithic Weighing Cell Structure." In Interdisciplinary Applications of Kinematics, 257–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16423-2_24.
Full textTurek, S., J. Hron, M. Mádlík, M. Razzaq, H. Wobker, and J. F. Acker. "Numerical Simulation and Benchmarking of a Monolithic Multigrid Solver for Fluid-Structure Interaction Problems with Application to Hemodynamics." In Fluid Structure Interaction II, 193–220. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14206-2_8.
Full textSetareh, Mehdi, and Robert Darvas. "Formwork for Monolithic Concrete Construction." In Concrete Structures, 517–65. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24115-9_8.
Full textBrownbill, Robert, Philip Silk, Peter Whiteside, Windo Hutabarat, and Harry Burroughes. "High-Load Titanium Drilling Using an Accurate Robotic Machining System." In IFIP Advances in Information and Communication Technology, 140–52. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72632-4_10.
Full textConference papers on the topic "Monolithic structure"
Santer, Matthew, and Sergio Pellegrino. "An Asymmetrically-Bistable Monolithic Energy-Storing Structure." In 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-1527.
Full textHsu, Shou-Jen, and Chin C. Lee. "A monolithic aluminum circuit board structure." In 2013 IEEE 63rd Electronic Components and Technology Conference (ECTC). IEEE, 2013. http://dx.doi.org/10.1109/ectc.2013.6575748.
Full textKaftaranova, M. I., N. V. Artyukhova, S. G. Anikeev, A. S. Garin, A. N. Monogenov, and V. E. Gunther. "Study of structural features of monolithic TiNi-based alloy to produce porous monolithic structures." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5132010.
Full textZakariya, Abdullah J., and Patrick LiKamWa. "Multiple wavelength LED on monolithic QW structure." In SPIE Optical Engineering + Applications, edited by Matthew H. Kane, Christian Wetzel, Jian-Jang Huang, and Ian T. Ferguson. SPIE, 2012. http://dx.doi.org/10.1117/12.928011.
Full textEtienne, Stephane, Dominique Pelletier, and Andre Garon. "A monolithic formulation for unsteady Fluid-Structure Interactions." In 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-694.
Full textYokota, T., S. Ukai, M. Shikida, and K. Sato. "Fabrication of monolithic flow sensor on tube structure." In TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2009. http://dx.doi.org/10.1109/sensor.2009.5285532.
Full textWeber, Gary R., and Jeffrey D. Morgan. "Monolithic Structure Affordability: 737 Classic Versus Next Generation." In Aerospace Manufacturing Technology Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2003. http://dx.doi.org/10.4271/2003-01-2909.
Full textCao, X. F., Y. A. Jin, Z. P. Jiang, and Y. Liu. "Optimization of Oil Channel Structure of Monolithic Radiator." In International Conference on Computer Information Systems and Industrial Applications. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/cisia-15.2015.246.
Full textFernandez, Felix E., C. Riedel, A. Smith, B. Edwards, B. Lai, F. Cerrina, Martin J. Carr, et al. "Monolithic Fabry-Perot Structure For Soft X-Rays." In 32nd Annual Technical Symposium, edited by Finn E. Christensen. SPIE, 1988. http://dx.doi.org/10.1117/12.948795.
Full textJeong, J. W., D. J. Kim, H. S. Kim, S. K. Choi, and D. Y. Kim. "Experimental evaluation of arrayed microcolumn with a monolithic structure." In Digest of Papers. 2004 International Microprocesses and Nanotechnology Conference, 2004. IEEE, 2004. http://dx.doi.org/10.1109/imnc.2004.245748.
Full textReports on the topic "Monolithic structure"
Coldren, Larry A. Efficient, High-Speed, Monolithic Optoelectronic Circuits Using Quantum- Confined Structures. Fort Belvoir, VA: Defense Technical Information Center, July 1991. http://dx.doi.org/10.21236/ada239841.
Full textKatehi, Linda, and Gabriel M. Rebeiz. Theoretical and Experimental Study of Low-Loss, High- Efficiency Monolithic Antenna Structures at 94 GHz. Fort Belvoir, VA: Defense Technical Information Center, February 1995. http://dx.doi.org/10.21236/ada291785.
Full textItoh, Tatsuo. Studies of Non-Reciprocal Effects in Planar Submillimeter to Optical Waveguiding Structures and of Monolithic Circuits. Fort Belvoir, VA: Defense Technical Information Center, October 1988. http://dx.doi.org/10.21236/ada201704.
Full textFehl, Barry D., Gullermo A. Riveros, and Sharon Garner. Nonlinear, Incremental Structural Analysis of McAlpine Lock Replacement for Chamber, Miter Gate, and Culvert Valve Monoliths. Fort Belvoir, VA: Defense Technical Information Center, May 1997. http://dx.doi.org/10.21236/ada327152.
Full text